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Abstract—Ultrasound volume projection imaging has shown
great promise to visualize spine features and diagnose scoliosis
thanks to its harmlessness, cheapness, and efficiency. The key to
measuring spine deformity and assessing scoliosis is to accurately
segment the spine bone features. In this paper, we propose a novel
structure-affinity dual attention-based network (SADANet) for
effective spine segmentation. Global channel attention module
and spatial criss-cross attention module are combined in a
parallel manner to generate rich global context of spine images.
Meanwhile, we present a structure-affinity strategy to encode
the structural knowledge of spine bones into the semantic
representations. By this means, the network can capture both
contextual and structural information. Experiments show that
our proposed algorithm achieves promising performance on spine
segmentation as compared with other state-of-the-art candidates,
which makes it an appealing approach for intelligent scoliosis
assessment.

Index Terms—Spine Segmentation, Structure-Affinity Dual
Attention, Ultrasound volume Projection Imaging, Intelligent
scoliosis diagnosis

I. INTRODUCTION

Scoliosis is a medical condition in which the spinal cord gets
severely deformed over time. It not only affects the appearance
and cardiopulmonary function of the patient, but can also be
a cause of psychological impact [1]. Currently, the common
practice of scoliosis diagnosis involves measuring the Cobb
Angle via radiography [2]. However, the ionizing radiation of
X-rays is harmful to the patients. Specifically, radiographic
measurements are required not only preoperatively but also
postoperatively during the whole treatment [3]. A radiation-
free measurement alternative to X-rays suitable for mass
screening has become crucial.

Since bone is the tissue with the highest acoustic impedance
in human tissues, ultrasound imaging can be used to visualize
and locate the bone surface in surgical operations and clinical
procedures [4]. Thanks to its advantages, such as no ioniz-
ing radiation, low cost, and real-time operation, ultrasound
imaging is increasingly becoming a popular imaging method

∗ Yakun Ju is the corresponding author.

Rib

Thoracic 
process

Lump

(a) (b)
Fig. 1. An illustration of spine segmentation from ultrasound VPI images.
(a) One ultrasound VPI image from a patient with scoliosis; (b) Different
bone features in the spine image. The red and green regions represent the
segmented rib and thoracic process. In the lumbar region, the lump, which
is formed by the combined shadow of the partial bilateral inferior articular
process, laminae, and the superior articular process of the inferior vertebrae,
is annotated in blue.

and is widely accepted as a safer alternative to fluorescence
imaging [5]. In clinical scoliosis diagnosis, experts need to
view hundreds of ultrasound images in a sequence of the whole
spine region. This process is tedious and time-consuming
[6]. For faster diagnosis and better visualization of the spine
structure, Volume Projection Imaging (VPI) was proposed to
analyse the intensity of all voxels in the ultrasound sequence
and form coronal 2D images [7]. However, ultrasound images
suffer from low contrast and tends to contain speckle noise.
The quality of ultrasound images is inconsistent owing to
variations in imaging equipment and scanning operators [8].
The diagnosis requires the examiners to have extensive expe-
rience. Yet, the subjective factors behind personal experience
are inevitable in manual scoliosis diagnosis. Therefore, the
analysis of ultrasound-based bone feature extraction should
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better be fully automatic.
In recent years, with the increasing attention to artificial

intelligence (AI) and deep learning, some medical image
processing techniques have been applied to the diagnosis
of scoliosis. As a pre-analyzing step for intelligent scoliosis
diagnosis, automatic spine segmentation from ultrasound VPI
images provides the basis for the measurement of spine
deformity. The extraction of spine bone features is shown
in Fig. 1. Currently, Convolutional Neural Networks (CNNs)
have become the de-facto standard for accurate medical image
segmentation. Fully Convolutional Networks (FCNs) [24], par-
ticularly convolutional encode-decoder networks, have drawn
much attention [37], [40]. Great efforts have been made to
investigate effective backbone architectures [9], [10], [43] and
learning algorithms [11], [12], [44]. Owing to the nature of the
convolutional operation, it cannot capture the long-range de-
pendencies across different features but only obtains the local
receptive fields [13] and short-range contextual information,
which imposes a great adverse effect to networks owing to
insufficient understanding of surrounded contextual informa-
tion. To make up for the above deficiency, exploration has
been made on self-attention mechanism [14], [39], [41], which
enables a single feature from any position to perceive features
of all the other positions. Motivated by the effectiveness of
self-attention mechanism, Fu et al. [25] proposed to combine
channel attention to capture the channel-wise interactions. The
dual attention schemes [26], [27], [38], [45] have been shown
to improve performance on different vision tasks.

Specifically, different bone features show high spatial cor-
relation, and only appear in some regions in the ultrasound
image. For spine segmentation, the strong prior knowledge
of shapes and positions of the spine bones deserved to be
considered. Motivated by the above discussion, we propose
a novel structure-affinity dual spatial-channel attention net-
work (SADANet) to effectively segment the bone feature in
an ultrasound spine image. First, in order to encode prior
knowledge on the structure of the spine bones into the seman-
tic representations, we utilize the characteristic of capturing
semantic-level affinity in the self-attention mechanism [32].
We also propose a structure-affinity attention (SAA) module,
and embed it as an auxiliary task into the spine segmentation
network to enrich the learned bone features for more effective
spine segmentation.

Furthermore, we introduce a dual attention mechanism to
extract channel and spatial-wise dependencies across bone
features. We propose a global channel attention (GCA) mod-
ule and a spatial criss-cross attention (SCA) module, which
are at the end of the backbone. GCA module is used to
capture the global context of each channel and pay more
attention to some important channels. SCA module is an
enhancement of criss-cross attention [29], which only has
sparse connections (H+W−1) for each position in the feature
maps, where H ×W denotes the spatial dimension of input
feature maps. Specifically, the channel and spatial attention
module are integrated in a parallel manner to capture bone
feature dependencies in the channel and spatial dimensions

respectively. This dual attention block can enhance the inter-
class discrimination and intra-class responsiveness, and further
extract long-range contextual representations by capturing the
full-image spine information.

The resultant model can more effectively localize and
recognize the spine bones in ultrasound images. Through
experiments and studies, the proposed SAA module is found
adept in training the spine segmentation network. Our pro-
posed SADANet is beneficial to both the visual quality and
segmentation accuracy of the spine bone features, achieving
a stable and better performance than other state-of-the-art
segmentation algorithms on ultrasound images.

The main contributions of this paper are summarized as
follows:

• We employ the dual spatial-channel attention block to
enhance the representative ability of feature maps by
capturing rich global context and making an effective use
of the multi-channel space for feature representation.

• We consider the structural information of different bones
and propose a structure-affinity attention module as an
auxiliary module to produce the structure-affinity con-
textual representations for more effective spine segmen-
tation.

• We integrate three attention modules and propose a novel
spine segmentation network SADANet, which provides
better spine segmentation results on ultrasound images in
terms of quantity and quality.

II. RELATED WORK

A. Spine Segmentation with Ultrasound

In the traditional measurement of scoliosis with tracked
ultrasound, experts need to mark different bone features,
including rib, thoracic process, and lump, in the VPI images.
Many algorithms based on machine learning and deep learning
were proposed to extract bone features in ultrasound images
automatically [42]. Berton et al. [15] utilized an LDA classifier
to extract the spinous process and acoustic shadow. However,
when assessing scoliosis with ultrasound, the expert should
consider not only the spinous processes but also the transverse
process and the laminae [16]. The output in [15] cannot be
effectively used to estimate the spine deformity. Based on vol-
ume projection imaging technique, more reliable approaches
were proposed to compute the spine deformity using the paired
thoracic processes and lumbar vertebrae. In [17], [18], it has
been suggested that the transverse process (TP) measurement
method can be used to measure spinal deformation. The
methodology of TP measurement is to detect the bone features
in an ultrasound scan. Recently, UNet [19] has been widely
used in medical image segmentation tasks owing to its superior
performance. It was utilized to segment all the bone features
based on 2D ultrasound spine images automatically in an end-
to-end manner. However, since the segmentation is based on
2D transverse images that are processed independently, the
reconstructed images are of low quality and contain many
incoherent structures. Huang et al. [20] introduced a total



variance loss function into the UNet architecture to address the
occlusion issue in VPI images. Banerjee et al. [28] proposed
a lightweight UNet to perform effective spine segmentation
with a low computational burden. Zhao et al. [35] introduced
a structure supervision to the representation learning. These
motivate us to investigate a more efficient learning strategy in
this paper that can perform spine bone segmentation.

B. Attention Model

Attention model can capture long-range dependencies and
is widely used for various tasks. In particular, the work [21] is
the first to propose the self-attention mechanism to draw global
dependencies of inputs and applies it in machine translation.
Meanwhile, attention model are increasingly applied in the
image/vision field. Wang et al. [14] proposed a non-local
module to generate the huge attention map by calculating the
correlation matrix between each spatial point in the feature
maps, then guided a contextual information aggregation. In
image segmentation, Ding et al. [22] presented a hierarchical
attention network for effective medical image segmentation.
Expectation-Maximization (EM) Attention network [23] ag-
gregated the EM attention into the attentive learning frame-
work to enhance the semantic representations. Fu et al. [25]
proposed DANet for scene segmentation, where a channel
and a position attention module were integrated at the end
of a dilated FCN to model the semantic dependencies in
both position and channel dimensions. Different from previous
works, we refine the criss-cross attention module [29] to ensure
that each position in the feature maps is sparsely connected
with other ones which are in the same row and column, leading
to fewer weights of the predicted attention map. Meanwhile,
we propose the SAA module as an auxiliary module to produce
the structure-affinity representations and achieve the effect of
structure-affinity.

III. METHODOLOGY

In this section, we present the details of the proposed frame-
work with structure-affinity for spine segmentation, including
the different learning strategies for different attention modules.
We first overview the whole architecture of SADANet, and
then introduce the detailed design for each attention module.
Finally, we describe how to integrate them together with an
appropriate learning strategy for further refinement.

A. Network Architecture

The proposed network architecture is shown in Fig. 2. An
input image of spine passes through a pretrained residual net-
work [30], which is employed as the backbone of segmentation
model, to produce feature representations with the spatial size
of H ×W for pixel-wise prediction. A convolution layer with
a kernel size of 3×3 is applied for dimension reduction. Then
the features are fed into attention modules.

First, a structure-affinity attention (SAA) module (see de-
tails in Sec. III-B) is adopted to produce spine bone affinity by
encoding the structural knowledge of different bone regions
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Fig. 2. An illustration of the proposed SADANet. x and y are the input
image and its ground-truth segments respectively, ŷ denotes the predicted
segmentation mask. L is the constraint of the estimation results in the forward
process.

into the key representation. Then, we design a dual spatial-
channel attention block, which is made up of global channel
attention (GCA, see details in Sec. III-C) and spatial criss-
cross attention (SCA, see details in Sec. III-D) modules, to
draw global context over local features. For the GCA module,
the channel dependencies between any two channel maps are
captured with a weighted sum of all channel maps to enhance
the contrast of the features in different channels. Meanwhile,
for the SCA module, the feature at a certain position is
updated via aggregating features only in horizontal and vertical
directions. Thus, two consecutive SCA modules are stacked
to harvest full-image contextual information from all pixels,
which greatly reduces the complexity in time and space.

Finally, we transform the outputs of the dual attention
block by a convolution layer and perform an element-wise
summing to accomplish feature fusion. The last convolution
layer with the kernel size of 1×1 is utilized to generate the
final prediction map. It is worth noting that the SAA module,
as an auxiliary decoder head, only affects the training stage.
It outputs the spine bone feature classification results with a
specific learning strategy to assist the loss function calculation
and optimize the spine segmentation model during the training.

B. Structure-Affinity Attention Module

In a spine image, there are usually three different spine
bones, namely rib, thoracic process, and lump. Owing to their
relatively uniform shape and position in different spine images,
the spine bones contain strong prior knowledge of shapes and
positions on the structure. The SAA module is proposed to
learn and encode the knowledge into attention maps, producing
spine bone affinity, under the supervision of the ground-truth
spine images. Considering the categories of bone features
and background, we need four attention maps to contain the
structural knowledge in order to make contextual information
of bone features more concentrated and achieve the effect of
affinity on the structure.

As illustrated in Fig. 3, consider a feature map f ∈
RC×H×W , where C , H , W are the number of channels,
height and width of the input respectively. We first feed it into
a convolution layer with the kernel size of 1×1 to generate the
query and the key representation, q = θ(f) ∈ RC

′
×H×W and

k = φ(f) ∈ RN×H×W . C = 1024 is reduced to C
′
= C

4 to
reduce the computational complexity. N denotes the number
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Fig. 3. The details of Structure-Affinity Attention module for spine segmen-
tation

of classes which needs to be segmented, including three spine
bone features and the background, i.e., N = 4

It is worth noting that in order to introduce structural
information into the key representation k, the number of
channel is reduced to 4, which is equal to the number of classes
N . Channel maps can be treated as the multi-spatial responses,
and each channel map represents a class-specific spatial re-
sponse. That means each channel in the key representation can
describe the features of one foreground spine bone information
or the background, and we can directly produce the bone
structure affinity by self-attention mechanism. Essentially, the
self-attention mechanism is a kind of directed graphical model
[31], while the affinity matrix is usually consistent with atten-
tion map since points sharing the same structural knowledge
are supposed to be equal. Thus, we produce a novel structure-
affinity key representation k

′
= Softmax(k) ∈ RN×H×W

as the value representation for pixel-pair in conventional self-
attention, and perform a matrix multiplication between the
transpose of k

′
and the reshape of q to generate the attentive

affinity matrix s
′ ∈ RC

′
×N as follows:

s
′
= Softmax(q × k

′T ) (1)

where the softmax layer performs the normalization as shown
in Eq. (1). Then, we perform a matrix multiplication again
between s

′
and the reshape of k

′
to generate the re-estimated

structure-affinity features f
′ ∈ RC×H×W :

f
′
= δ(s

′
× k

′
) (2)

In this way, the structural knowledge of different spine
bones is fully learned by the reliable affinity matrix, because
the features are directly synthesized with the structure-affinity
key representation k

′
. Finally, we adapt the concatenate op-

eration between the feature map and the original input and
pass it through a convolutional mapping ρ to obtain the final
output representation f

′′
. The propagation process makes full

use of the similarity of the spine bone with high affinity and
dampens the wrongly activated regions in ultrasound images.

C. Global Channel Attention module

Since each channel of a high-level feature can be regarded
as a specific-class response, and some relatively important
channels usually have similar spatial response, we build a
GCA module to capture the rich global context of each channel
and enhance the representation capability of some important
channel maps.
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Fig. 4. The details of Global Channel Attention module

We illustrate the global channel attention module in Fig. 4.
For input feature f ∈ RC×H×W , where C = 2048 for the
dual spatial-channel attention, we directly reshape f to q ∈
RC×(HW ) and perform a multiplication operation between q
and the transpose of f , kT ∈ R(HW )×C to obtain the channel-
wise similarity map. Then, we utilize a softmax layer on it to
generate the channel-wise attention map g ∈ RC×C :

g = Softmax(q × kT ) (3)

In addition, we perform a matrix multiplication between
the channel dependency matrix g and the reshape of f ,
v ∈ RC×(HW ), and reshape the GCA-enhanced features to
RC×H×W . The final output f

′
is obtained by an element-wise

summation operation with the feature map f . It integrates the
global context of each channel map and boosts the represen-
tation capability for some important channel maps.

D. Spatial Criss-cross Attention module

Owing to high spatial correlation of spine bone, discriminant
feature representations are essential to localize bone contextual
information and segment the spine effectively. To model the
full-image contextual dependencies over local feature repre-
sentations using lightweight computation, we introduce an
SCA module to capture the similarity of any two correspon-
dences in the horizontal and vertical directions and enhance
the pixel-wise representative ability.

The architecture of spatial criss-cross attention module is
illustrated in Fig. 5. For the feature maps f ∈ RC×H×W , we
place a 1×1 convolutional layer to generate two new feature
maps q, k ∈ RC

′
×H×W respectively. C

′
is the number of

channel, which is less than C for dimension reduction.
Furthermore, we perform an einsum operation, which can be

defined as summing up the product of the elements of feature
maps q, k along the specified dimensions using a notation
based on the Einstein summation convention (→), to obtain
the attention maps hT ∈ RH×W×H and w ∈ RH×W×W

along the horizontal and vertical direction respectively. Then,
we concatenate and apply a Softmax layer on them to get the
spatial attention maps s ∈ RH×W×(H+W−1).

s = Softmax((einsum(“chw, ciw → whi”, q,k))T

+einsum(“chw, chj → hwj”, q,k))
(4)

where chw, ciw → whi and chw, chj → hwj in Eq. (4) mean
the change of the spatial dimensions with the einsum operation
on the query and key representations. Consequently, any two
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Fig. 5. The details of Spatial Criss-cross Attention module

points in the horizontal and vertical directions with the feature
correlation matrix s promote each other if they are similar,
and suppress each other if different. Meanwhile, another
new feature map v ∈ RC×H×W is obtained by applying a
convolutional layer with 1×1 filter, which is used to perform a
einsum operation with spatial attention map s and generate the
attention enhanced features. Then an element-wise operation is
performed between the attention enhanced features and input
features f to construct the output f

′ ∈ RC×H×W of the SCA
module.

Despite the fact that the SCA module can capture con-
textual information in the horizontal and vertical directions,
the connections between one pixel and its surrounding ones
that are not in the criss-cross path are still absent. We stack
two consecutive SCA modules to gain a global contextual
view from all positions. This architecture makes up for the
deficiency of criss-cross attention that cannot obtain the dense
contextual information from all pixels, and achieve a more
accurate segmentation performance for the spine bone with
the cost of a minor computation complexity.

E. Loss Function

The target of spine segmentation is to classify different
bone areas in the ultrasound image. In order to enhance
the classification ability for each pixel, we choose the Cross
Entropy (CE) loss LCE to calculate the classification error of
each pixel. Given a training pair (x,y), where x and y are
the input image and its ground-truth segments respectively, and
the predicted segmentation mask ŷ, the CE loss is defined as:

LCE = −
∑H

i=1

∑W
j=1

∑N
c=1yi,j log ŷi,j

N ×H ×W
(5)

where H×W is the total number of pixels in the original spine
image, ŷi,j and yi,j are the predicted output and the ground
truth to the position in (i , j ), N is the number of classes,
including three spine bone features and the background.

However, different bone features show high spatial corre-
lation, and only appears in some regions in the ultrasound
image. To effectively encode the structural knowledge, we
also introduce Dice coefficient loss LDice to ensure the slight
region-based segmentation:

LDice = 1− 2

∑H
i=1

∑W
j=1(ŷ × y)∑H

i=1

∑W
j=1(ŷ

2 + y2)
(6)

The overall objective function is formulated as follows:

L = LCE(ŷ, y) + λLDice(ŷ, y) (7)

where λ is a hyperparameter to balance the smoothness
constraint, which is empirically set as λ = 3.0.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

In our experiments, the dataset is collected from 3D ultra-
sound scanning in the whole spine region using the Scolioscan
system (Model SCN801, Telefield Medical Imaging Ltd, Hong
Kong). We utilize volume projection imaging (VPI) technique
to generate 109 ultrasound VPI images from 109 patients (82
females and 27 males) with different degrees of scoliosis.
The bone features are labelled by medical experts to serve
as the ground-truth segments. We randomly divide the dataset
into a training set and a testing set with 80 and 29 samples
respectively. All images are resized to 512 × 2048 pixels. In
the training process, patches of size 256 × 512 are extracted
from the resized training set. In the testing process, the resized
images are input to the segmentation model to produce the
segmentation mask, which keep the original resolution for
assessment.

To evaluate the performance of our proposed network,
we employ the widely used metrics of Dice score (Dice),

TABLE I
QUANTITATIVE SEGMENTATION RESULTS IN TERMS OF DICE SCORE (DICE)(%), INTERSECTION OVER UNION (IOU)(%), AND PIXEL ACCURACY(%)

BASED ON DIFFERENT BONE REGIONS

Methods Rib Thoracic Lump Ave.
Dice IoU Acc Dice IoU Acc Dice IoU Acc Dice IoU Acc

UNet [9] 77.37 63.46 76.37 74.70 59.94 72.39 82.21 70.26 83.28 78.09 64.56 77.35
FPN [34] 77.19 62.85 72.51 76.63 62.11 74.37 86.52 76.25 87.85 84.17 73.54 82.89

RSNU [20] 78.38 65.92 80.28 77.45 63.39 77.30 85.85 75.52 88.24 80.86 68.28 81.94
SEAM [35] 77.79 65.83 79.72 76.36 64.24 72.34 84.40 76.52 87.91 79.52 69.68 79.99
PSANet [36] 78.42 64.50 77.79 77.14 62.78 75.09 86.68 76.49 88.24 84.64 74.17 84.38
CCNet [29] 77.62 63.42 75.26 76.89 62.46 75.26 86.49 76.19 87.97 84.32 73.73 83.89
DANet [25] 78.56 64.70 77.77 77.29 62.98 77.19 85.49 74.65 88.69 84.39 73.76 84.89

SADANet (Ours) 78.82 65.04 79.64 77.64 63.45 79.70 86.96 76.93 90.66 84.90 74.54 86.15



Input Ground-truth CCNet DANet SADANetPSANetUNet FPN SEAM
Fig. 6. A visualization of the spine bone segmentation results based on different segmentation methods. The segmented rib, thoracic process, and lump are
annotated in red, green and blue. The areas around the boundary of the thoracic and lumbar region are highlighted in the yellow boxes, and the orange circles
mark the defect parts of the predictions.

Intersection over Union (IoU) and Pixel Accuracy (Acc),
which are formulated as follows:

Dice =
2TP

2TP + FP + FN
(8)

IoU =
TP

TP + FP + FN
(9)

Acc =
TP + TN

TP + TN + FP + FN
(10)

where TP, TN,FP, and FN refer to true positive, true
negative, false positive, and false negative points, respectively.

B. Implementation Details

We implement our proposed framework based on PyTorch
and MMSegmentation. During the training, we employ data
augmentation including vertical flip, horizontal flip and ran-
dom rotation. We build a mini-batch with 4 training samples.
In the SAA module, the number of channels C is set to
1024, while in the dual spatial-channel attention block, it is
set to 2048. The network is trained by the Adam optimizer for
1.6× 105 iterations with the learning rate initialized to 10−3

and gradually decreased to 5 × 10−6, based on the cosine
annealing strategy [33]. The weight decay is set to 5× 10−4

for regularization. We train the network on a single NVIDIA
GeForce RTX4090 GPU.

C. Experimental Results

We test the effectiveness of our proposed SADANet for
spine segmentation by comparing it with other state-of-the-
art segmentation methods under the same setting and exper-
imental environment for training and testing. They include
the benchmark methods of UNet [9], FPN [34] for medical
image segmentation; the recently proposed methods of RSNU
[20], SEAM [35] especially for ultrasound VPI image, and

the state-of-the-art attention-based methods of PSANet [36],
CCNet [29], and DANet [25]. The quantitative segmentation
results are reported in Table I. It is clear that the proposed
SADANet surpasses all the benchmark methods [9], [34] by
a large margin on all the evaluation metrics. This shows the
effectiveness of the proposed network architecture for spine
bone segmentation. Comparing with the methods designed for
ultrasound images [20], [35], we can observe a significant
improvement of over 4% on the average metrics. However,
it can not be ignored that SADANet does not obtain a better
evaluation metric of IoU in some specific bone features, i.e.
rib and thoracic. We consider the reason to be that the strong
noise in the ultrasound VPI images limits the representative
ability of attention-based modules to capture the discrim-
inative features for spine segmentation. More importantly,
our proposed structure-affinity dual attention-based method
outperforms other attention-based algorithms on nearly all the
evaluation metrics, especially surpasses a lot on the pixel
accuracy and achieves about 79.64%, 79.70%, and 90.66%
for Rib, Thoracic, and Lump respectively. Thus, SADANet is
desirable for VPI image enhancement and spine segmentation
in clinical applications.

To further demonstrate the advantages of the proposed
method, we visualize one sample from the testing set with
different spine segmentation algorithms. The results are shown
in Fig. 6. It can be observed that the benchmark methods,
UNet [9] and FPN [34] produce unsatisfactory results in
the connection area between the rib and thoracic process.
The attention-based method PSANet [36] and SEAM [35],
especially for ultrasound VPI image segmentation, predict a
false mask and have a bad performance on the segmentation
of the lumbar vertebra. Moreover, without considering the
dual spatial-channel attention mechanism, CCNet [29] tends
to obtain incorrect segmentation result at the area around



TABLE II
ABLATION PERFORMANCES OF SINGLE ATTENTION MODULE ON THE
NETWORK ARCHITECTURE IN TERMS OF DIFFERENT BONE REGIONS

Modules
Rib Thoracic Lump Ave.

Dice IoU Acc Dice IoU Acc Dice IoU Acc Dice IoU Acc

DANet [25] 78.56 64.70 77.77 77.29 62.98 77.19 85.49 74.65 88.69 84.39 73.76 84.89

∼ w/o SCA 78.36 64.42 78.66 77.52 63.29 76.76 86.51 76.23 89.84 84.46 73.90 85.32

∼ w/o SAA 78.06 64.02 77.70 77.06 62.68 77.98 86.80 76.68 88.29 84.72 74.29 85.00

SADANet (Ours) 78.82 65.04 79.64 77.64 63.45 79.70 86.96 76.93 90.66 84.90 74.54 86.15

TABLE III
ABLATION PERFORMANCES OF SPATIAL CRISS-CROSS ATTENTION

MODULE IN COMPUTATIONAL COST. BOLD INDICATES THE LOWEST
ONE.

Methods Flops (G) Params (M) Ave.
Dice IoU Acc

DANet [25] 200.67 51.03 84.39 73.76 84.89
∼ w/o SAA 199.35 49.81 84.72 74.29 85.00

SADANet (Ours) 258.69 65.19 84.90 74.54 86.15

the boundary of the thoracic and lumbar region. Compared
with these methods, the segmentation mask by SADANet are
more similar to ground-truth segments, owing to the effect of
structure-affinity realized by our proposed method. SADANet
can locate and recognize spine bones more accurately and
preserve the shape of each bone.

D. Ablation Studies

1) Effect of single attention module on the whole network:
The proposed SADANet is based on structure-affinity dual
spatial-channel attention network. To validate the effect of
single attention module, we test the effectiveness of different
network combinations under the conditions of without Spatial
Criss-cross Attention (SCA) module or Structure-Affinity At-
tention (SAA) module, denoted as “∼ w/o SCA” and “∼ w/o
SAA”, respectively. It is worth noting that in terms of “∼ w/o
SCA”, we employ the state-of-the-art dual attention method
DANet [25] for segmentation and introduce SAA module to
enrich the learned bone features. On the other hand, we adopt
SCA module to replace the original position attention module
in DANet (i.e., ∼ w/o SAA). The ablation experiment results
are shown in Table II. It can be seen from the second row
that structure-affinity attention module considers the structural
information and obtains significant segmentation results at the
area of thoracic process and lumbar, with a great increase
of over 0.3% in terms of Dice Score and Intersection over
Union. However, the evaluation metrics in the rib region are
not satisfactory as compared with DANet, considering that the
rib bone features are located in the boundary of the image,
where the occupied area is small, restricting the representative
ability of the SAA module. Meanwhile, the proposed SCA
module also contributes a lot on the average evaluation metrics
and improve more than 2% on the metric of IoU in the lumbar
vertebra, compared with DANet.

2) Reduction of Complexity with Spatial Criss-cross Atten-
tion Module: SCA module has sparse connections (H+W−1)
for each position in the feature maps. By stacking two con-

TABLE IV
ABLATION PERFORMANCES OF HYPERPARAMETER SETTINGS

Hyperparameter
Rib Thoracic Lump Ave.

Dice IoU Acc Dice IoU Acc Dice IoU Acc Dice IoU Acc

λ = 0 78.67 64.84 78.08 77.41 63.14 76.31 86.82 76.72 89.00 84.85 74.48 84.92

λ = 1.0 78.39 64.46 77.33 77.33 63.04 76.90 87.11 77.16 88.75 84.80 74.42 84.82

λ = 2.0 78.36 64.43 78.23 77.61 63.41 76.84 87.20 77.31 89.23 84.89 74.55 85.13

λ = 2.5 78.82 65.05 78.32 77.22 62.89 75.29 86.71 76.54 87.37 84.78 74.37 84.38

λ = 3.0 78.82 65.04 79.64 77.64 63.45 79.70 86.96 76.93 90.66 84.90 74.54 86.15

λ = 4.0 78.52 64.64 77.91 77.28 62.97 76.37 86.81 76.69 88.04 84.74 74.32 84.67

λ = 5.0 78.33 64.39 77.87 76.97 62.56 75.66 86.75 76.60 88.70 84.59 74.10 84.62

secutive SCA modules, this can model full-image contextual
dependencies using lightweight computation. To verify the
benefits from the dual spatial-channel and spatial criss-cross
attention mechanism, we adopt number of network parameters
(Params) and floating point operations per second (Flops) to
measure the computational cost of different network architec-
tures. As shown in Table III, after introducing the SCA module
to replace the original position attention module in DANet
(i.e., ∼ w/o SAA), the computational and memory complexity
is slightly lower than the baseline method, DANet. Meanwhile,
the refined network achieves certain improvement in terms of
the effectiveness of spine segmentation.

3) Determination of Weight Balance Parameter: SADANet
adopts an appropriate loss function to optimize the process
of spine segmentation, which is formulated as Eq. (7). λ is
a weight parameter to balance two loss function terms. As
tabulated in Table IV, we change the hyperparameter value to
observe the effect of different weight parameters on the final
quantitative spine segmentation results. It can be observed that
when the value of λ increases from zero to five, the evaluation
metrics achieve the best in the range of two to three, owing
to the increasing weight of dice coefficient loss, which can
effectively encode the structural knowledge of different bone
features. However, when the weight is more than three, the
performance becomes worse considering that it restraints the
classification ability of the cross entropy loss function for each
pixel. Thus, under the premise of considering the performance
of the model, we set λ = 3.0 to carry out the subsequent
network training.

V. CONCLUSION

In this paper, we have presented a structure-affinity dual
spatial-channel attention network for effective spine segmenta-
tion, which adopts global channel attention module and spatial
criss-cross attention module in a parallel manner to capture
global dependencies in the channel and spatial dimensions
respectively. Specifically, in order to enhance the structural
information of spine bone into the semantic representation,
we propose the structure-affinity attention module, integrating
it as an auxiliary module with a segmentation network. The
ablation studies and comparisons demonstrate that our method
SADANet significantly improves the accuracy of the model,
showing promising performance in terms of the balance be-
tween parameters, computational complexity and segmentation



results, which makes it a potential solution to automatic
scoliosis diagnosis in the future.
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