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Abstract—A large number of collaborative manufacturing
tasks are directly performed on point clouds. With the growing
size of point clouds, the computational demands of these tasks
also increase. One possible solution is to sample the point clouds.
The most commonly used sampling method is farthest point
sampling, but it does not consider downstream tasks, often
leading to sampling non-informative points for the tasks. With
the development of neural networks, various methods have been
proposed to sample point clouds in a task-oriented learning
manner. However, most methods are based on generation rather
than selecting a subset of point clouds. In this work, we propose
a novel adaptive keypoint sampling method, called MGE-Net,
that combines neural network-based learning with direct point
selection based on multi-scale geometry estimation. In addition,
we design a feature extraction module based on multi-scale
attention graph convolution to provide accurate information for
subsequent keypoint detection. Relying on the contribution of
point clouds to the task, our framework aims to sample a subset
of point clouds specifically optimized for downstream tasks. Both
qualitative and quantitative experimental results demonstrate
that our sampling method exhibits superior performance in
common point cloud classification and segmentation tasks.

Index Terms—point clouds, task-oriented sampling, collabora-
tive manufacturing, classification, segmentation

I. INTRODUCTION

Point clouds have become more popular and significant
in the domains of intelligent robots, automated driving, and
virtual reality in recent years. However, dealing with many
point clouds also becomes a challenge. For many applications,
reducing the number of points can be beneficial in many ways.
For example, reducing the number of points can reduce power
consumption, computational cost, and communication load.

Point cloud sampling is selecting representative point cloud
subsets from 3D data to reduce data redundancy and improve
data processing efficiency. Although there are many heuristic-
based sampling methods, such as random sampling (RS) and
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farthest point sampling (FPS) [8], these methods are task-
independent and do not consider the needs of subsequent
processing tasks when selecting sampling points. Therefore,
they may choose points without information about down-
stream tasks, affecting processing performance. Recently, task-
oriented sampling networks have received attention from re-
searchers. S-NET [9] and SampleNet [10] are representatives
of this type of network, which use a simple multi-layer percep-
tron (MLP) to resample the original point cloud and generate
a new set of point clouds that meet the required size. The
advantage of these task-oriented sampling networks is that they
can learn better sampling strategies to generate the minimum
number of sampling points to optimize the performance of
downstream tasks. However, they generate a new point cloud
rather than directly selecting the desired points from the
original point cloud. This indirect method may add additional
computational overhead for application scenarios that require
direct point selection, such as classification, segmentation, and
3D reconstruction.

In this paper, we propose a task-oriented 3D keypoint
detection network that aims to optimize the performance of
downstream tasks by sampling more key points. Our method
not only selects a subset from the original point cloud but is
also adaptive and learns to downsample points during training
to ensure that critical points are not lost. Firstly, the network
improves the original feature extraction method using edge
convolutional layers with different scales for local feature
extraction. By adding a self-attention layer, the network can
better focus on important information and obtain features with
richer local details. This improved feature extraction method
can better capture local details and provide more accurate
information for subsequent keypoint detection. Second, based
on the extracted local features of the point cloud, the network
selects key points that contain essential information through
the channel and curvature sampling layers. These key points
are selected by further analysis of the local features and play
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Fig. 1. Overall architecture of MGE-Net

an important role in performance optimization for downstream
tasks. By fusing the features of the down-sampled points, the
network can maintain high performance and accuracy when
processing large-scale point cloud data. Our main contribu-
tions are summarised as follows:

« We design a feature extraction module based on multi-scale
attention graph convolution to provide accurate information
for subsequent key point detection.

« We propose an adaptive keypoint sampling method that
combines neural network-based learning and direct point
selection based on multi-scale geometry estimation.

o Good qualitative and quantitative results have been achieved
on the common point cloud benchmark, demonstrating the
effectiveness of the proposed sampling method.

II. RELATED WORKS
A. Deep Learning on Point Clouds

Point clouds are sparse, disordered, and sensitive to locality,
Recent methods focus on the direct processing of raw 3D
points and can be broadly classified into three categories: the
MLP-based methods [1], [2], the convolution-based methods
[5]-[7] and the graph-based methods [3], [4]. PointNet [1] uses
a shared multi-layer perception (MLP) and max-pooling layer
to extract features. PointNet++ [2] uses hierarchical point fea-
ture aggregation to obtain global features. PointConv [23] and
KPConv [6] propose point-wise convolution operators with
which points are convoluted with neighbor points. The graph-
based approach analyses the point cloud by using the graph
structure. DGCNN [3] is designed with graph-based EdgeConv
blocks to extract local features. Global information can be
acquired by overlaying EdgeConv blocks. In self-supervised
learning, HSGAN [24] and SG-GAN [25] employ GCN to
infer complex 3D shapes from random noise. WalkFormer [26]
employs a guided point walking method to achieve point cloud
completion.

B. Point Cloud Sampling

Point cloud sampling has broadly used non-learning-based
methods in recent decades. As a common method, farthest
point sampling (FPS) [8] starts with a randomly selected
point and iteratively selects the next point furthest from the
selected point, resulting in comprehensive coverage of the

input. However, the whole process is time-consuming. Random
sampling (RS) entails the random selection of points and is
characterized by the lowest computational burden. It is non-
robust to noisy points and often suffers from information
loss. Point cloud sampling has improved recently thanks to
task-oriented learning-based sampling algorithms. Recently,
S-NET [9] and SampleNet [10] have shown that sampling
networks can learn better sampling strategies to optimize the
performance of downstream tasks. However, these methods
aim to generate a small set of point clouds, not a subset of
point clouds selected from the original point cloud. KCNet
[11] and FoldingNet [12] downsample the graph using graph-
based maximal pooling, which uses a pre-constructed k-NN
graph to obtain the maximum features over the neighborhood
of each node. However, these methods do not guarantee that
the most essential points are selected to fulfill downstream
tasks better.

III. METHODOLOGY

This study provides a methodology for constructing Multi-
scale attention dynamic graph convolution (MSADGC) specif-
ically designed for point clouds, providing adequate infor-
mation for subsequent keypoint detection through feature ex-
traction. Furthermore, the network employs a spatial pyramid
feature fusion module to fuse the global features of the
downsampled point cloud. The fusion of multi-scale features
using spatial pyramid feature fusion (SPFF) can significantly
improve the network’s capacity to acquire and integrate local
and global geometric feature information to optimize down-
stream tasks. The following sections will further detail the
network structure and various modules.

A. Network Structure

The overall network structure of the point cloud deep
learning network is shown in Fig. 1. The spatial transformation
matrix obtained by training the Spatial T-Net network is first
aligned with the input point cloud coordinates and then input
into MSADGC to extract the features. The feature information
in each layer is extracted, followed by using the self-attention
(SA) module to aggregate the features within the local neigh-
borhood. Subsequently, the feature information is aggregated
using the spatial pyramid feature fusion, which enables the
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Fig. 2. Left: Pn denotes the n nearest neighbors of the ith point Pi. Right:
Visualize the Multi-scale EdgeConv operation.

inclusion of both multi-scale local area features and global
features. The classification and segmentation networks then
utilize these fusion features for further processing.

B. Multiscale Self-Attention Graph Convolution

While the conventional model directly combines the char-
acteristics of neighboring nodes, the EdgeConv operation
employs a nonlinear transformation to extract the embedding
information of the edges connecting two interconnected nodes.
Then, it fuses edge information with the central node to
aggregate the node representation. G = (V, £) represents local
point cloud structure, where V = {1,..,n} and E CV x V
denote the vertices and edges, respectively. The correlation
measure is formally defined as:

e;j = MLP (p;,p; — p;) (1)

e MUP (PP
where: p; — p, denotes the relative space position of neigh-
boring node; MLP is the multilayer module with nonlinear
activation; e; ; and p} present the edge feature and updated
node feature respectively.

The MSADGC network consists of multi-scale edge con-
volutional modules of Fig. 2 and self-attention modules of
Fig. 3. The multi-scale edge convolutional modules enable
MSADGTC to capture the features at different scales of granu-
larity by considering the local structure of each node. Relying
on the multi-scale information, MSADGC is adaptable to
various graph structures and can perceive different granularity
information. The self-attention module allows MSADGC to
weightly aggregate the neighboring node messages based on
their relevance to the central node, enhancing its ability to
handle diverse graph data. The detailed structure of MSADGC
is shown in the dashed box of Fig. 1, in which the k-NN
graph represents the range of the graph with k nearest neighbor
points, two different k-NN Graph algorithms with K taken as
16,32 and edge convolution operation are used to extract dif-
ferent scales of neighborhood feature information respectively,

p, = - p;) )

and the two branches perform nonlinear transformations of
different dimensions on the local features in parallel to make
them more adaptive and expressive.

The designed self-attention module extracts the point cloud
context features and combines them with the edge convolution
module, which effectively remedies the problem of ignoring
the domain-to-domain features in the DGCNN model. The
MSADGC network generates refined attentional features based
on the global context features by the self-attention module and
the local features acquired by the edge convolution module.
The MSADGC effectively addresses the issue of inadequate
capture of local structural information among points and
feature information across neighborhoods and improves the
accuracy and robustness of the mode
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Fig. 3. Details of the self-attention module. LBR combines Linear, Batch-
Norm and ReLU layers.

C. Spatial Pyramidal Feature Fusion for Point Cloud Down-
sampling

Channel sampling layer The objective of CSL is to obtain
a subset of input points, referred to as Significant Points (SP).
During the downsampling process, the critical points of a point
cloud contain the most essential information. These points
contribute significantly to subsequent downstream tasks.

The input point cloud undergoes feature dimensionality
expansion through multiple perceptron layers to obtain an m-
dimensional feature vector F,,;q. Afterward, we use normal-
ization to pull each feature vector onto the same distribution
for the features. The maximum value on each point channel
dimension can be used as a feature score, representing the
main contribution value of the current point. In this case,
the network employs a symmetric function maxs(x) for the
dimensionality reduction operation. It can be understood that
each value in the feature channel represents the probability of
the corresponding point being selected as the central point
in the next layer. A higher probability indicates a greater
likelihood of the point being preserved. Assuming the network
needs to sample k important points from this point cloud
containing n points, the next step is to simply select the k
points with the highest probability values from the feature
vector Fi,;q. In the algorithm flow, the operation of finding the
indices of the k largest feature values from the n-dimensional
vector is denoted as Topy ().

The method of sampling the points corresponding to the
Top-K maximum value of a channel is called Top K index
sampling. The calculation procedure is shown below:



Algorithm 1 Channel Top-K Index Sampling

Input: point set P, and its corresponding feature F’;

Output: the point set P’ sampling and aggregation, and the
corresponding feature F’

1: function SAMPLING(P, F)

2 Foa < MLP(;(F)

3 Foig < Softmax (Fmid )

4: Fhiq ¢ maxg (Fmid)

5: I < Topy (Fmid)

6

7

8:

P F' + [P, F, 1]
: return P’ [’
end function

Curvature sampling layer An unstructured point cloud’s
local surface characteristics calculation is a challenging task.
Pauly et al. [13] proposed a method that the surface normals
and curvature may be intuitively estimated using covariance
analysis. To be more specific, considering a point p € RVX3
along with its set of k-nearest neighbors N,,, the covariance
matrix C € R3%3,

P1—P P1—P
P2 — P P2 — P

C= . : 3)
Pr —P Pr —P

where p;—1 1, € N,.

By performing the eigen-decomposition of the covariance
matrix C, the eigenvectors associated with the primary eigen-
values may be obtained. These eigenvectors establish an or-
thogonal frame located at point p. The eigenvalues, denoted as
i, quantify the degree of variability along the axis determined
by their respective eigenvector. From an intuitive perspective,
the eigenvectors associated with the largest eigenvalues form
a basis for the tangent plane at point p, while the eigenvector
associated with the smallest eigenvalue can serve as an approx-
imation of the surface normal, denoted as n. Therefore, as the
smallest eigenvalue quantifies the deviation of point p from the
surface, it can be utilized as an estimation of point curvature.
The surface variation  (p) at point p in a neighborhood of
size k is defined as follow:

Ao+ AL A

When downsampling in the original point cloud and wanting
to retain points that represent the overall structure, by leaving
edge points is a good option to retain valid geometric informa-
tion. The raw point cloud p € RY*3 and number of nearest
neighbor points K fed into the curvature sampling layer.

By doing calculations to determine the curvature value of
each individual point and thereafter arranging the points in
ascending order based on their curvature values, a subset of
K points with higher curvature values may be picked. These
points are seen to be more indicative of the edge points within
the broader structure. Extracting features from downsampled

k(p) Ao <A1 < A 4)

TABLE I
CLASSIFICATION RESULTS ON MODELNET40.

Method Overall Accuracy
PointNet [1] 89.2%
PointNet++ [2] 91.9%
SpiderCNN [16] 92.4%
DGCNN [3] 92.9%
PointCNN [5] 92.2%
PointConv [23] 92.5%
KPConv [6] 92.9%
PointASNL [18] 93.2%
PT [19] 92.8%
PCT [20] 93.2%
PRA-Net [21] 93.7%
PAConv [22] 93.6%
MGE-Net 93.9%

points and fusing the global features of these points can bring
better results to downstream tasks.

IV. EXPERIMENTAL RESULTS

A. Implement Details

We evaluate the model with the Pytorch framework on a
single RTX 3090 GPU with 16G memory. To train the model,
we use AdamW optimizer with an initial learning rate 1x 103
and decay it to 1 x10~8 with a cosine annealing schedule. The
weight decay hyperparameter is set to 1 x 10~%. Dropout with
a probability of 0.5 is used in the last two fully connected
layers. We train the classification network with a batch size
of 8 for 200 epochs and the segmentation network on a scale
of 16 for 200 epochs.

B. Classification

Dataset. Experiments for the point cloud classification task
were performed using the ModelNet40 dataset [14]. The
dataset consists of 12,311 CAD models categorized into 40
object classes. It is split into a training set comprising 9,843
models and a test set with 2,468 models. The experiments in
this paper followed the same division ratio, and the classifica-
tion results were reported based on the test set.

Quantitative and Qualitative Results. Tab. I summarizes
the quantitative comparison with SOTA methods, where our
proposed approach is the best method. The qualitative results
are shown in Fig. 4. From the first line of images, we can
observe that the key points were sampled, while the second
line shows a better edge sampling effect. Sampling more
representative points can greatly improve downstream tasks

C. Part Segmentation

Dataset. For the task of point cloud segmentation, the
ShapeNetParts dataset [15] is utilized for conducting experi-
ments. This dataset comprises 16 object categories and 50 part
segmentation labels, encompassing 16,881 3D models. The
evaluation metric employed is instance mloU (mean Intersec-
tion over Union), which quantifies the quality of segmentation
results.



Fig. 4. Visualized sampling results of Channel sampling and Curvature sampling on different shapes.

TABLE 11
SEGMENTATION RESULTS ON SHAPENET PART.

Method Ins. mloU
PointNet [1] 83.7%
PointNet++ [2] 85.1%
SpiderCNN [16] 85.3%
DGCNN [3] 85.2%
SPLATNet [17] 85.4%
PointConv [23] 85.7%
PointCNN [5] 86.1%
KPConv [6] 86.2%
PT [19] 85.9%
PCT [20] 86.4%
PRA-Net [21] 86.3%
PAConv [22] 86.1%
MGE-Net 85.9%

TABLE III

SEGMENTATION RESULTS OF THE FULL POINT CLOUDS AND
INTERMEDIATE DOWNSAMPLED POINT CLOUDS OF DIFFERENT SIZES.

Points
m 2048 1024 512 256 128
MGE-Net 85.86%  87.29%  88.23%  89.15%  90.41%

Quantitative and Qualitative Results. Tab. II lists the
segmentation quantitative results, and our method has achieved
good performance, but cannot be compared to the best method.
However, when we calculated the same metrics for the in-
termediate downsampling point cloud in Tab. III, we were
surprised to find that their performance was very good, even
far superior to the SOTA method. This indicates that down-
sampling more key points contributes more to performance.
Fig. 5 also shows the qualitative segmentation results of the
downsampling process, indicating that edge key points with
important information are retained during the downsampling
process.

D. Ablation study

In this subsection, multiple ablation studies are conducted
regarding the design choices of neural network architectures.

Feature Learning Layer. The feature learning layer we
used in the above experiments is the MSADGC Embedding
layer. We additionally report the results of using EdgeConv as
the feature learning layer in Tab. IV. From it, we can observe
that MSADGC achieves the best performance. Meanwhile,

TABLE IV
ABLATION STUDY OF USING DIFFERENT FEATURE LEARNING LAYERS

Method Feature Learning Layer OA(%) mloU(%)
DGCNN EdgeConv 92.90 85.20
EdgeConv 93.51 85.54
MGE-Net MSADGC 9388 8586

TABLE V
ABLATION STUDY OF USING A DIFFERENT NUMBER OF EMBEDDING
DIMENSIONS

Method Embedding Dimension  OA(%) mloU(%)
64 93.39 85.80
MGE-Net 128 93.88 85.86
192 93.60 86.24

the results of using EdgeConv are improved when using our
proposed sampling methods.

Embedding Dimension. In our experiments, we used 128
as the default embedding dimension. We also report results
using embedding dimensions of 64 and 192 in Tab. V.

Evaluation on k in Curvature Sampling. The choice of the
number of neighbors, denoted as k, is a crucial parameter in
curvature sampling, as it directly impacts the extent of the local
perceptual region. Additionally, we present findings indicating
that employing various values of k yields different outcomes
in Tab. VL.

CONCLUSION

This paper proposes an adaptive key point cloud sampling
method that combines neural network-based learning and
direct point selection based on local geometry estimation. At
the same time, we have designed a feature extraction module
based on multi-scale attention graph convolution to provide
richer feature information for subsequent key point detection.
Our method downsampling the input point cloud to any desired

TABLE VI
ABLATION STUDY OF USING A DIFFERENT NUMBER OF NEIGHBORS FOR
POINT SAMPLING IN CURVATURE SAMPLING LAYER.

k 8 16 32 64 128 256
OA(%) 9359 9388 9376 9356 9335 93.55
mloU(%) 85.85 8586 85.890 8591 8589 85.85




Fig. 5. Visualized segmentation results as shape point clouds are downsampled.

size. This feature makes our method highly efficient and practi-
cal in processing large-scale point cloud data. Good qualitative
and quantitative results have been achieved on the common
point cloud benchmark, demonstrating the effectiveness of the
proposed sampling method.
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