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Abstract 

Distance measurement (also known as similarity measurement) is used to evaluate pairwise 

similarities between data samples. It has been widely used in diverse building informatics research 

and applications to classify or cluster massive building data with the aim of improving prediction 

accuracy, identifying operation patterns, benchmarking and diagnosing building performance, etc. 

Various distance measures have been adopted to measure the distance/similarity of building data. 

However, the intrinsic complexity and diversity of building operational data bring considerable 

difficulties to the selection of a suitable distance measure for a specific task. There is a strong and 

urgent need for a comprehensive review and systematic comparison of existing distance measures 

in building informatics. 

This study provides a comprehensive review on various distance measures and their applications 

in building operational data analysis. A systematic comparison is undertaken based on two typical 

tasks relying on building informatics, i.e., building energy usage pattern recognition, and 

clustering-based weather data segmentation for the customized development of building energy 
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prediction models. Nine widely adopted distance measures have been reviewed and compared, 

including Euclidean distance, Chebyshev distance, Manhattan distance, Mahalanobis distance, 

Hausdorff distance, Pearson correlation distance, Dynamic Time Warping, Edit distance on Real 

Sequence, and Cosine distance. Novel internal and external clustering validation approaches based 

on the cross-test and prediction accuracy are proposed and adopted to compare the clustering 

performance. The results in case studies showed that weather data clustering using the Cosine 

distance and Pearson correlation distance helps to obtain better energy prediction results in terms 

of MAPE (13.22% and 12.91%, respectively) than the commonly-used Euclidean distance 

(13.99%). The results also revealed that better clustering performance does not necessarily lead to 

higher prediction accuracy. The research results and insights obtained are valuable to guide 

distance-based research in building informatics. 

Keywords: Distance measure, clustering, pattern recognition, time-series analysis 

1. Introduction  

Building informatics is concerned with building information management throughout the whole 

building lifecycle, which requires interdisciplinary collaboration, including Building Information 

Modeling (BIM) [1], big data [2], Internet of Things (IoT) [3], and machine learning. Building-

related data/information contain a wealth of knowledge about the interactions between building 

energy consumption and the factors that influence it. And building informatics play an increasing 

important role in improving building management and reducing energy consumption. Machine 

learning is one of the most rapidly growing data-driven technical fields, lying at the intersection 

of computer science and statistics, and serving the core of Artificial Intelligence (AI) and data 

science [4]. The application of data-intensive machine-learning methods in building informatics 

leads to more evidence-based decision-making [5].  



Distance-based learning algorithms are predominant in the field of machine learning, such as the 

k-means algorithms for clustering analysis, the k-Nearest Neighbors for classification and 

regression. They are inspired by one of the most critical components of numerous human cognitive 

processes, i.e., the capacity to quantify similarities between different objects [6]. Distance-based 

algorithms and approaches have been widely used in all kinds of applications oriented for 

improving building energy performance, including building energy prediction (e.g., k-NN [7]), 

fault detection and diagnosis (e.g., [8,9]), energy usage pattern recognition (e.g., fuzzy clustering 

[10], k-shape clustering [11], k-means clustering [12]), occupant behavior identification (e.g., 

Hierarchical clustering [13], k-means clustering [1]), energy benchmarking (e.g., Bin method 

[14,15]), and building typology analysis for obtaining reference buildings [16,17]. For instance, 

distance-based approaches have been widely used in FDD applications, where the difference 

between actual and predicted values are used as indicators for fault detection and diagnosis [18]. 

Li et al. [9] proposed a distance-based data-driven strategy for chiller FDD. The fault was detected 

and diagnosed if data measurements fall into one of the predefined fault clusters and within the 

predefined Manhattan distance range. The dynamic behavior of buildings and their energy systems 

generally exhibits extremely different operating characteristics under varying environmental 

conditions. Hence, distance-based data segmentation has been widely used for the customized 

development of machine learning models [19,20], RC model development [21], and energy saving 

analysis [22]). Building energy prediction is essential for control optimization and energy 

management towards energy saving and carbon emission mitigation [23]. Paudel et al. [19] 

proposed two AI modeling approaches (i.e., “all data” approach and “relevant data” approach) for 

predicting building heating energy consumption. The “all data” approach used all available 

training data, while the “relevant data” approach only used a small representative dataset with 



similar climate conditions (judged by dynamic time warping) to prediction day. The numerical 

results showed that the “relevant data” modeling approach had higher prediction accuracy (𝑅𝑅2 =

0.98;𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 3.4 ) than the “all data” modeling approach ( 𝑅𝑅2 = 0.93;𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 7.1 ). 

Additionally, the distance-based Bin method is also frequently used in building energy 

consumption benchmarking [14,15]. More specifically, the historical loads are grouped together 

into a bin if their associated variables (such as hour of week, temperature, and humidity) are similar 

and fall into the same interval categories. The mean value of the bin is then used to predict/estimate 

building loads with similar associated variables. However, most of the existing research focuses 

on development and comparison of different distance-based algorithms/methods, while ignoring 

the research on distance measure between data samples. 

To measure the distance or similarity between data samples, it is necessary to introduce/define a 

distance measure. In the perspective of building informatics, there are many sorts of data, such as 

building physical parameters (e.g., floor area, U-value, window-to-wall ratio), building operational 

data (e.g., electrical energy consumption, operational data of HVAC system), climate data (e.g., 

outdoor temperature, solar radiation), user-related data (e.g., occupant activities, on-off 

appliances), and time variables (e.g., season, date). Building operational data can therefore be 

numerical or categorical, single- or multi-dimensional, homogeneous or inhomogeneous, 

sequential or cross-sectional in different scenarios. The complexity and diversity of building 

operational data bring considerable difficulties to the selection or definition of distance measures. 

Therefore, the distance measurement under varying/different scenarios needs to be scientifically 

defined/selected to accurately describe the pairwise similarities in building operational data. As an 

example, clustering analysis can be used to partition data into groups based on their internal 

similarities. Such methods have been frequently used to classify energy consumers [24], predict 



future energy demand [19], occupant behavior identification [13] and detect distinguished, 

habitually undesirable behaviors [25]. The accurately quantification of pairwise data similarities 

serves as the fundamental basis for clustering algorithms, and a poorly-defined distance measure 

typically lead to meaningless and invalid clustering [10]. 

Although a multitude of (competitive and robust) distance measures (e.g., Euclidean distance, 

Mahalanobis distance, Dynamic Time Warping) have been proposed, choosing an appropriate 

distance is definitely not an easy task. Research efforts have been made to investigate the effects 

of various distance measures [22,26] on applications oriented for enhancing building energy 

efficiency. Iglesias and Kastner [22] investigated the influence of four similarity measures (i.e., 

Euclidean distance, Mahalanobis distance, Dynamic Time Warping distance, and distance based 

on Pearson’s correlation) in the application of time series clustering in discovering typical building 

energy patterns. Results showed that Euclidean and DTW distances outperformed the other two 

methods. Euclidean distance was the measurement that obtained the best, balanced general 

solution. And DTW can be considered an improved alternative in applications that benefit from a 

better representation of the highly similar kernel (or parts of the samples). Al-Wakeel et al. [27] 

conducted k-means clustering analysis on power consumption estimation based on four kinds of 

distance measures (i.e., Canberra, Manhattan, Euclidean, and Pearson correlation distances). The 

simulation results revealed that the use of Canberra distance yields more accurate load estimates 

(around 7% MAPE) than other distance measures. However, the sorts of distance measures that 

have been examined in previous research are limited, and some of the research findings are in 

conflict with others [22,26,27]. 

It is vital but challenging to objectively and comprehensively analyze and compare various 

distance measures under different tasks. Yilmaz et al. [26] presented an analysis of clustering 



approaches for grouping the electricity demand profiles for households in Switzerland. The 

clustering analysis was applied to average household electricity profiles and daily electricity 

profiles of 656 multi-family flats in Swizerland. Four methods of distance measurement (i.e., 

Euclidean, Manhattan, Canberra and Chebyshev distance) were compared. Results showed that, 

different methods achieved similar clustering performance in terms of Silhouette score (Euclidean: 

0.186; Manhattan: 0.186; Canberra: 0.188; Chebyshev: 0.185). Leprince and Zeiler [28] proposed 

a clustering-based load pattern identification method and assessed the benefit of the attained 

information on enhancing accuracies of building energy prediction. The proposed method was 

tested using energy consumption data of 70 residential buildings located in Netherlands. A cross-

clustering validation was illustrated on varying distance measures (i.e., Euclidean and 

Mahalanobis distances), algorithms (i.e., Fuzzy C-Means and Agglomerative Hierarchical 

clustering) and number of clusters (ranging from 2 to 30). Three internal clustering validity indexes 

were selected in validation analysis, namely Silhouette score, Calinski-Harabasz index, and 

Davies-Boudlin Index (DBI). The results showed that, Euclidean distance achieved better results 

compared to Mahalanobis distance with higher Calinski-Harabasz indexed and lower DBIs. Ding 

et al. [29] conducted an extensive set of time series experiments re-implementing 8 different 

representation methods and 9 similarity measures and their variants, and testing their effectiveness 

on 38 time-series data sets from a wide variety of application domains. One major drawback of 

previous research is that the validation/verification methods of distance-based algorithms are 

insufficiently systematic and comprehensive, such as adopting the default Euclidean distance 

measure in internal clustering validation indexes, and that the internal and external validation 

methods are not used together to evaluate the results.  



Previous researches reveal a number of gaps and shortcomings, i.e., (1) the types of distance 

measures compared in individual work are limited (no more than four), (2) the application 

scenarios are unspecific or undefined, (3) some of the findings are inconsistent [22,26,27], and (4) 

the validation/verification methods are insufficiently systematic and comprehensive, which limits 

the generalization capability of the results [26,27,28]. To tackle the above-mentioned limitations, 

there is a strong need for comprehensive review and systematic comparison of existing distance 

measures in building data analytics. This study attempts to investigate and assess the nine widely-

used distance measures by conducting comparison study on typical tasks in building energy 

management.  The main contributions of this paper are summarized as follow: 

• This study conducted a comprehensive literature review concerning applications of various 

distance measures in the building informatics field. 

• A systematic comparison study is conducted on two application scenarios, i.e., Case Ⅰ: building 

energy usage pattern recognition, and Case Ⅱ: clustering-based weather data segmentation for 

prediction model development. 

• Both internal and external clustering validation approaches are designed and adopted to 

evaluate the clustering results. The traditional internal clustering validation approach is 

modified based on the “cross-test” concept. A novel external clustering validation approach 

based on model prediction accuracy is designed for Case Ⅱ. 

• In-depth discussions are provided on the pros and cons of the distance measures, and how to 

select a suitable distance measure for a specific task based on the review and comparison study. 

The remaining part of the paper is organized as follows. Chapter 2 presents an overview of various 

distance measures and their applications in building energy field. Chapter 3 presents the 

comparison schemes and data used for assessment. The research results are presented in Chapter 

4. Chapter 5 provides discussions on the pros and cons of the distance measures and how to select 

suitable distance measure based on the review and comparison study. Chapter 6 concludes the 

paper and discusses possible future research extensions. 



2. Overview of distance measures 

This section introduces the theoretical background on representative distance measures.  lists the 

equations of several widely-used distance measures, and Figure 1 depicts their diagram. And a 

comprehensive literature review on their applications in building energy field will be provided. 

Table 2 summarizes distance measures used in relevant studies, along with the (type of) data 

samples (red: time series data) and research applications. The majority (19 out of 23) of the 

reviewed studies measured the distance of time series data, e.g., energy consumption subsequences 

and outdoor climate subsequences. And the applications of frequent occurrence include pattern 

recognition, data segmentation (for energy prediction), and FDD.    

 

Figure 1. Diagram of several distance measures 

 

  



Table 1. Summary of the nine distance measures discussed in this research 

Distance 
measure Equation Characteristics 

Euclidean 
distance 𝑑𝑑(𝑋𝑋,𝑌𝑌) = ��(𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)2

𝑇𝑇

𝑖𝑖=1

 (1) Classical; Most widely-used; Geometric 
correspondence 

Mahalanobis 
distance 𝑑𝑑(𝑋𝑋,𝑌𝑌) = �(𝑋𝑋 − 𝑌𝑌)𝑇𝑇𝑆𝑆−1(𝑋𝑋 − 𝑌𝑌) (2) Consider data correlation; Robust against data 

projection or rescaling 

Hausdorff 
distance 

𝑑𝑑(𝑋𝑋,𝑌𝑌) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥∈𝑋𝑋

 𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦∈𝑌𝑌

 𝑑𝑑(𝑥𝑥, 𝑦𝑦), 𝑠𝑠𝑠𝑠𝑠𝑠
𝑦𝑦∈𝑌𝑌

 𝑖𝑖𝑖𝑖𝑖𝑖
𝑥𝑥∈𝑋𝑋

 𝑑𝑑(𝑥𝑥,𝑦𝑦)� (3) No data alignment restrictions; High 
computation time 

Manhattan 
distance 𝑑𝑑(𝑋𝑋,𝑌𝑌) = �|𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖|

𝑇𝑇

𝑖𝑖=1

(4) Applicable for both categorical and numerical 
sequences; Geometric correspondence 

Chebyshev 
distance 𝑑𝑑(𝑋𝑋,𝑌𝑌) = lim

𝑘𝑘→∞
��|𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖|𝑘𝑘

𝑇𝑇

𝑖𝑖=1

�

1
𝑘𝑘

= max
𝑖𝑖

(|𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖|) (5) Dominated by maximal component-wise 
difference 

Pearson 
distance 

𝑑𝑑(𝑋𝑋,𝑌𝑌) = 1 −
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑇𝑇
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑇𝑇
𝑖𝑖=1 �∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑇𝑇

𝑖𝑖=1

(6) 
Scale-independent; Reflect linear correlation; 
Geometric correspondence (a function of the 

angle) 

Cosine 
distance 

𝑑𝑑(𝑋𝑋,𝑌𝑌) = 1−
∑ 𝑋𝑋𝑖𝑖 × 𝑌𝑌𝑖𝑖𝑇𝑇
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖)2𝑇𝑇
𝑖𝑖=1 × �∑ (𝑌𝑌𝑖𝑖)2𝑇𝑇

𝑖𝑖=1

(7) Scale-independent; Geometric correspondence 
(vector similarity) 

EDR 𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖, 𝑗𝑗] =

⎩
⎪
⎨

⎪
⎧

𝑚𝑚  if 𝑖𝑖 = 0
𝑛𝑛  if 𝑗𝑗 = 0

𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖 − 1][𝑗𝑗 − 1] +  subcost[𝑖𝑖][𝑗𝑗]

𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖][𝑗𝑗 − 1] + 1
𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖 − 1][𝑗𝑗] + 1

 otherwise 
(8) Applicable to categorical and numerical 

sequences; Robust against data imperfections 

DTW 𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋,𝑌𝑌) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝ℎ

 Effective and popular for time series; High 
computation time 

 
  



Table 2. Summary of the applications of distance measures in the building energy field 
Distance Data Application Ref 

DTW 

Outdoor temperature Relevant data selection for energy consumption 
prediction [19] 

BACS data Application-agnostic [30] 

Building energy 
consumption 

Detect building energy usage patterns 
Improve accuracy of forecasting model [11] 

Outdoor temperature Relevant data selection for building energy demand 
prediction [20] 

Energy signature profiles 
Identify heating system and building type 

Building retrofit analysis [31] 

Building energy system 
operation data Building energy usage pattern recognition [32] 

Transient power waveform Non-intrusive load transient identification [33] 

Chebyshev Historical (cooling load) 
prediction residuals 

Quantify the uncertainties in building cooling load 
prediction [34] 

Hausdorff Building electricity 
consumption 

Determine natural segmentation of customers 
Identify temporal consumption patterns 

[35] 

Mahalanobis 

Energy signature Outlier detection [31] 

Building load profile Pattern identification [28] 

Climate profile Building climate zoning [36] 

Building energy 
consumption Pattern identification [37] 

Real value and prediction 
error of energy demand 

Ensemble 4 different (building energy demand) 
prediction models [38] 

Manhattan 

Occupant’s Preference and 
energy consumption profile  

Light intensity setup 
Personalized control visual comfort [39] 

Outdoor temperature Data separation for building energy saving analysis [22] 

Chiller operational data FDD of building chiller faults [9] 

Edit distance Belgian time-of-use data Discover occupancy pattern [13] 

Cosine 
All variables in the system Initialize the input weights for Extreme learning machine 

for energy consumption robust prediction [40] 

Solar power variations on 
consecutive days Solar power prediction [41] 

Pearson Energy consumption data Detect customers with anomalous drops in their 
consumed energy [42] 

Euclidean, 
DTW, 

Mahalanobis, 
Pearson 

Building energy 
consumption Building energy pattern recognition [10] 



Euclidean, 
Chebyshev, 

Pearson 

Building energy daily 
profile 

Group daily electricity usage profiles 
Relevant data selection for forecasting model [43] 

Euclidean, 
Chebyshev, 

Pearson 

Building energy daily 
profile 

Identify informative typical daily electricity usage 
profiles [44] 

 
 
Euclidean distance, Manhattan distance and Chebyshev distance 

The definitions of these three distances are all based on the Minkowski distance. Two data samples 

𝑋𝑋 and 𝑌𝑌 of length 𝑇𝑇 are defined as following: 

𝑋𝑋 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑇𝑇] 

𝑌𝑌 = [𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑇𝑇] 

The Minkowski distance of order 𝑝𝑝  (where 𝑝𝑝  is an integer) between two samples 𝑋𝑋  and 𝑌𝑌  is 

defined as following equation: 

𝑑𝑑(𝑋𝑋,𝑌𝑌) = ��|𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖|𝑝𝑝
𝑛𝑛

𝑖𝑖=1

�

1
𝑝𝑝

 (9) 

Minkowski distance measures the difference between two samples in the format of multi-

dimensional vectors from an average perspective, and the order 𝑝𝑝 represents the significance of 

individual component-wise difference (i.e., |𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖|). With the increase of 𝑝𝑝, large component-

wise difference will contribute more to the distance. When 𝑝𝑝 equals 1 and 2, the Minkowski 

distance corresponds to the Manhattan distance (Eq. (4) in Table 1) and Euclidean distance (Eq. 

(1) ) , respectively. When 𝑝𝑝 approaches infinity, the Chebyshev distance can be obtained (Eq. (5)).  

The Euclidean distance is the distance in the Euclidean space, which is the fundamental space of 

classical geometry. It is a distance measure that can be best interpreted as the length of a line 

segment connecting two points. Euclidean distance is definitely the most applied similarity 



measure and usually appropriate for applications that do not present directly or necessarily 

correlation among distinct features [10]. Under normal circumstances, if not specifically specified, 

the default distance measure is Euclidean distance. Despite its widely utilization, Euclidean 

distance is not scale in-variant which means that distances computed might be skewed depending 

on the units of the features. And the distribution of each component (expected value, variance) 

may be different. Normally, one needs to normalize or standardize the data before using this 

distance measure [45].  

The Manhattan distance, also called city block distance or taxicab distance, is a form of geometry 

in which the usual distance function or metric of Euclidean geometry is replaced by a new metric 

in which the distance between two points is the sum of the absolute differences of their Cartesian 

coordinates. The reason for the naming of Manhattan distance is from the shortest driving path 

between cities planned as square building blocks (such as Manhattan). Kar et al. [39] proposed a 

recommender system-based approach for personalized visual comfort control in buildings. Initially, 

the individual user-preferences and energy consumption profiles were extracted from historical 

data. Then, the collaborative user-preferences are learnt/calculated based on the Manhattan 

distance of the target occupant from every other occupant. The proposed recommender system will 

generate the final recommended light intensity based on both individual and collaborative user-

preferences, which is sent to the actuator for setting up the light intensity.  

The Chebyshev distance is the indicator of maximal component-wise difference between two 

multi-dimensional vectors. Understanding this kind of correspondence/trend is particularly useful 

in many cases, e.g., loss function design (or model evaluation) (in machine learning model 

development) [46]. Haben et al. [46] proposed a new forecast error measure based on Minkowski 

distance for domestic household electrical energy prediction. In this study, 4-norm (i.e., 𝑝𝑝 = 4) 



was adopted, rather than the more common 2-norm (i.e., Mean squared error, the implementation 

of Euclidean distance), to penalize large errors (i.e., missed peaks) much more than small errors.  

Mahalanobis distance 

There are primarily two issues with the aforementioned distances (i.e., Euclidean distance, 

Manhattan distance, Chebyshev distance): 1) The dimension of each component is treated as the 

same; 2) The components’ distributions (e.g., expectation, variance) may vary, but are not 

considered [47,48].  

The Mahalanobis distance, as shown in Eq. (2), is defined as a distance measurement between two 

vectors 𝑋𝑋 and 𝑌𝑌 of the same distribution with the covariance matrix 𝑆𝑆. Mahalanobis distance can 

be considered as an evolution of the Euclidean distance (if 𝑆𝑆  is the identity matrix, then 

Mahalanobis distance is equal to the Euclidean distance) that takes into account data correlation. 

The covariance matrix S is adopted for weighting different features. Mahalanobis distance usually 

performs successfully with large data sets with reduced features, otherwise undesirable 

redundancies (brought by the covariance matrix) tend to distort the results [49]. When working 

with random information, the Mahalanobis distance exhibits stability against data projections or 

rescalings without degeneration [50]. This is particularly useful when outliers exist. Westermann 

et al. [31] adopted Mahalanobis distance in outlier filtering process of building energy signature 

data. The covariance-based method used a multivariate Gaussian distribution and classifies the 

points most distant from the center as outliers. 

Pearson distance 

Pearson correlation coefficient (PCC), also known as the product moment correlation coefficient, 

is widely used to reflect the linear correlation between two sets of data [51]. The PCC between 

two vectors 𝑋𝑋 and 𝑌𝑌 is defined as Eq. (9). It is the covariance of two variables, divided by the 



product of their standard deviations. Therefore, PCC is essentially a normalized measurement of 

the covariance, such that the result always has a value between −1 and 1.  

𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋,𝑌𝑌) =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑌𝑌)
𝑆𝑆𝑆𝑆(𝑋𝑋) × 𝑆𝑆𝑆𝑆(𝑌𝑌)

=
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑇𝑇
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑇𝑇
𝑖𝑖=1 �∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑇𝑇

𝑖𝑖=1

(10) 

where SD denotes the standard deviation. The closer the absolute value of PCC is to 1, the stronger 

the correlation between the two vectors. PCC can be seen as a function of the angle between the 

two variable vectors [52]. PCC is perhaps the most broadly applied index in all of statistics [52], 

although not free of distortions or problems [10]. Pearson distance is developed/defined based on 

Pearson’s correlation coefficient, as shown in Eq. (6) in Table 1.  

Cosine similarity 

The cosine similarity is widely used for analyzing vector similarity. Unlike the Euclidean distance, 

the cosine similarity pays more attention to the direction and the angle between two vectors. The 

cosine similarity between two vectors 𝑋𝑋 and 𝑌𝑌 is defined as follows: 

cos(𝜃𝜃) =
∑ 𝑋𝑋𝑖𝑖 × 𝑌𝑌𝑖𝑖𝑇𝑇
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖)2𝑇𝑇
𝑖𝑖=1 × �∑ (𝑌𝑌𝑖𝑖)2𝑇𝑇

𝑖𝑖=1

(11) 

where 𝜃𝜃 is the angle between 𝑋𝑋 and 𝑌𝑌. A small angle means the tested two vectors are expected to 

have high similarity. The value of Eq. (10) is limited between -1 and 1. Based on Eq. (10), the 

cosine distance can be defined as Eq. (7) in , ranging from [0,2].  

Xu et al. [40] also proposed a modified cosine similarity measure for initializing the input weights 

of building energy consumption prediction model (i.e., extreme learning machine), defined in 

follows: 



𝑐𝑐𝑐𝑐𝑐𝑐′(𝜃𝜃) =
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�) × (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑇𝑇
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑇𝑇
𝑖𝑖=1 × �∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑇𝑇

𝑖𝑖=1

 (12) 

where 𝑋𝑋� and 𝑌𝑌� is the mean value of 𝑋𝑋 and 𝑌𝑌, respectively. Instead of Euclidean distance, which is 

highly sensitive to magnitudes, the modified cosine similarity coefficient is adopted to initialize 

the weights connecting the input neurons and the hidden neurons of extreme learning machine, for 

improving its generalization ability.  

Dynamic time warping (DTW) 

Dynamic time warping (DWT) is one of the most popular and field-tested similarity measures is 

called the “time warping” distance measure. For the distance measurement of two sequences, 

Minkowski distance requires strict alignment (calculating all the component-wise difference 

between [𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖], and somehow averaging them), while DTW relaxes this alignment restriction. 

The principles of the DTW algorithm can be summarized as follows: a local cost 𝑛𝑛-by-𝑚𝑚 matrix 

𝐶𝐶 which contains all pairs of corresponding distances between two sequences 𝑋𝑋 (of length 𝑛𝑛) and 

𝑌𝑌 (of length 𝑚𝑚), with the element 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑋𝑋𝑖𝑖,𝑌𝑌𝑗𝑗) representing the distance between the two points 

𝑋𝑋𝑖𝑖  and 𝑌𝑌𝑗𝑗 ,, where the mapping 𝑑𝑑 is called local cost function (usually the Euclidean distance). 

Assuming that under the constraints of the boundary condition, monotonicity condition and step 

size condition, as shown in formula 13, any warping path (or mapping) between 𝑋𝑋 and 𝑌𝑌 from 

(1, 1) to (𝑖𝑖, 𝑗𝑗)  is 𝑝𝑝 = (𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘, … ,𝑝𝑝𝑙𝑙), where the 𝑘𝑘 th element 𝑝𝑝𝑘𝑘 = (𝑖𝑖𝑘𝑘, 𝑗𝑗𝑘𝑘) ∈ {1,2, … , 𝑖𝑖} ×

{1,2, … , 𝑗𝑗}. The accumulated cost associated with the warping path 𝑝𝑝 can then be defined as 𝐷𝐷 =

∑ 𝑑𝑑(𝑖𝑖𝑘𝑘, 𝑗𝑗𝑘𝑘)𝑙𝑙
𝑘𝑘=1  with 𝑘𝑘 ∈ {1,2, … , 𝑙𝑙}  and 𝑙𝑙 ∈ [max(𝑖𝑖, 𝑗𝑗) , 𝑖𝑖 + 𝑗𝑗 − 1] , where 𝑙𝑙  represents the path 

length. 



�
𝑝𝑝1 = (1,1),𝑝𝑝𝑙𝑙 = (𝑖𝑖, 𝑗𝑗)

𝑖𝑖1 ≤ 𝑖𝑖2 ≤ ⋯ ≤ 𝑖𝑖𝑙𝑙 , 𝑗𝑗1 ≤ 𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑙𝑙
𝑝𝑝𝑘𝑘+1 − 𝑝𝑝𝑘𝑘 ∈ {(1,1), (0,1), (1,0)}

 (13) 

Then, the optimal warping path (or optimal matching path) between 𝑋𝑋 and 𝑌𝑌 satisfying the above 

constraints, which minimizes the warping cost D, is searched using dynamic programming 

algorithm, and the corresponding minimum accumulated distance 𝐷𝐷 is calculated. Accordingly, 

the DTW distance between 𝑋𝑋 and 𝑌𝑌 can be defined as 𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋,𝑌𝑌) = 𝐷𝐷 𝑙𝑙⁄ . According to the above 

principle, DTW algorithm aligns the data points of the two time-series while finding the optimal 

matching path, such that the “distance” between them is minimized. The Euclidean distance 

between two sequences (of same length) can be seen as a special case of DTW, where the kth 

element of warping path 𝑃𝑃 is constrained such the 𝑝𝑝𝑘𝑘 = (𝑖𝑖, 𝑗𝑗)𝑘𝑘, 𝑖𝑖 = 𝑗𝑗 = 𝑘𝑘. 

Dau et al. [53] compared Euclidean distance and DTW for classification cases on the University 

of California Riverside (UCR) time series archive, which contained 128 datasets of different types 

(e.g., image, ECG, motion, audio data). The classification results strongly supported that well-

constrained DTW is better than Euclidean distance for most datasets (in UCR archive). In building 

energy field, DTW is frequently used as distance measurement in clustering analysis [30,31]. 

Westermann et al. [31] conducted clustering analysis on building energy signatures extracted by 

SVR for building retrofit analysis. In clustering analysis, the similarity of two energy signatures is 

calculated/measured using both Euclidean distance and DTW. The results showed that DTW 

performed better than Euclidean distance with either k-means or Hierarchical clustering algorithm. 

The authors stated that the DTW-based clustering can preserve the shape of the energy signature 

profiles (i.e., the entries of the profile vector remain), and at the same time it was capable to find 

energy signatures with similar shape even if they are offset. Bode et al. [30] proposed two 

clustering schemes (i.e., raw-data-based and feature-based) and tested them on time series data 



extracted from the E.ON Energy Research Center. The raw-data based clustering scheme adopted 

DTW for similarity measurement. In the test case, the DTW technique showed higher clustering 

accuracy than statistical features for the long term time frame. Some researchers employed DTW 

in data segmentation based on weather clustering for separate prediction model development. For 

example, Paudel et al. [20] also adopted DTW for training data selection. This research developed 

a SVM model for building energy demand prediction. For each day prediction condition, via 

DTW-based method, the training data of relevant days are selected based on climatic conditions 

and functioning profile of building. The advantage of this training design is that it leads to higher 

accuracy and better computational efficiency in comparison to those based on the whole training 

data. DTW is also capable of dealing with variable-length time series. Liu et al. [33] adopted DTW 

to measure the similarity between the variable-length raw transient power waveform (TPW) 

sample and template time-series, for load transient identification.  

As DTW is computationally expensive, different methods are proposed to speed-up the DTW 

matching process [54,55]. On the other hand, Keogh and Pazzani [56] pointed out the potential 

problems of DTW that it can lead to unintuitive alignments, where a single point on one time series 

maps onto a large subsection of another time series ([31] in our field also pointed out this problem). 

Additionally, DTW may fail to find obvious and natural alignments in two time series caused by 

a single feature (i.e., peak, valley, inflection point, plateau, etc.). One of the causes is due to the 

great disparity in the lengths of the comparing series. Therefore, besides improving the 

performance of DTW, methods are also proposed to improve the accuracy of DTW [56,57]. 

Interested readers are encouraged to refer to a comprehensive review [58].  



Edit distance on Real sequence (EDR) 

For categorical sequences (e.g., strings), one common distance measure is Edit distance. The Edit 

distance of two sequences 𝑋𝑋 and 𝑌𝑌 is defined as the minimum number of edits needed to transform 

𝑋𝑋 into 𝑌𝑌, allowing insertions, deletions and substitutions. Each edit operation may have a different 

cost. Typically, using “Levenshtein distance” (a cost of one is applied for each edit operation), the 

Edit distance from sequence 𝑋𝑋 = [𝑋𝑋1, … ,𝑋𝑋𝑚𝑚] to 𝑌𝑌 = [𝑌𝑌1, … ,𝑌𝑌𝑛𝑛] is given by 𝑑𝑑𝑚𝑚𝑚𝑚, defined by the 

recurrence [59]: 

𝑑𝑑𝑖𝑖0 = � 
𝑖𝑖

𝑘𝑘=1

𝑤𝑤del(𝑎𝑎𝑘𝑘), for 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 (14) 

𝑑𝑑0𝑗𝑗 = � 
𝑗𝑗

𝑘𝑘=1

𝑤𝑤ins (𝑏𝑏𝑘𝑘), for 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 (15) 

𝑑𝑑𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑖𝑖−1,𝑗𝑗−1     for 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑑𝑑𝑖𝑖−1,𝑗𝑗 + 𝑤𝑤del (𝑎𝑎𝑖𝑖)
𝑑𝑑𝑖𝑖,𝑗𝑗−1 + 𝑤𝑤ins �𝑏𝑏𝑗𝑗�

𝑑𝑑𝑖𝑖−1,𝑗𝑗−1 + 𝑤𝑤sub �𝑎𝑎𝑖𝑖, 𝑏𝑏𝑗𝑗�
     for 𝑎𝑎𝑖𝑖 ≠ 𝑏𝑏𝑗𝑗 for 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛

(16) 

Based on Edit distance, Chen et al. [60] introduced a novel distance function, i.e., Edit Distance 

on Real sequence (EDR) which is robust against data imperfections (e.g., noise, shifts and scaling 

of data that commonly occur due to sensor failures, disturbance signals and different sampling 

rates). The EDR from sequence 𝑋𝑋 = [𝑋𝑋1, … ,𝑋𝑋𝑚𝑚]  to 𝑌𝑌 = [𝑌𝑌1, … ,𝑌𝑌𝑛𝑛]  can also be calculated in 

recurrence: 

𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖, 𝑗𝑗] =

⎩
⎪
⎨

⎪
⎧

𝑚𝑚  if 𝑖𝑖 = 0
𝑛𝑛  if 𝑗𝑗 = 0

𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖 − 1][𝑗𝑗 − 1] +  subcost[𝑖𝑖][𝑗𝑗]

𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖][𝑗𝑗 − 1] + 1
𝐸𝐸𝐸𝐸𝐸𝐸[𝑖𝑖 − 1][𝑗𝑗] + 1

 otherwise 
(8) 



where subcost[𝑖𝑖][𝑗𝑗] is a function depending on whether 𝑋𝑋𝑖𝑖 equals 𝑌𝑌𝑗𝑗 (1 if equal, 0 if not). EDR can 

also be employed for numerical sequences. In this case, a threshold ε should be assigned for 

judging that two points/values are equal (if the absolute residual/difference lies within the range). 

Aerts et al. [13] proposed a clustering-based method for identification and modelling of realistic 

domestic occupancy sequences for building energy demand simulations and peer comparison. In 

this study, each element of the dataset represented one individual’s daily occupancy sequence. 

Each sequence in turn was constructed from 144 characters, one for each 10-min time step, with a 

value that corresponded to one of three possible occupancy states (i.e., at home and awake, 

sleeping, or absent). To be able to treat the difference between all states equally, each element was 

handled as a string instead of an integer (categorical sequence instead of numerical sequence). 

Therefore, Edit distance was adopted in hierarchical clustering, and seven typical occupancy 

patterns were identified.   

Hausdorff distance 

The Hausdorff distance measures how far two subsets are from each other; two sets are close if 

every point of either set is close to some point of the other set. The Hausdorff distance between 

two subsets 𝑋𝑋 and 𝑌𝑌 is calculated by computing the shortest distance between each feature 𝑋𝑋1 in 

set 𝑋𝑋  with respect to features in set 𝑌𝑌 , and then maintain the largest value. In other words, 

Hausdorff distance is the greatest of all distances from a point 𝑋𝑋𝑖𝑖 in one set to the closest point 𝑌𝑌𝑖𝑖 

in the other set. Formally, the Hausdorff distance between 𝑋𝑋 and 𝑌𝑌 is defined as following Eq. (17): 

𝑑𝑑(𝑋𝑋,𝑌𝑌) = �𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥∈𝑋𝑋

 𝑑𝑑(𝑥𝑥,𝑌𝑌), 𝑠𝑠𝑠𝑠𝑠𝑠
𝑦𝑦∈𝑌𝑌

 𝑑𝑑(𝑋𝑋,𝑦𝑦) � = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥∈𝑋𝑋

 𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦∈𝑌𝑌

 𝑑𝑑(𝑥𝑥,𝑦𝑦), 𝑠𝑠𝑠𝑠𝑠𝑠
𝑦𝑦∈𝑌𝑌

 𝑖𝑖𝑖𝑖𝑖𝑖
𝑥𝑥∈𝑋𝑋

 𝑑𝑑(𝑥𝑥,𝑦𝑦)� (17) 



where 𝑠𝑠𝑠𝑠𝑠𝑠  represents the supremum, 𝑖𝑖𝑖𝑖𝑖𝑖  represents the infimum, and where 𝑑𝑑(𝑎𝑎,𝐵𝐵) =

𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏∈𝐵𝐵

𝑑𝑑(𝑎𝑎, 𝑏𝑏) quantifies the distance from a point 𝑎𝑎 to the subset 𝐵𝐵. It should be mentioned that 

Hausdorff distance has rather long computation time. 

Chelmis et al. [35] adopted clustering algorithms for determining natural segmentation of smart 

grid electricity customers (i.e., buildings) and identification of temporal consumption patterns. To 

avoid clustering individual daily consumption observations for a given building, which can in turn 

results in a building participating in numerous clusters, the Hausdorff distance is employed in the 

clustering algorithm to determine one point per building instead. And the results showed that the 

Hausdorff-based clustering algorithm was capable of identifying good clusters of similar buildings 

by operating on sets of observations and their respective distances rather than considering 

individual points.  

3. Description of comparison schemes and data used for assessment 

This research aims to assess different distance measures by conducting a systematic comparison 

study of two typical application tasks based on building informatics: 1) Building energy usage 

pattern recognition (Case Ⅰ); 2) Clustering-based weather data segmentation for the customized 

development of building energy prediction models (Case Ⅱ). Figure 2 depicts the overall research 

outline. Data preprocessing is first carried out to enhance the data quality by filling in missing 

values, removing outliers, and preparing required data attributes for further analysis. The building 

energy consumption data and outdoor climate data are transformed into daily subsequences with 

an interval of one hour. Afterwards, clustering analysis (i.e., k-means clustering) is adopted based 

on different distance measures. Overall, nine widely-used methods of distance measurement are 

tested in this study, including Euclidean distance, Chebyshev distance, Mahalanobis distance, 

Hausdorff distance, Manhattan distance, Pearson correlation distance, Dynamic Time Warping, 



Edit distance on Real Sequence, and Cosine similarity. The detailed clustering validation methods 

for two cases will be introduced in the following sections.  

 

Figure 2. Outline for comparison study for assessing distance measures 

3.1 Comparison scheme of distance measures in Case Ⅰ 

Figure 3 shows the intra-cluster similarity (between samples in the same cluster) and inter-cluster 

similarity (between samples in different clusters). The objective of clustering algorithms is to 

maximum the intra-cluster similarity and minimum the inter-cluster similarity. 



 

Figure 3. Intra-cluster and Inter-cluster similarity 

As an unsupervised learning task, it is necessary to find a way to validate the goodness of partitions 

after clustering. Otherwise, it would be difficult to make use of different clustering results [46]. 

Clustering validation, which evaluates the goodness of clustering results, has long been 

acknowledged as one of the vital issues essential to the success of clustering applications [46]. The 

clustering validation methods (or methods of checking clustering solutions) can be broadly 

classified into two categories: internal clustering validation (or clustering validation methods), and 

external clustering validation (or clustering evaluation methods) [10]. And the performance 

metrics used in clustering validation are therefore named as internal indexes and external indexes. 

The primary distinction (between internal and external clustering validation methods) is whether 

or not external information is used for clustering validation. For internal clustering validation, the 

(clustering) results are evaluated through mathematical analysis and direct observation of solutions 

based on the inherent characteristics owned by the input data set. In a sense, it consists of idealistic 

analytic methods as they are concerned with the definition assigned to a cluster regardless of the 

reason for its deployment (i.e., the eventual application) [10]. As the goal of clustering is to make 

objects/samples within the same cluster similar and objects in different clusters distinct, internal 

validation measures are often based on two criteria [61,62]: Compactness and Separation. 

Compactness measures how closely related the objects in a cluster are, while Separation measures 



how distinct or well-separated a cluster is from other clusters. On the other hand, the external 

clustering validation is a practical (or engineering) approach that focuses on application-based 

tests/assessments. The clustering solutions can be benchmarked and checked directly by the 

(clustering) application (or an environment that simulates the application). However, 

generalizations are more dangerous and riskier in this case, seeing that corruption and 

deformations may be introduced by the application, the boundary conditions and the specific data 

used for testing [10].  

Two (widely-used) internal indexes (i.e., Dunn’s index, and S_Dbw index) are selected in this 

study for clustering results validation. Dunn’s index (DI) uses minimum pairwise distance between 

objects in different clusters as the inter-cluster between objects in different clusters as the inter-

cluster separation and the maximum diameter among all clusters as the intra-cluster compactness 

[63]. S_Dbw index measures inter-cluster separation based on density and intra-cluster 

compactness based on variances of cluster objects [64]. Liu et al. [65] investigated 11 internal 

clustering validation indexes in five different aspects (i.e., monotonicity, noise, density, 

subclusters and skewed distributions). The S_Dbw index was the only measure performed well in 

all five aspects (therefore selected in this research). 

For all internal clustering validation methods, a distance measure should also be assigned (in most 

case, the default is Euclidean distance). This will not cause a problem when comparing different 

clustering algorithms or determining the optimal cluster number. However, when evaluating the 

clustering results based on different distance measures, a paradox appears. Theoretically, when an 

internal index based on a particular distance measure is used, the clustering algorithm based on the 

same distance measure should produce the best results, which is entirely reasonable and easily-

expected. Therefore, if only the default distance measure (typically Euclidean distance) is used in 



internal validation indexes, then Euclidean distance and other distance measures similar to it 

should perform better. This issue was neglected by several previous studies [1,28], and will 

diminish the research’s influence and contribution. To overcome this issue, Iglesias and Kastner 

[10] proposed a cross-test cluster validation procedure. That is, all distance measures tested in 

clustering analysis will be used in internal validation indexes/algorithms. In this research, this 

“cross-test” concept is adopted in Case Ⅰ to modify the traditional internal clustering validation 

approach.  

3.2 Comparison scheme of distance measures in Case Ⅱ 

 

Figure 4. Comparison scheme of distance measures based on external clustering validation in 
Case Ⅱ 



The comparison scheme of different distance measures in Case Ⅱ include both internal and external 

validation methods. The internal validation method uses the same two indexes, i.e., Dunn’s index 

and S_Dbw index, as mentioned in Section 3.1. Additionally, an external clustering validation 

procedure based on model prediction accuracy is specially designed for Case Ⅱ, as shown in Figure 

4. The whole dataset is first separated into training data and testing data randomly. Clustering 

analysis (based on different distance measures) on weather data will be conducted to segment 

training data into different clusters. The centroids of all clusters are calculated and used to assign 

cluster labels for testing data. Afterwards, energy prediction models are trained by training data of 

each cluster. And the prediction accuracy of testing data will be used as the external clustering 

validation index which indicates the goodness of weather clustering-based data segmentation.  

3.3 Data retrieved from the BAS of a real building  

The data for this research’s case studies were retrieved from the building automation system (BAS) 

of the tallest building in Hong Kong, the International Commerce Centre (ICC). This building is 

about 490 m high with a total floor area of approximately 321,000 m2, consisting of a four-story 

basement, a six-story block building and a 98-story tower building. The building is served by a 

central chilling system consisting of six identical high-voltage centrifugal chillers that supply 

chilled water for air handling units. Each chiller has a rated cooling capacity of 7230 kW and a 

power consumption of 1270 kW. For analysis, a total of 463 days (from January 2017 to August 

2018) of building operational data were retrieved. Figure 5 depicts the daily cooling load profile 

of the ICC during this period. The time interval of data collection is ten minutes. The climate data 

in the same period, including outdoor dry-bulb temperature (as shown in Figure 6), relative 

humidity, and solar radiation, were obtained from the Hong Kong Observatory.   



 

Figure 5. Daily cooling load profile of ICC 

 

Figure 6. Daily outdoor dry-bulb temperature profile of Hong Kong 

As the data quality of BAS data is usually low due to measurement noise, sensor faults, 

transmission problems, and other factors. A data preprocessing procedure is used in this research 

to enhance data quality. The missing values are filled in using moving average method, while the 

outliers are identified with domain expertise and statistical criterion. Afterwards, min-max 

normalization is adopted to transform the data into a suitable scale for further analysis. Finally, the 

whole dataset is split into daily subsequences with hourly time interval. That is, the data samples 

for following clustering analysis are 24-d vectors. 



4. Assessment Results  

4.1 Case Ⅰ: Building energy usage pattern recognition  

In this study, to avoid unintuitive alignments, a window size constraint of 5 along the main 

diagonal on the envelope of the warping path (|𝑖𝑖𝑘𝑘 − 𝑗𝑗𝑘𝑘| ≤ 5,𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 ∈ {1,2, … , 𝑙𝑙}) is set in DTW 

application [66]. And a threshold ε = 0.2 is set in EDR algorithm. In Case Ⅰ, the optimal cluster 

number is determined as 3, based on the value of internal clustering indexes under different cluster 

numbers in preliminary analysis.  

Table 3 and Table 4 summarize the cross-test results of internal clustering indexes, i.e., S_Dbw 

index and DI, respectively. “C” in the header (i.e., the first row) represents the distance measure 

used in clustering analysis, while “V” in the first column represents the distance measure used in 

clustering validation. And the number (from 1 to 10) in the first line and column represent different 

distance measure, i.e., Euclidean, Cosine, DTW, DTW (window size=5), Mahalanobis, Pearson, 

Hausdorff, EDR, Chebyshev, and Manhattan distance, respectively. For example, the value of (C5, 

V1) in Table 3 is 1.087, which means that the Euclidean distance-based (V1) S_Dbw index equals 

to 1.087 for Mahalanobis distance-based (C5) clustering results. Smaller S_Dbw index, and larger 

DI indicate better clustering results. For example, it can be seen from the values of V1 Row (from 

(C1, V1) to (C10, V1)) in Table 3 that, Euclidean distance, EDR and Manhattan distance perform 

better than other distance measures when using Euclidean distance-based S_Dbw index in internal 

clustering validation. To make the results easier to comprehend, min-max normalization is 

conducted for each row. And the heat maps of normalized results for S_Dbw and DI are presented 

in Figure 7 and Figure 8, respectively. In each heat map, darker colors indicate better clustering 

results. As shown in the Figures, Euclidean (C1), EDR (C8) and Manhattan (C10) distances all 



compete for the best distance measure for clustering, whereas Cosine (C2), Mahalanobis (C5), and 

Pearson (C6) distance perform relatively worse.   



Table 3. Cross-test results measured by S_Dbw index  

S_Dbw index: the smaller, the better, C: clustering distance, V: validation distance 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

C1 0.81 0.863 0.739 0.808 1.073 0.883 0.792 1.514 0.792 0.781 

C2 1.163 0.994 1.306 1.306 1.646 1.03 1.168 1.979 1.168 1.186 

C3 1.005 0.917 1.004 1.004 1.092 0.931 1.03 1.206 1.03 1.005 

C4 0.969 0.882 0.987 0.987 1.076 0.878 0.977 1.273 0.977 0.948 

C5 1.087 1.31 1.108 1.414 2.96 1.598 2.398 2.12 0.922 0.916 

C6 1.448 1.26 1.465 1.465 2.134 1.321 1.614 2.484 1.614 1.465 

C7 0.927 0.878 0.897 0.897 1.106 0.914 0.908 1.405 0.908 0.931 

C8 0.802 0.876 0.772 0.76 1.092 0.897 0.77 1.368 0.754 0.789 

C9 0.926 0.883 0.897 0.897 1.106 0.914 0.872 1.27 0.872 0.931 

C10 0.811 0.84 0.808 0.808 1.07 0.884 0.792 1.423 0.792 0.808 

(1: Euclidean; 2: Cosine; 3: DTW; 4: DTW (window size: 5); 5: Mahalanobis; 6: Pearson; 7: 

Hausdorff; 8: EDR; 9: Chebyshev; 10: Manhattan distance) 

 

Figure 7. Heat map of cross-test results measured by normalized S_Dbw index  

(The darker, the better clustering performance) 



Table 4. Cross-test results measured by Dunn’s Index  

Dunn’s Index: the bigger, the better, C: clustering distance, V: validation distance 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

C1 0.093 0.009 0.092 0.072 0.161 0.007 0.085 0.091 0.085 0.085 

C2 0.037 0.019 0.038 0.031 0.142 0.017 0.047 0.077 0.047 0.036 

C3 0.024 0.004 0.041 0.035 0.147 0.006 0.032 0.091 0.032 0.043 

C4 0.058 0.008 0.089 0.07 0.142 0.006 0.07 0.091 0.07 0.044 

C5 0.029 0.006 0.032 0.021 0.122 0.004 0.028 0.067 0.066 0.049 

C6 0.015 0.013 0.012 0.01 0.102 0.016 0.022 0.067 0.022 0.014 

C7 0.076 0.008 0.083 0.073 0.167 0.006 0.05 0.091 0.05 0.061 

C8 0.121 0.01 0.091 0.074 0.187 0.007 0.065 0.083 0.085 0.081 

C9 0.053 0.008 0.083 0.073 0.167 0.006 0.089 0.091 0.089 0.061 

C10 0.098 0.009 0.095 0.074 0.166 0.007 0.092 0.091 0.092 0.079 

 

 

Figure 8. Heat map of cross-test results measured by normalized Dunn’s Index  

(The darker, the better clustering performance) 

 



A closer inspection of the cross-test results reveals several groups/sets of distance measures that 

are analogous. As stated in Chapter 3.2, when an internal index based on a particular distance 

measure is utilized, the clustering algorithm based on the same distance measure should 

theoretically yield the best results, e.g., (C2, V2) in Table 4. By examining the definitions of 

various distance measures, it can be found that some of them are calculated in an analogous way, 

which is also reflected in the cross-test. For example, Euclidean distance and Manhattan distance 

are two different forms of Minkowski distance, with an order of 2 and 1, respectively. As illustrated 

in Table 3 and Table 4., there are slight differences between (C1, V𝑖𝑖) and (C10, V𝑖𝑖), for 𝑖𝑖 ranging 

from 1 to 10. Similar phenomenon can also be observed for Cosine distance (C2) and Pearson (C6) 

distance. It can be explained by the fact that Cosine similarity is simply the cosine of the angle 

between two vectors, while Pearson correlation coefficient can be interpreted as a function of the 

angle between the two variable vectors [52].  

 

Figure 9. Comparison of clustering results using Euclidean distance and DTW (the curves of 
daily building energy consumption profile, 463 days in total) 



To better explain the comparison, the clustering results using the Euclidean distance (C1) and 

DTW (C4) are illustrated in Figure 9. Figure 9 (a1), (a2) and (a3) show the common data samples 

(i.e., building energy consumption daily profiles) in the three clusters, which are assigned by the 

two distance measures to the same cluster. The rest data samples excluding the common samples 

in the corresponding cluster are depicted in Figure 9 (b1, b2, b3 clustered using the Euclidean 

distance) and (c1, c2, c3 clustered using the DTW). More specifically, Cluster 1 obtained by using 

the Euclidean distance consists of data samples in a1 and b1, while Cluster 1 obtained by using the 

DTW distance consists of data sample in a1 and c1. The two clusters have similar centroids and 

therefore both are named as Cluster 1. The similar way of expression is applied to Cluster 2 and 

Cluster 3 in Figure 9. The three dashed curves in the small figures denote the centroids of common 

data samples in each cluster, i.e., red, green, and blue lines for Cluster 1, 2, and 3, respectively. As 

can be observed, Figure 9 (b1) and (c2) essentially show almost the same batch of data samples. 

For this batch of daily energy consumption profiles, Euclidean distance assigns them into Cluster 

1 (closer to the centroid of Cluster 1), while DTW assigns them into Cluster 2 (closer to the 

centroid of Cluster 2). This result clearly and intuitively demonstrates the different emphasizes of 

the two distance measures, i.e., DTW focuses more on the “shape” difference between two samples, 

e.g., the daily energy consumption profiles in this study. These distinctions in clustering results 

may have a significant impact on subsequent applications [10]. For example, clustering of key 

performance parameters is important in FDD applications. There are time lags in many processes 

(e.g., thermal response time in heat conduction process due to thermal inertia). The impact of 

certain key parameters may not be reflected immediately in the performance parameters. Under 

these circumstances, FDD methods based on the Euclidean distance may trigger false alarm, while 

the methods based on DTW will be more tolerant with these time lags. Generally speaking, it is 



rather difficult to decide which of these distance measures provides the better/best result. 

Researchers should make decisions relying on the understanding of various of distance measures 

and the application scenarios.  

4.2 Case Ⅱ: Clustering-based weather data segmentation for the customized development of 

building energy prediction models 

In Case Ⅱ, 100 days are randomly selected from the whole dataset (479 days) as the testing data, 

with the remainder serving as the training data (379 days). Clustering analysis using different 

distance measures are conducted on the outdoor air temperatures, which divides the training 

dataset into three clusters. Two widely-used machine learning algorithms, i.e., Support Vector 

Machine (SVM) and Multiple Linear Regression (MLR) are adopted to develop building cooling 

load prediction models for each cluster. SVM can efficiently perform regression or classification 

tasks using kernel trick (i.e., mapping the inputs into high-dimensional feature spaces) and have 

been widely-used in building energy prediction. To prevent introducing excessive uncertainty, the 

input variables of prediction models are selected as the cooling load of previous 6 hours and the 

outdoor temperature. The time window is selected as 6 based on a preliminary results of 

autocorrelation analysis, as illustrated in Figure 10.   



 

Figure 10. The autocorrelation analysis of cooling load time sequence 

The performance indexes used in Case Ⅱ include the mean squared error (MSE), and the mean 

absolute percentage error (MAPE). They are calculated based on Eq. (18) and (19), respectively.  
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where 𝑦𝑦𝑖𝑖 is the actual energy consumption, 𝑦𝑦𝚤𝚤�  is the predicted energy consumption, and N is the 

number of observations. MSE is scale-dependent, while MAPE is scale-independent which allows 

us to express the error of the model in a percentage. 

Table 5. The internal and external clustering validation results of Case Ⅱ (cluster number: 3) 

Validation Metric/Index Euclidean Cosine DTW DTW(w=5) Mahalanobis 

Internal 
S_Dbw 0.376 1.472 0.715 0.376 1.189 

DI 0.06 0.014 0.036 0.06 0.013 

External 

SVM 
MSE 0.0043 0.0038 0.0042 0.0042 0.0043 

MAPE 13.99% 13.22% 13.89% 13.90% 14.06% 

MLR 
MSE 0.0028 0.0027 0.0028 0.0027 0.0025 

MAPE 11.10% 10.99% 11.20% 11.00% 10.05% 



Validation Metric/Index Pearson Hausdorff EDR Chebyshev Manhattan 

Internal 
S_Dbw 2.35 0.72 0.729 0.717 0.376 

DI 0.016 0.05 0.021 0.05 0.06 

External 

SVM 
MSE 0.0037 0.0042 0.0043 0.0042 0.0043 

MAPE 12.91% 13.95% 13.99% 13.95% 13.99% 

MLR 
MSE 0.0024 0.0028 0.0028 0.0028 0.0028 

MAPE 10.25% 11.24% 11.16% 11.18% 11.1% 

 

Table 5 summarizes both the internal and external clustering validation results of Case Ⅱ. For 

internal validation, the distance used to calculate the internal indexes is Euclidean distance. In 

general, the prediction accuracy of the same modeling method (i.e., SVR or MLR) but adopting 

different distance measures varies within a small range. However, it is interesting to note that, 

whereas Cosine and Pearson distance perform poorly in internal clustering validation, they achieve 

slightly better prediction performance on the testing data.  

To better understand how the clustering results, influence the prediction results, the clustering 

results using the Euclidean distance and Cosine distance are illustrated in Figure 11 and Figure 12, 

respectively. As the clustering results of Pearson distance are similar to the Cosine distance, this 

paper selected the results of the Cosine distance as an example to illustrate and analyze the 

findings.) The upper parts of Figure 11 and Figure 12 represent the outdoor temperature profiles 

in each cluster, while the lower parts represent the normalized building energy consumption 

profiles corresponding to each cluster. Figure 11 shows that the clustering using the Euclidean 

distance segments daily outdoor air temperature profiles into three clusters with very different 

mean values, which are roughly corresponding to cool, mild and hot seasons in Hong Kong. The 

widely-adopted intuitive calendar-based data segmentation methods (e.g., dividing the whole 

dataset into subsets according to seasons) cluster the data in the similar manner as the Euclidean-



based clustering method and hence can get similar clustering results. The lower average daily 

outdoor temperature corresponds to lower average daily building energy consumption, which well 

agrees with the domain knowledge. However, as illustrated in Figure 12, the outdoor temperature 

profiles have larger variations in each cluster when the data are segmented based on the Cosine 

distance, while the mean values of the outdoor air temperature in each cluster don’t exhibit obvious 

difference. The same observation can be obtained for the cooling load profiles in each cluster It is 

interesting to see that the models developed using sub-dataset with larger variations perform even 

better than those developed using sub-datasets with smaller variations. 

 

Figure 11. (a) The clustering results of outdoor temperature daily profiles using Euclidean 
distance (three clusters); (b) Building cooling load profiles corresponding to each cluster 



 

Figure 12. (a) The outdoor temperature daily profiles obtained using Cosine distance-based 
clustering (three clusters); (b) Building cooling load profiles corresponding to each cluster 

5. Discussions 

Based on the above review and comparison study, the pros and cons of different distance measures, 

and how to choose distance measures for a specific task are discussed in this section. 

The distance measures are different in terms of mathematical functions, physical meanings, 

focuses, robustness, computation time and applicable conditions. Some distance measures have 

strong physical meanings, e.g., Euclidean, Cosine and Pearson distance, which is beneficial to 

matching them with different tasks Some distance measures are specially designed for measuring 

the distance of time series/sequences, e.g., DTW and EDR. The Hausdorff distance can also be 

used to measure the difference between two subsets regardless of the sequence of data samples in 

the datasets, which can be used for data/dimension reduction and transfer learning-related 

applications [67]. Some distance measures, e.g., DTW, EDR and Hausdorff distance, loosen the 

alignment requirements on the data pairs to some extent, which could improve loss function design 

[68] to overcome the “double penalty” effect of traditional error metric (e.g., the widely adopted 



mean squared error, which is equivalent to the Euclidean distance). The Mahalanobis distance 

addresses the problem caused by different distributions of each feature/element of the data samples, 

using the covariance matrix. Some distance measures are more sensitive to outliers, e.g., the 

Pearson distance and Mahalanobis distance. They may not be suitable for the data exploratory 

tasks (e.g., pattern recognition in Case Ⅰ), but perform better in FDD applications [31,42]. Using 

the Euclidean distance or an appropriate distance measure for a special data type (e.g., using DTW 

for time series) could be a safe decision when there is no strong evidence to support the selection 

of a distance measure. 

It is possible that individual distance measure does not well fit particular data or applications. In 

this case, a new complex distance measure, which combine several distance measures in a 

complementary way [43,44], may be defined. Distance metric learning is the other promising 

method to define new distance measures [6], which is a branch of machine learning that aims to 

automatically learn/construct task-specific distances from the data with labels. It learns a distance 

measure that can put data samples with the same label together while push away samples with 

different labels. The learned distance can then be used to perform various tasks (e.g., k-NN 

classification, clustering, information retrieval). Reviews on distance metric learning [2,6] are 

recommended for readers interested in it.  

There are two major findings from the case studies, which indicates that it is worthy of reflections 

on previous understandings and selection of distance measures. First, distance measures perform 

better according to internal validation don’t necessarily lead to better performance in the 

application tasks (e.g., predictive modeling). Most previous studies adopting clustering analysis 

concerning different distance measures only compared the measures using internal validation. The 

distance measure with the best clustering performance was usually chosen to segment a large 



dataset to several small sub-datasets for the subsequent tasks, such as predictive modeling and 

FDD. This study shows that this may not be the optimal way to choose a suitable distance measure 

as the ultimate purpose is the application tasks rather than segmenting data. Second, Case II shows 

that, in the same predictive modeling task using the same dataset, the models developed using sub-

dataset with larger variations perform even better than those developed using sub-dataset with 

smaller variations. It is a common understanding in building informatics that data segmentation, 

as a data-preprocessing step of data-driven modeling, can improve modeling accuracy because the 

relationships in a sub-dataset are closer which is beneficial to modeling/learning. Clustering based 

on the Euclidean distance may ensure that data variances in a sub-dataset are smaller or the scope 

of operation condition covered by the sub-dataset is smaller, but not necessarily lead to the closer 

relationships in the sub-dataset. It is worthwhile to take a close look at the clustering results and 

evaluate the distance-based methods till the last step of a specific task. 

Limited by space, this research assesses the distance measures by conducting s comparison study 

on only two typical tasks in the building energy field. The pros and cons of the distance measures 

may not be adequately revealed. It should be stated that, although the conclusions and insights 

obtained are interesting and inspiring, they are not complete. Hopefully, this study will enlighten 

more comprehensive and in-depth studies on distance measures as they are critically important to 

the rapidly growing R&D in building informatics for smart and energy-efficient buildings.  

6. Conclusion 

Distance-based algorithms, especially clustering algorithms, have been widely used in all kinds of 

building informatics applications oriented for improving building energy performance, including 

energy consumption prediction, fault detection and diagnosis, energy usage pattern recognition, 

and building energy consumption benchmarking. However, the complexity and diversity of 



distance measurement objects and application scenarios bring considerable difficulties to the 

distance selection or definition, which significantly influences distance-based information retrieval, 

classification, clustering and other subsequent data mining procedures (in building energy related 

applications).  

This study reviews nine typical distance measures in building informatics. A systematic 

comparison study for assessing the distance measures is conducted on two typical tasks, i.e., 

building energy usage pattern recognition (Case Ⅰ), and clustering-based weather data 

segmentation for customized energy prediction model development (Case Ⅱ). In total, nine widely-

used distance measures are investigated. The comparison of distance measures adopts both internal 

and external clustering validation approaches. The traditional internal clustering validation 

approach is improved based on “cross-test” concept, and an external validation approach based on 

prediction accuracy is specially designed for Case Ⅱ. The research results indicate that the 

Euclidean distance, Manhattan distance and EDR perform better in building energy usage pattern 

recognition, while Cosine and Pearson distances work better in clustering data for building cooling 

load prediction. The research results and insights obtained can be utilized to guide future distance-

based research in building informatics perspective, improve building data management and 

building energy performance. 
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