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Abstract—The frequency assignment problem is to assign a fre-
quency which is a nonnegative integer to each radio transmitter so
that interfering transmitters are assigned frequencies whose sepa-
ration is not in a set of disallowed separations. This frequency as-
signment problem can be modelled with vertex labelings of graphs.
An �� ��-labeling of a graph is a function from the vertex
set � � to the set of all nonnegative integers such that � �
� � � if � � � � and � � � � � if � � � �,

where � � denotes the distance between and in . The
�� ��-labeling number � � of is the smallest number such

that has an �� ��-labeling with ��� � � 	 � � �
. This paper considers the graph formed by the direct product

and the strong product of two graphs and gets better bounds than
those of Klavžar and Špacapan with refined approaches.

Index Terms—Channel assignment, graph direct product, graph
strong product, �� ��-labeling.

I. INTRODUCTION

T HE FREQUENCY assignment problem is to assign a fre-
quency which is a nonnegative integer to each radio trans-

mitter so that interfering transmitters are assigned frequencies
whose separation is not in a set of disallowed separations. Hale
[10] formulated this into a graph vertex coloring problem.

In a private communication with Griggs, Roberts proposed a
variation of the channel assignment problem in which “close”
transmitters must receive different channels and “very close”
transmitters must receive channels that are at least two channels
apart. To translate the problem into the language of graph theory,
the transmitters are represented by the vertices of a graph; two
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vertices are “very close” if they are adjacent and “close” if they
are of distance 2 in the graph. Motivated by this problem, Griggs
and Yeh [9] proposed the following labeling on a simple graph.
An -labeling of a graph is a function from the vertex
set to the set of all nonnegative integers such that

if and if ,
where denotes the distance between and in . A

-labeling is an -labeling such that no label is
greater than . The -labeling number of , denoted by

, is the smallest number such that has a -la-
beling.

From then on, a large number of articles have been published
devoted to the study of the frequency assignment problem and
its connections to graph labelings, in particular, to the class of

-labelings and its generalizations: Over 100 references
on the subject are provided in a very comprehensive survey
[3]. In addition to graph theory and combinatorial techniques,
other interesting approaches in studying these labelings include:
neural networks [7], [15], genetic algorithms [18], and simu-
lated annealing [5], [19]. Most of these papers are considering
the values of on particular classes of graphs.

From the algorithmic point of view it is not surprising that
it is NP-complete to decide whether a given graph allows
an -labeling of span at most [9]. Hence, good lower
and upper bounds for are clearly welcome. For instance, if
is a diameter 2 graph, then . The upper bound is
attainable by Moore graphs (diameter 2 graph with order

), see [9]. (Such graphs exist only if , 3, 7, and possibly
57.)

The above considerations in particular motivated Griggs and
Yeh [9] to conjecture that for any graph with the maximum de-
gree the best upper bound on is . (Note that this
is not true for . For example, but .)
They provided an upper bound for general graphs with
maximum degree . Chang and Kuo [4] improved the bound to

while Král’ and Škrekovski [17] further reduced the
bound to . Furthermore, recently Gonçcalves [8]
proved the bound which is the present best record.

Graph products play an important role in connecting various
useful networks and they also serve as natural tools for different
concepts in many areas of research. To justify the first assertion
we mention that the diagonal mesh with respect to multipro-
cessor network is representable as the direct product of two odd
cycles [22] while for the other assertion we recall that one of the
central concepts of information theory, the Shannon capacity, is
most naturally expressed with the strong product of graphs, cf.
[23].

In [14], upper bounds and some explicit labelings for the di-
rect product and the strong product of graphs and proved which
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in particular implies that the -labeling number of the
product graph is bounded by the square of its maximum de-
gree. Hence, Griggs and Yeh’s conjecture holds in both cases
(with some minor exception). The main purpose of this paper
is to improve the upper bounds obtained in [14]. The main tool
for this purpose is a more refined analysis of neighboorhoods in
product graphs than the analysis in [14].

In the next section a heuristic labeling algorithm is presented
that forms the basis for these considerations while in Sections III
and IV direct products and strong products of graphs are consid-
ered, respectively. Improvements with respect to the previously
known upper bounds are explicitly computed.

II. A LABELING ALGORITHM

A subset of is called an -stable set (or -independent
set) if the distance between any two vertices in is greater than
. An 1-stable (independent) set is a usual independent set. A

maximal 2-stable subset of a set is a 2-stable subset of
such that is not a proper subset of any 2-stable subset of .

Chang and Kuo [4] proposed the following algorithm to ob-
tain an -labeling and the maximum value of that labeling
on a given graph.

Algorithm 2.1.

Input: A graph .

Output: The value is the maximum label.

Idea: In each step , find a maximal 2-stable set from
the unlabeled vertices that are distance at least two away
from those vertices labeled in the previous step. Then
label all the vertices in that 2-stable with in current
stage. The label starts from 0 and then increases by 1 in
each step. The maximum label is the final value of .

Initialization: Set ; ; .

Iteration:
1) Determine and .

• is unlabeled and
for all .

• a maximal 2-stable subset of .
• If then set .

2) Label the vertices in (if there is any) by .
3) .
4) If , then , go to Step 1.
5) Record the current as (which is the maximum label).

Stop.

Thus is an upper bound on . We would like to find a
bound in terms of the maximum degree of analogous
to the bound in terms of the chromatic number .

Let be a vertex with the largest label obtained by Algo-
rithm 2.1. Set

and for some

and for some

and for all

It is clear that .

Fig. 1. Direct product � � � .

For any , ; otherwise is a 2-stable subset
of , which contradicts the choice of . That is,
for some vertex in ; i.e., . So, .
Hence, .

In order to find , it suffices to estimate in
terms of . We will investigate the value with respect to
a particular graph. The notations which have been introduced in
this section will also be used in the following sections.

III. DIRECT PRODUCT OF GRAPHS

In this section, we obtain an upper bound for the -la-
beling number of the direct product of two graphs in terms of
the maximum degrees of the graphs involved.

The direct product of two graphs and is the
graph with vertex set , in which the vertex
is adjacent to the vertex if and only if is adjacent to
and is adjacent to . See Fig. 1, for an example.

Suppose and are graphs with or .
Then, by the definition of the direct product, contains
no edges. Therefore, we assume in the rest of this section that

and . Here is the main result of this
section.

Theorem 3.1: Let , , and be maximum degrees of
, , and , respectively. If and , then

Proof: Let in . Then
. Denote ,

, , and .
Hence, and .

In order to seek a bound for the number of distance two ver-
tices for a vertex, we analyze as follows. For any vertex in

with distance 2 from , there must be a path of length
two between and in . Recall that the degree of in
is , i.e., has adjacent vertices in . Then by the defini-
tion of a direct product , there must be internally-dis-
joint paths of length two between and in .
Hence, for any vertex in with distance 2 from , there must
be corresponding vertices in with distance 2 from

which are coincided in ; on the other hand,
whenever there is not such a vertex in with distance 2 from

in , there will never exist such corresponding vertices
with distance 2 from which are coincided in .
In the former case, since such vertices with distance 2 from

are coincided in and hence they can only
be counted once, we have to subtract from the value

(the number is best possible); in the latter
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Fig. 2. Situation from the proof of Theorem 3.1.

case, since there do not exist such vertices with distance 2
from which are coincided in at all and
hence they must be counted zero, we have to subtract from
the value . Let the number of vertices in with dis-
tance 2 from be , then . The minimum
number we have to subtract from the value in this
sense occurs when and we can get that in this
sense the number of vertices with distance 2 from in

will decrease at least from the value
. (We should notice that the bound includes

the case because
.) See

Fig. 2 for the illustration of the above argument. In the figure
denotes the degree of in , that is, .

By the commutativity of the direct product we also infer that
the number of vertices of distance 2 from in
will still decrease from the value .
Hence, the number of vertices with distance 2 from
in will decrease
from the value altogether.

Hence for the vertex , the number of vertices with distance
1 from is not greater than , and the number of vertices with
distance 2 from is not greater than

.
Hence and

.
Then

.
Define

. Then has the absolute maximum at
on and its value is

Then
and the proof is complete.

Corollary 3.2: Let be the maximum degree of . Then
except if one of and is 1.

Fig. 3. Strong product � � .

Proof: Suppose and . Then

.
This implies

. Therefore, the result follows.
Note that when and are sufficiently large, is a good

aproximation for . Hence, in such cases a
good aproximation for the bound of Theorem 3.1 is given by

.
In [14] it is proved that

(1)

We conclude the section by demonstrating that the upper
bound of Theorem 3.1 is an improvement of (1).

Because

, we
have thus reduced (1) by

.

IV. STRONG PRODUCT OF GRAPHS

The strong product of graphs and is the graph
with vertex set , in which the vertex is
adjacent to the vertex if and only if and is
adjacent to , or and is adjacent to , or is adjacent
to and is adjacent to . See Fig. 3, for an example.

By the definition of the strong product of two graphs
and , if or , then consists

of disjoint copies of or . Thus, or
. Therefore, we assume and

.
In [13] and [16], the -numbers of the strong product of cy-

cles are considered. In this section, we obtain a general upper
bound for the -number of strong products in terms of max-
imum degrees of the factor graphs (and the product).

Theorem 4.1: Let , , and be the maximum degree of
, , and , respectively. If and , then



688 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 7, JULY 2008

Fig. 4. Situation from the proof of Theorem 4.1.

Proof: Let in . Then
.

Denote , , ,
and . Hence, and

.
In order to seek a bound for the number of distance two ver-

tices for a vertex, we analyze as follows. For any vertex in
with distance 2 from , there must be a path of length

two between and in ; but the degree of in is , i.e.,
has adjacent vertices in , by the definition of a strong

product , there must be internally-disjoint paths of
length two between and . Hence, for any vertex in

with distance 2 from , there must be corresponding
vertices with distance 2 from which are coincided
in ; on the contrary whenever there is not such a vertex
in with distance 2 from in , there will never exist such
corresponding vertices with distance 2 from
which are coincided in . In the former case, since such

vertices with distance 2 from are coincided
in and hence they can only be counted once, we have
to subtract from the value (the number

is the best possible); on the latter case, since there do
not exist such vertices with distance 2 from
which are coincided in at all and hence they must be
counted zero, we have to subtract from the value .
Let the number of vertices in with distance 2 from be ,
then . The minimum number we have to
subtract from the value in this sense occurs when

and we can get that in this sense the number
of vertices with distance 2 from in will
decrease at least
from the value . (We should notice that the bound

includes the case because

.)
See Fig. 4, for an example of the discussion in this paragraph,
where denotes the degree of in , i.e., .

For , we can analyze similarly and get that the number of
vertices with distance 2 from in will still
decrease from the
value . Hence, the number of vertices with distance 2

Fig. 5. Situation from the first case.

Fig. 6. Situation from the second case.

from in will decrease
from the value altogether.

By the above analysis, the number
is now the best possible for the number of vertices with distance
2 from in .

Moreover, by the definition of the strong product we can again
analyze as follows:

Denote , the number of edges of the subgraph induced by
the neighbors of . The edges of the subgraph induced by the
neighbors of can be divided into the following three cases.
Case 1) Edges between and , where

and . There are totally
neighbors (where is adjacent to in ) of

and totally neighbors (where
is adjacent to in ) of . Hence, the

number of edges of the subgraph induced by the
neighbors of is at least . See Fig. 5, for an
example.

Case 2) Edges between and , where
and . There are totally

neighbors (where is adjacent to in
and is adjacent to in ) of . Hence,
the number of edges of the subgraph induced by
the neighbors of should again add least apart
from the edges in case 1. See Fig. 6, for an example.

Case 3) Edges between and , where
and . There are totally

neighbors (where is adjacent to in
and is adjacent to in ) of . Hence,
the number of edges of the subgraph induced by
the neighbors of should again add least apart
from the sum of the edges in case 1 and case 2. See
Fig. 7, for an example.

The present upper bound on the number of vertices at distance
two from is . For each edge
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Fig. 7. Situation from the third case.

in , this upper bound is decreased by 2. Hence, by the analysis
of the above three cases, the number of vertices with distance
2 from in will still need to decrease by at
least . (the number is
now the best possible for the number of vertices with distance 2
from in .)

Hence for the vertex , the number of vertices with distance
1 from is not greater than . The number of vertices with
distance 2 from is not greater than

.
Hence and

.
Then

.
Define

. On the function has the ab-
solute maximum at and the value is equal
to

.
Then

and we are done.
Corollary 4.2: Let be the maximum degree of . Then

if both and are 1, otherwise
.

Proof:
Case 1) If both and are 1, then the connected compo-

nents of are , , and , hence

Case 2) Suppose at least one of and is greater than 1.
Then

.
This implies

Hence

and the proof is complete.

In [14] it is proved that
. Because

, we reduce the bound
by .

Moreover, in [14], by the bound of Král’ and Škrekovski, it is
proved that

. By the bound of Gonçcalves, we can improve the
above bound to

, thus
reducing the bound by .
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