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Abstract: In the design of green ports, the strategic decision on what types of container transportation equipment 

are appropriate is extremely important. Yard trucks (YTs) are indispensable in container transportation. In this 

paper, we propose a YT retrofitting and deployment problem that considers hazardous material transportation in 

green ports. A stochastic mixed-integer programming model is developed to minimize the costs of purchasing, 

retrofitting, and chartering YTs and the operation costs during the planning horizon. An enhanced Benders 

decomposition based on a Lagrangian relaxation algorithm is developed to solve the model. We conduct numerical 

experiments to verify the effectiveness of the proposed algorithms. We find that the larger free carbon emission 

quotas provided to enterprises by the government are not always an optimum solution. This research also provides 

suggestions that can inform decisions about YT retrofitting and deployment and that can contribute to the 

sustainable development of green ports. 

Keywords: Green ports; yard truck retrofitting and deployment; stochastic programming; enhanced Benders 

decomposition based on Lagrangian relaxation. 

1.Introduction

Over 85% of global trade is transported by the shipping industry, and the green development of the shipping

industry and the limitation of its greenhouse gas (GHG) emissions are important international policy concerns 

(UNCTAD, 2018, 2020). According to a report by the International Maritime Organization (IMO), nearly 240 

million tons of marine fuel are consumed through shipping activities every year. GHG emissions, including 

carbon dioxide and methane, increased from 977 million tons in 2012 to 1076 million tons in 2018, with a 9.6% 

growth rate (IMO, 2021). GHG emissions pose a significant problem for the natural environment as they can 

cause extreme weather and natural disasters, which threaten human economic and social development. Some 

authorities have made a lot of efforts to control the carbon emissions in the ports (Wang et al., 2021), for example, 

the IMO proposes to impose a long-term carbon emission tax, which indicates that constructing environmentally 
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friendly green ports has recently become the main priority to effectively control emissions over the long term 

(Wang et al., 2018). 

The loading, unloading, and transportation of containers in ports produce a high volume of air emissions, to 

prevent the spread and escalation of GHG emissions, the construction of green ports came into the scene. A green 

port refers to a sustainable port that makes efficient use of resources, reduces energy consumption and pollution, 

has a scientific and reasonable layout, and obtains good economic benefits. The application of green technology 

and infrastructure is a positive response to environmental changes for sustainable development and can provide 

competitive advantages (Kaluarachchi, 2021). The technical retrofitting of port loading/unloading and 

transportation equipment, the optimization of port layouts, and the use of renewable low-carbon and carbon-

neutral energy (such as solar photovoltaic systems or hydropower) are essential for improving the environmental 

impacts of port operations (Jin et al., 2018; Zhou et al., 2021; Qin et al., 2021). Many seaports (such as Shanghai 

port and Rotterdam port) have installed fully electrified equipment. The utilization of such equipment can 

contribute to tackling climate change (Iris & Lam, 2021). 

Hazardous cargo such as flammable, explosive, or toxic materials are commonly handled in ports and are 

typically stored in the same areas or adjacent to non-hazardous materials (Hervas-Peralta et al., 2020). Accidents 

in operations involving such hazardous materials are therefore likely to be extremely serious, and as many ports 

are close to densely populated areas, the risks are greatly increased (Chen et al., 2020). For example, the major 

explosion in the port of Beirut in August 2020 killed more than 100 people and injured over 4,000. This illustrates 

the urgency of improving the safety risk controls for hazardous materials in ports. Automated unmanned trucks are 

important components in the horizontal transportation retrofitting of ports. However, trucks in ports must comply 

with route, time, and speed regulations when transporting hazardous materials, and drivers are strictly prohibited 

from overtaking, speeding, tailgating, making sharp turns, and sudden braking. They must also keep a safe 

distance from other vehicles. Such operational tasks are extremely difficult for unmanned yard trucks (YTs), and 

thus we assume that hazardous material must be transported by manned trucks, while non-hazardous material can 

be transported by manned or unmanned trucks. 

In this study, we propose an optimization model for the retrofitting and deployment of YTs that considers the 

transportation of hazardous material in green ports. In this two-stage stochastic programming model, the first 

stage determines the reasonable number of YTs to be purchased, retrofitted, and chartered and the second stage 

determines the number of workloads and those delayed in each time-step. We also propose a plan for the 

retrofitting of YTs from diesel to electricity or liquefied natural gas (LNG). Manned or unmanned YTs are applied 
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to different types of operation tasks depending on whether hazardous or non-hazardous materials are to be handled. 

We develop an enhanced Benders decomposition using a Lagrangian relaxation algorithm to solve the problem of 

YT retrofitting and deployment, and we find that an optimal solution can be obtained within a reasonable time. We 

focus on a port in Shanghai and conduct a numerical experiment, aiming to provide support for decisions 

regarding the sustainable development and operation of green ports. 

The remainder of this paper is organized as follows. We present a review of the literature in Section 2. Section 3 

describes the problem in detail and our stochastic programming mathematical model for the retrofitting and 

deployment of YTs. We develop the LR-BD algorithm in Section 4. Section 5 presents our extensive numerical 

experiments. The conclusions are provided in Section 6. 

2. Literature review 

Building green ports represents a major breakthrough in the shipping industry in terms of energy saving, 

emission reduction, and intelligent technology (Chen et al., 2019). The automation and environmental of 

transportation equipment  have become central goals in recent port developments. However, although automation 

helps to reduce human error, it also incurs high costs (Carlo et al., 2014). YTs are essential because they transport 

containers between the terminal and the yard. Abdelmagid et al. (2014) and Carlo et al. (2014) have provided 

comprehensive overviews of YTs, and in this section, we present our own review of the recent literature, focusing 

on three streams. 

The first stream is about the analytical studies for improving the operational efficiency of YTs. Zhang et al. 

(2019) proposed a truck reservation optimization model based on the non-stationary queuing theory aimed at 

reducing the waiting times of internal and external trucks in the yard and thus alleviating YT congestion. Their 

model can effectively improve calculation accuracy. Ramirez-Nafarrate et al. (2017) constructed a discrete-event 

simulation model by analyzing the potential configurations of a truck appointment system and evaluating its 

impact on reducing container rehandles and truck turnaround times. Zhang et al. (2019) established a bilevel 

programming model to determine optimal toll rates and thus alleviate truck congestion in container terminals. 

They designed a memetic heuristic algorithm to solve the model. Huang and Zheng (2016)  proposed an improved 

ant colony optimization for the path planning of autonomous container trucks within the complex construction 

environments of container ports based on a rolling window. Islam (2018) developed a model simulating shared 

trucks in ports and found that they can effectively reduce truck emissions and improve the port’s transportation 

capacity. Wang et al. (2014) proposed a strategy of owning and chartering trucks after combining internal truck 
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scheduling and storage allocation problems in the container terminal, and they applied a two-level heuristic 

algorithm to solve the model. He et al. (2013) proposed an internal truck assignment model aimed at minimizing 

the overflow of workloads and the costs of transferring. They explored the optimal decision-making for sharing 

internal trucks between multiple adjacent container terminals. 

The second stream is the optimization deployment decisions with the objective of reducing YT pollution 

emissions. Heilig et al. (2017) solved the multi-objective inter-terminal truck routing problem by considering 

truck emissions and proposed a multi-objective archived simulated annealing algorithm and visualization 

technique. The aims of digitalization and optimization were integrated by embedding the algorithm into a cloud-

based decision support system. Lee et al. (2019) proposed that emission control areas and affected zones should be 

established in Incheon Port. They suggested reducing gate congestion, limiting emissions, and minimizing the 

negative impact on local communities by developing an integrated information and truck appointment system. 

Schulte et al. (2017) analyzed a truck appointment system that had collaboration requirements and developed an 

optimization model based on the multiple traveling salesman problem with time windows to reduce emissions and 

costs. Clott and Hartman (2013) argued that limiting truck emissions through the Port of Los Angeles Clean Truck 

Programme would be extremely significant for the port and the shipping industry as a whole, and they applied 

game theoretical models to predict the potential effects of such truck conversion policies. Hartman and Clott 

(2012) constructed an economic model to minimize the cost of truck emission controls and collateral production 

changes so that throughput targets could be achieved in addition to emission constraints. Rowangould et al. (2018) 

identified that air pollution emissions from the activities of port trucks can threaten the health of nearby 

communities. They proposed that low-emission trucks should be used in ports to reduce the risks. Saharidis and 

Konstantzos (2018) reviewed 10 commonly used and highly cited emission calculation models and evaluated their 

potential for estimating GHG emissions from YT operations. 

The third stream concerns green technology transformation and upgrading, including YT retrofit, energy 

substitution, and intelligent automation. Diesel-to-electricity retrofitting involves an efficient technology that 

saves energy and reduces emissions, but it involves problems such as the huge initial investment required and high 

electricity prices. For shipping companies, LNG, low-sulfur fuels, and other alternative sources of energy have 

become important for meeting emission reduction requirements (Lu & Huang, 2021). Seddiek (2020) 

demonstrated the techno-economic feasibility of using fuel cells and offshore wind turbines in a green energy 

strategy. Bailey and Solomon (2004) proposed that positive measures such as restrictions on truck idling rates and 

the utilization of low-sulfur diesel or alternative fuels can alleviate the health risks brought by port environmental 
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pollution. Zhong et al. (2019) established a nonlinear optimization model for carbon emission estimation and 

reduction and suggested that policy makers should encourage the use of LNG trucks and optimize the number and 

layouts of gas stations. Long operation times, high labor demand, and the risks brought by fatigued drivers have 

become major bottlenecks in traditional container terminals. The use of automated YTs for container 

transportation can address these problems through reducing labor costs, improving container throughput efficiency, 

ensuring continuous 24-hour operation, and increasing reliability (Zhang et al., 2006). Automated guided vehicles 

(AGVs), alternative equipment of YTs, are used to transport goods from the quayside to the yard and are 

commonly used in smart ports. Ji et al. (2020) and Xin et al. (2015) constructed an integrated scheduling bi-level 

programming model based on the conflict resolution strategy to address the conflict and congestion problems of 

AGVs and designed two bi-level optimization algorithms to solve the proposed models. 

The consideration and application of clean energy is essential in the construction of green ports. The current 

research into YTs is mainly aimed at reducing waiting times, pollution, emissions, and congestion through the 

development of optimization models. Retrofitting or energy substitution in YTs has been considered, but carbon 

emissions quotas have not been integrated into the models. Sharing YTs between terminals represents a new trend 

in green port development. Research into automated terminals has generally focused on AGVs rather than 

unmanned trucks. Engineering construction such as laying magnetic nails and replacing fixtures is required for 

AGVs to be integrated into traditional ports and will consequently lead to major losses from shutdowns and high 

construction costs. An AGV is also much more expensive than an unmanned YT, and thus unmanned YTs are 

more suitable for retrofitting traditional ports. Safety is of the utmost importance when transporting hazardous 

material, but a fully automated port cannot easily handle the potential accidents from the transportation of 

hazardous cargo. Thus, a semi-automatic port that includes manned and unmanned YTs is often a better choice for 

such cargo. 

Based on the above background analysis and literature review, we present an optimization model and algorithm 

for retrofitting and deploying YTs in the transportation of hazardous material in green ports. We propose 

retrofitting schemes for assigning various type of trucks, such as diesel-to-electricity YTs, diesel-to-LNG YTs, and 

manned or unmanned YTs, to different operational tasks in traditional yards. The LR-BD algorithm is designed to 

solve the model, and we compare and analyze its accuracy and efficiency. 

3. Model formulation 

3.1. Problem description 
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The appropriate type of container transportation equipment is an important strategic decision in the designing of 

green ports. The planning of YT retrofit and deployment can inform the strategic decisions that port operators 

must make in the development of green ports. The port operators must make two interrelated decisions to 

minimize the total operation costs and reduce pollution: the timing and planning of the YT retrofit and deployment. 

Most port operators plan their strategies on a monthly basis (one time-step). The YTs required and the total 

container handling workload do not typically change much within one time-step. Port operators must therefore 

reasonably allocate types and quantities of YTs according to the loading and unloading of containers, thus 

speeding up the container processing time  (Steenken et al., 2004; Vis & de Koster, 2003). 

The high levels of carbon dioxide (CO2) generated during the transportation operations of ports are a major 

cause of the greenhouse effect, and excessive CO2 emissions have a catastrophic impact on the global climate. 

Types of energy conversion such as diesel to electricity, diesel to gas, and others can help enterprises gain control 

over their carbon emissions, slow the global greenhouse effect, and provide economic benefits. Governments 

currently allocate a carbon emission quota to enterprises to encourage the development of green ports, and thus 

they do not have to pay if they remain within the standard. However, they must treat the excess emissions to 

ensure they are pollution-free. 

Traditional manned diesel and electric YTs are the preferred tools for horizontal container transportation. As 

innovative technologies such as artificial intelligence, the internet of vehicles, cloud computing, green energy, and 

green materials evolve, unmanned electric and LNG YTs can be gradually introduced into a yard by configuring 

remote monitoring devices and on-board sensors. As Fig. 1 shows, traditional manned diesel YTs can be 

retrofitted into any other types of YTs, while traditional manned electric YTs can only be retrofitted into 

unmanned electric YTs. Unmanned electric and LNG YTs cannot be retrofitted. 

YT operations may suffer from problems such as overweight containers or flammable, explosive, and highly 

toxic materials in the containers. Thus, ensuring the safety of YTs when handling overweight or hazardous 

materials is our focus, which can only be completed by traditional manned diesel or electric YTs. Drivers must 

abide by the safety management regulations for hazardous materials at ports, and the drivers’ qualifications and 

YT standards are strictly controlled. In this study, other operations are defined as the transportation of non-

hazardous materials, which can be completed by any type of YT. 
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Figure 1: Conversion between different types of YTs and the corresponding transportation tasks 

The imbalance between the peaks and troughs in terms of port activity is a challenge in port operations. To 

ensure the efficiency of terminals, it is necessary to integrate resources between multiple terminals and to 

implement the sharing of YTs. During the trough periods, idle YTs in the terminal can be chartered out for profit, 

and during peak periods, extra YTs can be chartered from adjacent terminals to ensure that operations are efficient 

at lower costs. 

3.2. Assumptions 

we make the following assumptions: 

Assumption 1: At least one type of YT can be utilized for each type of task at any time-step. 

Assumption 2: The carbon emission quota allocated by the government to the container terminal is limited and 

will remain unchanged during the planning period. 

Assumption 3: The number of shared YTs between terminals is limited. 

3.3. Notation 

3.3.1. Indices and sets 

𝐾 set of YTs types, indexed by 𝑘, 𝑘 ∈ 𝐾 = {0,1,2,3}, 0 means traditional manned diesel YTs, 1 means 

traditional manned electric YTs, 2 means unmanned electric YTs, 3 means unmanned LNG YTs.  

𝑇 set of time-steps, indexed by 𝑡, 𝑡 ∈ {1,2, … , 𝑇}. 

𝐿 set of task types, indexed by 𝑙, 𝑙 ∈ 𝐿 = {0,1}, 0 means transportation tasks of non-hazardous materials, it 

can be operated by any YTs. 1 means transportation tasks of hazardous materials which require 

experienced manned drivers to operate the YTs. 

𝑆 set of scenarios, indexed by  𝑠, 𝑠 ∈ {1,2, … , 𝑆}. 
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3.3.2. Parameters 

The first stage: 

𝑛𝑘 the number of 𝑘-type YTs in traditional yards, 𝑘 ∈ {0,1}. 

𝑧𝑘,𝑡 maximum number of 𝑘-type shared YTs that can be chartered from other terminals during time-step 𝑡.  

𝑒𝑘,𝑙 per unit carbon emissions generated by 𝑘-type YTs when operating 𝑙-type tasks. 

𝑐𝑜  pollution-free treatment cost of per ton carbon emissions. 

𝑐𝑘,𝑘′
𝑣  the cost of retrofitting from 𝑘-type YTs into  𝑘′-type YTs.  

𝑐𝑘
𝑏 the cost of purchasing a new 𝑘-type YT. 

𝑐𝑘
𝑧𝑟 charter in cost of a 𝑘-type shared YT. 

𝑐𝑘
𝑧𝑐 charter out revenue a 𝑘-type shared YT. 

𝑤𝑘,𝑙 If the 𝑘-type YTs can be operated in the 𝑙-type tasks, 𝑤𝑘,𝑙 = 1,  𝑤𝑘,𝑙 = 0 otherwise. 

𝐸𝑡  carbon emission quota allocated by government in time-step 𝑡. 

𝑄  maximum number of YTs that can be accommodated in the yard. 

𝐹  low carbon development funds available for container terminals. 

𝑀  a sufficiently large positive number. 

The second stage: 

𝑐𝑘,𝑙 unit operating cost of 𝑙-type tasks operated by 𝑘-type YTs. 

𝑐𝑡
𝑝
 penalty cost of per unit delayed workload in time-step 𝑡. 

ℎ𝑡,𝑙,𝑠 increased workloads of 𝑙-type tasks during time-step 𝑡 under scenario 𝑠.   

𝑞𝑘,𝑙 maximum operation capacity of 𝑙-type tasks operated by 𝑘-type YTs. 

𝜌𝑠  possibility of occurrence of scenario 𝑠. 

3.3.3. Decision variables 

The first stage: 

𝛼𝑘,𝑡,𝑙 number of 𝑘-type YTs operated in 𝑙-type tasks during time-step 𝑡. 

𝜇𝑘,𝑡 number of 𝑘-type YTs during time-step 𝑡. 

𝛽𝑘,𝑘′,𝑡 number of 𝑘-type YTs retrofitted to 𝑘′-type YTs during time-step 𝑡. 

𝛾𝑘,𝑡 number of 𝑘-type YTs purchased during time-step 𝑡.  

𝜂𝑘,𝑡 number of 𝑘-type YTs chartered in during time-step 𝑡.  
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𝜀𝑘,𝑡 number of 𝑘-type YTs chartered out during time-step 𝑡.  

𝜔𝑘,𝑡,𝑙 If the 𝑘-type YTs can be operated in 𝑙-type tasks during time-step 𝑡 𝜔𝑘,𝑡,𝑙 = 1,. 𝜔𝑘,𝑡,𝑙 = 0 otherwise.  

The second stage: 

𝜃𝑘,𝑡,𝑙,𝑠 the number of workloads of 𝑙-type tasks operated by 𝑘-type YTs during time-step 𝑡 under scenario 𝑠.  

𝜆𝑡,𝑙,𝑠 the number of delayed workloads of 𝑙 -type tasks that cannot be operated during time-step 𝑡  under 

scenario 𝑠 

3.4. Mathematical model 

𝑀𝑖𝑛  ∑ ∑ (𝑐𝑘
𝑏 ∙ 𝛾𝑘,𝑡 + 𝑐𝑘

𝑧𝑟 ∙ 𝜂𝑘,𝑡 − 𝑐𝑘
𝑧𝑐 ∙ 𝜀𝑘,𝑡 + ∑ 𝑐𝑘,𝑘′

𝑣 ∙ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘≠𝑘′ )𝑡∈𝑇𝑘∈𝐾 + 𝑐𝑜 ∙ ∑ [∑ ∑ (𝑒𝑘,𝑙 ∙𝑙∈𝐿𝑘∈𝐾𝑡∈𝑇

𝛼𝑘,𝑡,𝑙) − 𝐸𝑡] + ∑ 𝜌𝑠 ∙ 𝒢(𝜷, 𝒉)𝑠∈𝑆                 (1) 

𝑠. 𝑡. 

𝜇𝑘,0 = 𝑛𝑘,         ∀𝑘 ∈ {0,1}         (2) 

𝜇𝑘,0 = 0,          ∀𝑘 ∈ {2,3}         (3) 

𝜇𝑘,𝑡 = 𝜇𝑘,𝑡−1 + 𝛾𝑘,𝑡 + 𝜂𝑘,𝑡 + ∑ 𝛽𝑘′,𝑘,𝑡𝑘′∈𝐾:𝑘′≠𝑘 − 𝜀𝑘,𝑡 − ∑ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘′≠𝑘 , 

           ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0       (4) 

∑ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘′≠𝑘 ≤ 𝜇𝑘,𝑡−1,      ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0       (5) 

𝜂𝑘,𝑡 ≤ 𝑧𝑘,𝑡,         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇        (6) 

𝜂𝑘,𝑡 ≤ (⌈
∑ (ℎ𝑡,𝑙,𝑠+𝜆𝑡−1,𝑙,𝑠)𝑙∈𝐿

𝑞𝑘,𝑙
⌉ − 𝜇𝑘,𝑡−1)+,    ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑠 ∈ 𝑆     (7) 

𝜀𝑘,𝑡 ≤ (𝜇𝑘,𝑡−1 − 𝑀 ∙ 𝜆𝑡−1,𝑙,𝑠 ∙ 𝑤𝑘,𝑙)
+

,    ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆    (8) 

𝑐𝑜 ∙ ∑ [∑ ∑ (𝑒𝑘,𝑙 ∙ 𝛼𝑘,𝑡,𝑙)𝑙∈𝐿𝑘∈𝐾 − 𝐸𝑡]𝑡∈𝑇 ≤ 𝐹,              (9) 

𝛼𝑘,𝑡,𝑙 ≤ 𝑀 ∙ 𝑤𝑘,𝑙,        ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿       (10) 

𝛼𝑘,𝑡,𝑙 ≤ 𝜇𝑘,𝑡 ∙ 𝜔𝑘,𝑡,𝑙,        ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿       (11) 

∑ 𝜔𝑘,𝑡,𝑙𝑘∈𝐾 ≥ 1,        ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿         (12) 

𝜔𝑘,𝑡,𝑙 ≤ 𝑤𝑘,𝑙,         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿       (13) 

∑ 𝜇𝑘,𝑡𝑘∈𝐾 ≤ 𝑄,        ∀𝑡 ∈ 𝑇          (14) 

𝜔𝑘,𝑡,𝑙 ∈ {0,1},         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿       (15) 

𝛼𝑘,𝑡,𝑙 , 𝜇𝑘,𝑡 , 𝛽𝑘,𝑘′,𝑡, 𝛾𝑘,𝑡, 𝜂𝑘,𝑡 , 𝜀𝑘,𝑡 ∈ ℕ+,    ∀𝑘, 𝑘′ ∈ 𝐾: 𝑘 ≠ 𝑘′, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿     (16) 

where 𝒢(𝜷, 𝒉) in the objective function (1) is the optimal value of the following model: 
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Min  ∑ ∑ ∑ (𝑙∈𝐿𝑡∈𝑇𝑘∈𝐾 𝑐𝑘,𝑙 ∙ 𝜃𝑘,𝑡,𝑙,𝑠) + ∑ ∑ (𝑐𝑡
𝑝

∙ 𝜆𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇            (17) 

𝜃𝑘,𝑡,𝑙,𝑠 ≤ 𝛼𝑘,𝑡,𝑙 ∙ 𝑞𝑘,𝑙,       ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆     (18) 

∑ 𝜃𝑘,𝑡,𝑙,𝑠𝑘∈𝐾 ≤ ℎ𝑡,𝑙,𝑠 + 𝜆𝑡−1,𝑙,𝑠,     ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆      (19) 

𝜆0,𝑙,𝑠 = ℎ0,𝑙,𝑠 − ∑ 𝜃𝑘,0,𝑙,𝑠𝑘∈𝐾 ,      ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆         (20) 

𝜆𝑡,𝑙,𝑠 = 𝜆𝑡−1,𝑙,𝑠 + ℎ𝑡,𝑙,𝑠 − ∑ 𝜃𝑘,𝑡,𝑙,𝑠𝑘∈𝐾 ,    ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑠 ∈ 𝑆      (21) 

𝜃𝑘,𝑡,𝑙,𝑠, 𝜆𝑡,𝑙,𝑠 ≥ 0,         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆     (22) 

The objective function (1) represent the total cost of minimizing the YTs retrofit and deployment for green ports, 

including purchase costs, charter in costs, charter out revenues, retrofit costs, carbon emissions pollution-free 

treatment costs, operation costs, and delay penalty costs. Constraint (2) indicates that the number of traditional 

diesel and electric YTs in the initial time-step is determined by the number of the YTs possessed in the traditional 

yard. Constraint (3) ensures that there are no unmanned electric and LNG YTs in the initial time-step. Constraint 

(4) means that the number of 𝑘-type YTs during the time-step 𝑡 is affected by the number of YTs held, purchased, 

retrofitted, chartered during time-step 𝑡 − 1. Constraint (5) guarantees that the number of 𝑘-type YTs, those can be 

retrofitted during time-step 𝑡, should be no more than the number of 𝑘-type YTs during time-step 𝑡 − 1. Constraint 

(6) enforces that the 𝑘-type shared YTs chartered in time-step 𝑡 should be less than the maximum number of 

shared YTs that can be chartered from other terminals. Constraint (7) indicates that the number of 𝑘-type YTs that 

can be chartered during time-step 𝑡 is affected by the number of workloads to be completed. The number of 

chartered YTs is determined by the number of those held in time-step 𝑡 − 1  and required in the time-step 

𝑡. ⌈
∑ (ℎ𝑡,𝑙,𝑠+𝜆𝑡−1,𝑙,𝑠)𝑙∈𝐿

𝑞𝑘
⌉ calculates the minimum number of YTs required for the operation of the new workloads in 

time-step 𝑡 and the delayed workloads in time-step 𝑡 − 1 (take an integer upward). (⌈
∑ (ℎ𝑡,𝑙,𝑠+𝜆𝑡−1,𝑙,𝑠)𝑙∈𝐿

𝑞𝑘
⌉ − 𝜇𝑘,𝑡−1)

+

 

represents the minimum number of YTs required for the operation of the workloads in time-step 𝑡 minus the 

number of YTs held in time-step 𝑡 − 1. If greater than 0, this value is the minimum number of YTs that needs to 

be chartered from other terminals. If less than or equal to 0, the number of YTs held in time-step 𝑡 is sufficient to 

operate the pending workloads, and it is not necessary to charter YTs from other terminals. Constraint (8) limits 

the number of 𝑘-type YTs can be chartered out in time period 𝑡, which should be no more than that in time-step 

𝑡 − 1. When the number of delayed workloads in the last time-step 𝜆𝑡−1,𝑙,𝑠 > 0, judge whether the 𝑘-type YTs will 

be judged whether they are competent to 𝑙-type tasks, if 𝑤𝑘,𝑙 = 1, the YTs are not allowed to charter out, 𝑤𝑘,𝑙 = 0 

otherwise. When the number of delayed workloads in the last time-step 𝜆𝑡−1,𝑙,𝑠 = 0, the YTs are allowed to charter 
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out. Constraint (9) addresses that the pollution-free treatment costs of carbon emissions are limited by the 

investment of low-carbon development funds. Constraint (10) states that the number of 𝑘-type YTs used in the 

operation of 𝑙-type tasks in time-step 𝑡 is affected by whether the type of tasks can be operated. Constraint (11) 

represents the number of YTs used in the operation of 𝑙-type tasks is limited by the number of YTs held during the 

time-step 𝑡 and whether the YTs can be used in the operation of 𝑙-type tasks. Constraint (12) guarantees that at 

least one type of YTs can be utilized in the operation of 𝑙-type tasks during the time-step 𝑡. Constraint (13) 

restricts the operations of 𝑙-type tasks by 𝑘-type YTs at any time-step. Constraint (14) limits the capacity of the 

YTs in the yard. Constraint (15) defines 𝜔𝑘,𝑡,𝑙  as binary variable. Constraint (16) defines decision variables 

𝛼𝑘,𝑡,𝑙 , 𝜇𝑘,𝑡 , 𝛽𝑘,𝑘′,𝑡, 𝛾𝑘,𝑡, 𝜂𝑘,𝑡 , 𝜀𝑘,𝑡 as positive integers. Constraint (18) limits the maximum operating capacity of the 

YTs. Constraint (19) enforces that the workloads of 𝑙 -type tasks operated by YTs during time-step 𝑡 under any 

scenario cannot exceed the sum of the increased workloads in time-step 𝑡 and the delayed workloads in time-step 

𝑡 − 1. Constraint (20) states the delayed workloads in the initial time step. Constraint (21) provides the delayed 

workloads in time-step 𝑡. Constraint (22) defines the decision variables 𝜃𝑘,𝑡,𝑙,𝑠, 𝜆𝑡,𝑙,𝑠 as positive real numbers. 

Constraint (7) can be expressed as 𝜂𝑘,𝑡 ≤ 𝑚𝑎𝑥 {⌈
∑ (ℎ𝑡,𝑙,𝑠+𝜆𝑡−1,𝑙,𝑠)𝑙∈𝐿

𝑞𝑘
⌉ − 𝜇𝑘,𝑡−1, 0}, linearized by defining the binary 

variables 𝜌1, 𝜌2 to, added variables and constraints are expressed as follows. 

Added variables 

𝜌1, 𝜌2, the binary variable, auxiliary variable to linearize constraint (7). 

Added Constraints 

𝜂𝑘,𝑡 ≤ ⌈
∑ (ℎ𝑡,𝑙,𝑠+𝜆𝑡−1,𝑙,𝑠)𝑙∈𝐿

𝑞𝑘
⌉ − 𝜇𝑘,𝑡−1 + 𝑀(1 − 𝜌1),   ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑠 ∈ 𝑆   (23) 

𝜂𝑘,𝑡 ≤ 𝑀(1 − 𝜌2),         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇      (24) 

𝜌1 + 𝜌2 ≥ 1,                   (25) 

𝜌1, 𝜌2 ∈ {0,1},                   (26) 

Similar to constraint (7), constraint (8) can be expressed as 𝜀𝑘,𝑡 ≤ 𝑚𝑎𝑥{𝜇𝑘,𝑡−1 − 𝑀 ∙ 𝜆𝑡−1,𝑙,𝑠 ∙ 𝑤𝑘,𝑙 , 0} , 

linearized by defining the binary variables 𝜌3, 𝜌4 to, added variables and constraints are expressed as follows. 

Added variables 

𝜌3, 𝜌4, the binary variable, auxiliary variable to linearize constraint (8). 

Added constraints 

𝜀𝑘,𝑡 ≤ 𝜇𝑘,𝑡−1 − 𝑀 ∙ 𝜆𝑡−1,𝑙,𝑠 ∙ 𝑤𝑘,𝑙 + 𝑀(1 − 𝜌3),    ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆  (27) 
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𝜀𝑘,𝑡 ≤ 𝑀(1 − 𝜌4),         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇      (28) 

𝜌3 + 𝜌4 ≥ 1,                   (29) 

𝜌3, 𝜌4 ∈ {0,1},                   (30) 

Constraint (11) 𝛼𝑘,𝑡,𝑙 ≤ 𝜇𝑘,𝑡 ∙ 𝜔𝑘,𝑡,𝑙  involves the multiplication of two decision variables into a nonlinear 

constraint, by defining the binary variable 𝜋𝑘,𝑡,𝑙,𝑖 to linearize constraint (11), added set, variable and constraints 

are expressed as follows.  

Added set 

𝐼 set of the number of YTs, indexed by 𝑖. 

Added variable 

𝜋𝑘,𝑡,𝑙,𝑖 the binary variable,  the number of 𝑘-type YTs can be operated for 𝑙-type tasks during time-step 𝑡 is 𝑖, 

𝜋𝑘,𝑡,𝑙,𝑖 = 1; 𝜋𝑘,𝑡,𝑙,𝑖 = 0 otherwise.  

Added constraints 

𝛼𝑘,𝑡,𝑙 ≤ ∑ (𝜋𝑘,𝑡,𝑙,𝑖 ∙ 𝑖)𝑖∈𝐼        ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿      (31) 

𝜋𝑘,𝑡,𝑙,𝑖 ≤ 𝜔𝑘,𝑡,𝑙,         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝐼    (32) 

∑ 𝜋𝑘,𝑡,𝑙,𝑖𝑖∈𝐼 = 𝜔𝑘,𝑡,𝑙,        ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿      (33) 

∑ (𝜋𝑘,𝑡,𝑙,𝑖 ∙ 𝑖)𝑖∈𝐼 ≤ 𝜇𝑘,𝑡,       ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿      (34) 

∑ (𝜋𝑘,𝑡,𝑙,𝑖 ∙ 𝑖)𝑖∈𝐼 ≥ 𝜇𝑘,𝑡 + 𝑀(𝜔𝑘,𝑡,𝑙 − 1),    ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿      (35) 

4. An enhanced Benders decomposition using Lagrangian relaxation approach 

4.1. Classical Benders decomposition 

The Benders decomposition algorithm was first proposed by Jacques F. Benders in 1962 to solve large-scale 

mixed integer programming problems (Benders, 1962). When the integer variables are fixed, the continuous linear 

programming problem can be solved by dual theory (Rahmaniani et al., 2017). BD algorithm has been widely 

used in two-stage stochastic linear programming problems (Caroe & Tind, 1998; Clay & Grossmann, 1997; 

Noyan, 2012; Noyan et al., 2016). 

According to the principle of the BD algorithm and the characteristics of the model proposed in this paper, the 

model can be divided into two stages. In the first stage, the decision variables 𝛼𝑘,𝑡,𝑙 , 𝛽𝑘,𝑘′,𝑡 , 𝛾𝑘,𝑡 , 𝜂𝑘,𝑡, 𝜀𝑘,𝑡, 𝜇𝑘,𝑡, 𝜔𝑘,𝑡,𝑙 

related to the number of YTs are determined, these variables are integer variables and 0-1 variables—complex 

variables. When the complex variables are fixed, the remaining optimization problems will be easier to be solved. 
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This part is called the master problem (MP). In the second stage, the decision variables 𝜃𝑘,𝑡,𝑙,𝑠, 𝜆𝑡,𝑙,𝑠 related to the 

workloads and delayed workloads are determined. These two variables are continuous variables, and this part is 

called the subproblem (SP). 

We let 𝛼̅𝑘,𝑡,𝑙 denotes the vector of fixed 𝛼𝑘,𝑡,𝑙 variables. The expected operating and penalty cost of the second-

stage decisions, denoted by 𝑣(𝛼̅𝑘,𝑡,𝑙), can be calculated as 𝑣(𝛼̅𝑘,𝑡,𝑙) = ∑ 𝜌𝑠𝑣𝑠(𝛼̅𝑘,𝑡,𝑙)𝑥∈𝑋 , where 𝑣𝑠(𝛼̅𝑘,𝑡,𝑙) is the 

expected operating and penalty cost under scenario 𝑠, which can be obtained by solving the following primal 

subproblem:  

[SP]  𝑣𝑠(𝛼̅𝑘,𝑡,𝑙) = 𝑀𝑖𝑛    ∑ ∑ ∑ (𝑙∈𝐿𝑡∈𝑇𝑘∈𝐾 𝑐𝑘,𝑙 ∙ 𝜃𝑘,𝑡,𝑙,𝑠) + ∑ ∑ (𝑐𝑡
𝑝

∙ 𝜆𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇       (36) 

𝑠. 𝑡.  

𝜃𝑘,𝑡,𝑙,𝑠 ≤ 𝛼̂𝑘,𝑡,𝑙 ∙ 𝑞𝑘,𝑙,       ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆     (37) 

∑ 𝜃𝑘,𝑡,𝑙,𝑠𝑘∈𝐾 ≤ ℎ𝑡,𝑙,𝑠 + 𝜆𝑡−1,𝑙,𝑠,     ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆      (38) 

𝜆0,𝑙,𝑠 = ℎ0,𝑙,𝑠 − ∑ 𝜃𝑘,0,𝑙,𝑠𝑘∈𝐾 ,      ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆         (39) 

𝜆𝑡,𝑙,𝑠 = 𝜆𝑡−1,𝑙,𝑠 + ℎ𝑡,𝑙,𝑠 − ∑ 𝜃𝑘,𝑡,𝑙,𝑠𝑘∈𝐾 ,    ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑠 ∈ 𝑆      (40) 

𝜃𝑘,𝑡,𝑙,𝑠, 𝜆𝑡,𝑙,𝑠 ≥ 0,        ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆     (41) 

Due to the presence of the variable 𝜆𝑡,𝑙,𝑠, the SP is always feasible because the workloads can be delayed. 

Furthermore, since the cost parameters 𝑐𝑘,𝑙  and 𝑐𝑡
𝑝

 are finite and due to constraints (38)–(40), any feasible 

solution of the SP must be bounded. Hence, the dual of SP is feasible and bounded. 

Let 𝜑1 = (𝜑𝑘,𝑡,𝑙,𝑠
1 ≤ 0|∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆) , 𝜑2 = (𝜑𝑡,𝑙,𝑠

2 ≤ 0|∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆) , 

 𝜑3 = (𝜑𝑡,𝑙,𝑠
3 |∀𝑡 ∈ 𝑇: 𝑡 = 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆), 𝜑4 = (𝜑𝑡,𝑙,𝑠

4 |∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆) denote the vectors of the 

dual variables associated with constraints (37)–(41), respectively. The dual of primal subproblem under each 

scenario 𝑠, called the dual subproblem (DSP), can be formulated as follows: 

[DSP] 𝑣𝑠(𝛼̅𝑘,𝑡,𝑙) = 𝑀𝑎𝑥     ∑ ∑ ∑ (𝜑𝑘,𝑡,𝑙,𝑠
1 ∙ 𝛼̅𝑘,𝑡,𝑙 ∙ 𝑞𝑘,𝑙)𝑙∈𝐿𝑡∈𝑇𝑘∈𝐾 + ∑ ∑ (𝜑𝑡,𝑙,𝑠

2 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0  +

∑ ∑ (𝜑𝑡,𝑙,𝑠
3 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡=0 + ∑ ∑ (𝜑𝑡,𝑙,𝑠

4 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0            (42) 

𝑠. 𝑡.  

𝜑𝑘,0,𝑙,𝑠
1 + 𝜑0,𝑙,𝑠

3 ≤ 𝑐𝑘,𝑙,       ∀𝑘 ∈ 𝐾, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆       (43) 

𝜑𝑘,𝑡,𝑙,𝑠
1 + 𝜑𝑡,𝑙,𝑠

2 + 𝜑𝑡,𝑙,𝑠
4 ≤ 𝑐𝑘,𝑙,      ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆    (44) 

−𝜑𝑡+1,𝑙,𝑠
2 + 𝜑𝑡,𝑙,𝑠

3 − 𝜑𝑡+1,𝑙,𝑠
4 ≤ 𝑐𝑡

𝑝
,     ∀𝑡 ∈ 𝑇: 𝑡 = 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆      (45) 

−𝜑𝑡+1,𝑙,𝑠
2 + 𝜑𝑡,𝑙,𝑠

4 − 𝜑𝑡+1,𝑙,𝑠
4 ≤ 𝑐𝑡

𝑝
,     ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆      (46) 
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𝜑𝑘,𝑡,𝑙,𝑠
1 , 𝜑𝑡,𝑙,𝑠

2 ≤ 0,        ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆     (47) 

𝜑𝑡,𝑙,𝑠
3 , 𝜑𝑡,𝑙,𝑠

4 ~𝑓𝑟𝑒𝑒,        ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆       (48) 

According to the solution of the DSP, we introduce an extra variable 𝛷 representing the expected operating cost 

and penalty cost. we add optimality cuts into the master problem (MP) to reduce the search region. The MP that 

provides a valid lower bound for the initial problem can be reformulated as follows: 

[MP]  𝑀𝑖𝑛     ∑ ∑ (𝑐𝑘
𝑏 ∙ 𝛾𝑘,𝑡 + 𝑐𝑘

𝑧𝑟 ∙ 𝜂𝑘,𝑡 − 𝑐𝑘
𝑧𝑐 ∙ 𝜀𝑘,𝑡 + ∑ 𝑐𝑘,𝑘′

𝑣 ∙ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘≠𝑘′ )𝑡∈𝑇𝑘∈𝐾 + 𝑐𝑜 ∙ ∑ [∑ ∑ (𝑒𝑘,𝑙 ∙𝑙∈𝐿𝑘∈𝐾𝑡∈𝑇

𝛼𝑘,𝑡,𝑙) − 𝐸𝑡] + 𝛷                   (49) 

𝑠. 𝑡. constraints (2) –(16).   

∑ 𝜌𝑠𝑠∈𝑆 [∑ ∑ ∑ (𝜑̅𝑘,𝑡,𝑙,𝑠
1 ∙ 𝛼𝑘,𝑡,𝑙 ∙ 𝑞𝑘,𝑙)𝑙∈𝐿𝑡∈𝑇𝑘∈𝐾 + ∑ ∑ (𝜑̅𝑡,𝑙,𝑠

2 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0 + ∑ ∑ (𝜑̅𝑡,𝑙,𝑠
3 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡=0 +

∑ ∑ (𝜑̅𝑡,𝑙,𝑠
4 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0 ] ≤ 𝛷,     ∀(𝜑1, 𝜑2, 𝜑3, 𝜑4) ∈ 𝛥𝑠       (50) 

Constraints (50) is the optimality cut that is valid with any feasible solutions of MP and of DSP. Where 𝛥𝑠 

denotes the set of extreme points of the polyhedron defined by the constraints of the SP. 

4.2. Pareto optimal cut 

To improve the calculation performance of the classical BD algorithm, it is necessary to constantly seek for 

better cutting-plane generation schemes (Watson & Rogers, 2007). Magnanti and Wong (1981) proposed the use 

of Pareto optimal cuts to generate high-quality feasible solutions and to reduce solution time. To obtain the Pareto 

optimal cut, a new DSP based on a set of core point (𝛼𝑘,𝑡,𝑙
0 ) is dissolved. 𝑣𝑠(𝛼̅𝑘,𝑡,𝑙) is the optimal value of the 

objective function of the primal DSP (Adulyasak et al., 2015; K. Wang & Jacquillat, 2020). A Pareto optimal cut 

can be obtained by solving the following subproblem: 

𝑀𝑎𝑥     ∑ ∑ ∑ (𝜑𝑘,𝑡,𝑙,𝑠
1 ∙ 𝛼𝑘,𝑡,𝑙

0 ∙ 𝑞𝑘,𝑙)𝑙∈𝐿𝑡∈𝑇𝑘∈𝐾 + ∑ ∑ (𝜑𝑡,𝑙,𝑠
2 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0  + ∑ ∑ (𝜑𝑡,𝑙,𝑠

3 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡=0 +

∑ ∑ (𝜑𝑡,𝑙,𝑠
4 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0                  (51) 

𝑠. 𝑡. constraints (43) –(48). 

∑ ∑ ∑ (𝜑𝑘,𝑡,𝑙,𝑠
1 ∙ 𝛼̅𝑘,𝑡,𝑙 ∙ 𝑞𝑘,𝑙)𝑙∈𝐿𝑡∈𝑇𝑘∈𝐾 + ∑ ∑ (𝜑𝑡,𝑙,𝑠

2 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0  + ∑ ∑ (𝜑𝑡,𝑙,𝑠
3 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡=0 +

∑ ∑ (𝜑𝑡,𝑙,𝑠
4 ∙ ℎ𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇:𝑡≠0 = 𝑣𝑠(𝛼̅𝑘,𝑡,𝑙),    ∀(𝜑1, 𝜑2, 𝜑3, 𝜑4) ∈ 𝛥𝑠      (52) 
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Figure 2: Flow chart of BD using Pareto optimal cut acceleration 

4.3. Enhanced Benders decomposition using Lagrangian relaxation (LR-BD) 

Lagrangian relaxation (LR) is an algorithm for solving the lower bound (LB) of constrained programming 

problem. It makes the problem easier to solve by absorbing the constraints, which make the problem difficult to 

solve, into the objective function (Zhen, 2017). 

We relax complex constraints (5) by introducing Lagrangian multipliers 𝜎𝑘,𝑡 (∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0), making 

the problem easier to solve. The Lagrangian relaxation problem 𝐿𝑅(𝜎) becomes as follows: 

[ 𝑳𝑹(𝝈)]      𝑀𝑖𝑛    ∑ ∑ (𝑐𝑘
𝑏 ∙ 𝛾𝑘,𝑡 + 𝑐𝑘

𝑧𝑟 ∙ 𝜂𝑘,𝑡 − 𝑐𝑘
𝑧𝑐 ∙ 𝜀𝑘,𝑡 + ∑ 𝑐𝑘,𝑘′

𝑣 ∙ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘≠𝑘′ )𝑡∈𝑇𝑘∈𝐾 + 𝑐𝑜 ∙

∑ [∑ ∑ (𝑒𝑘,𝑙 ∙ 𝛼𝑘,𝑡,𝑙)𝑙∈𝐿𝑘∈𝐾 − 𝐸𝑡]𝑡∈𝑇 + ∑ 𝜌𝑠[∑ ∑ ∑ (𝑙∈𝐿𝑡∈𝑇𝑘∈𝐾 𝑐𝑘,𝑙 ∙ 𝜃𝑘,𝑡,𝑙,𝑠) + ∑ ∑ (𝑐𝑡
𝑝

∙ 𝜆𝑡,𝑙,𝑠)𝑙∈𝐿𝑡∈𝑇 ]𝑠∈𝑆 +

∑ ∑ (∑ 𝛽
𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘′≠𝑘

− 𝜇
𝑘,𝑡−1)𝑡∈𝑇𝑘∈𝐾                (53) 

𝑠. 𝑡.  Constraints  (2)–(4), and (6) –(22). 

The objective function value of the LR problem is the LB of the original problem model. The Lagrangian dual 

problem is defined as follow: 

[𝑳𝑫]       max  𝐿𝑅(𝜎).         (54) 
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Find the extreme value of the objective function along the subgradient direction at one point. 

Let (𝜇𝑚,   𝛽𝑚) be the optimal solution of 𝐿𝑅(𝜎) at iteration 𝑚 (𝑚 ≥ 0). Denoting 

𝜁𝑘,𝑡
𝑚 = ∑ 𝛽𝑘,𝑘′,𝑡

𝑚
𝑘′∈𝐾:𝑘′≠𝑘 − 𝜇𝑘,𝑡−1

𝑚 ,     ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇: 𝑡 ≠ 0      (55) 

In the next iteration of 𝑚 + 1, the Lagrangian multiplier is updated to 

𝜎𝑘,𝑡
𝑚+1 = max{0,  𝜎𝑘,𝑡

𝑚 + 𝜛𝑚 ∙ 𝜁𝑘,𝑡
𝑚 }        (56) 

Where the step-size 𝜛𝑚 is expressed as 

𝜛𝑚 =
𝜉𝑚∙(𝑈𝐵−𝐿𝑅(𝜎𝑘,𝑡

𝑚 ))

∑ ∑ (𝜁𝑘,𝑡
𝑚 )

2
𝑡∈𝑇𝑘∈𝐾

          (57) 

In constraints (57), 𝜉𝑚  is a parameter in the interval [0,2], which is called the step adjustment factor, and 

generally takes 𝜉0 = 2. When the value of the objective function of 𝐿𝑅(𝜎) increases, 𝜉𝑚 does not change. When 

the value of the objective function of 𝐿𝑅(𝜎) does not change in a given number of consecutive iterations, half of 

𝜉𝑚 is taken. UB is the minimum  upper bound value corresponding to the feasible solution of the original problem. 

The initial UB can be estimated. Judge whether the current solution is a feasible solution in the iteration. If it is a 

feasible solution and the objective function value is less than the current UB, update UB. 𝐿𝑅(𝜎𝑘,𝑡
𝑚 ) is the LB of the 

original problem obtained in the 𝑚th iteration. 

The iteration is terminated if any of the following conditions are met: (i) 𝑈𝐵 = 𝐿𝑅(𝜎𝑘,𝑡
𝑚 ), (ii) step adjustment 

factor 𝜉𝑚 < 0.0001, or (iii) number of iterations 𝑚 > 100. 

Substitute the current optimal value of each decision variable obtained by the LR into the MP of the BD to 

solve the solution. The feasible upper bound (UB) and good cut obtained by LR-BD greatly reduces the number of 

iterations of BD, and improves the efficiency of the algorithm. The detailed steps for enhanced Benders 

decomposition using Lagrangian relaxation are provided in Appendix A. 

5. Numerical experiments 

To verify the effectiveness of the proposed algorithm, numerical experiments including performance analysis 

and sensitivity analysis are carried out in this paper. The quality and processing time of LR-BD, PSO-BD and 

CPLEX for small-scale problems are compared, and the advantages of LR-BD are compared with PSO-BD for 

large-scale problems. The Central Processing Unit (CPU) of the experimental platform used in this paper is Intel 

Xeon E5-2643 v4 3.4Ghz. The models are solved in CPLEX 12.6.1 and programmed in C# (Visual Studio 2015). 
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5.1. Experimental setting 

Taking a port in Shanghai as an example, the monthly containers throughput was about 560,000 to 800,000 

twenty-feet equivalent units (TEUs) (Tan et al., 2021). The cost of pollution-free treatment of CO2 obeys uniform 

distribution U (0.21,0.42) RMB (Cheng, 2020). The carbon emissions 𝑒𝑘,𝑙 of a YT is equal to the carbon emissions 

per TEU multiplied by the number of YT operation TEUs per time-step. Among them, the carbon emissions of 

diesel YT operation per TEU is 0.592kg, and the LNG YT is 0.435kg (Huang Cheng & Jie, 2019). Assuming that 

the delay penalty cost 𝑐𝑡
𝑝
 per workload unit is 500 RMB, the maximum 𝑧𝑘,𝑡 of 𝑘-type shared YTs that can be 

chartered from other terminals in per time-step obeys the discrete random number of uniform distribution U (5,8), 

and the rental cost 𝑐𝑘
𝑧𝑟  of a YT obeys uniform distribution of U (50,80) thousand RMB, rental income obeys 

uniform distribution U (30,50) thousand RMB, free carbon emission quota 𝐸𝑡  obeys uniform distribution U 

(1000,2000) RMB, and the maximum number of YTs that can be accommodated in the yard 𝑄 is 400. The retrofit 

cost of YT 𝑐𝑘,𝑘′
𝑣  is shown in Table 1. Other parameters of the experiment used in this paper are shown in Table 2. 

Table 1: The retrofit cost of YT 𝑐𝑘,𝑘′
𝑣  

The retrofit cost of YT 

(million RMB) 

(Anonymous, 2020) 

Traditional electric YTs Unmanned electric YTs Unmanned LNG YTs 

Traditional diesel YTs 11.85 20 (valuation) U(7,9.5) 

Traditional electric YTs — 8 — 

 

Table 2: Parameter definition 

Parameter Tasks type 
Traditional 

diesel YTs 

Traditional 

electric YTs 

Unmanned 

electric YTs 

Unmanned 

LNG YTs 

𝑞𝑘,𝑙 (TEU) 

General tasks 10800 21600 17280 

(valuation) 

11600 

Difficult tasks 6480 

(valuation) 

12960 

(valuation) 

— — 

𝑐𝑘,𝑙 (RMB) (Huang 

Cheng & Jie, 2019) 

General tasks 7.213 1.185 

(valuation) 

1.185 

(valuation) 

5.122 

Difficult tasks 14.426 2.37 — — 

𝑐𝑘
𝑏 (RMB)  

(Chen, 2016) 

— 300600 350000 

(valuation) 

450000 

(valuation) 

366500 

5.2. Computational results of the Benders decomposition based method  

In this section, an enhanced Benders decomposition using particle swarm optimization (PSO-BD) is designed 
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(Appendix B). The results obtained by LR-BD and PSO-BD are presented. The computational performances of 

both approaches are compared and analyzed. 

We design six experiments to test whether the algorithms can obtain satisfactory solutions in a reasonable time. 

The parameter settings of each experiment are shown in Table 3, in which ISG1 to ISG4 refer to small-scale 

experiments and ISG5 and ISG6 refer to large-scale experiments. 

Table 3: Settings of experiments 

Instance ID 𝑇 𝑛0 𝑄 𝑋 

ISG1 6 20 200 100 

ISG2 12 20 200 200 

ISG3 18 20 200 300 

ISG4 24 20 200 300 

ISG5 30 25 300 400 

ISG6 36 25 300 400 

For the small-scale instances, we conduct a comparative analysis of CPLEX, LR-BD, and PSO-BD and present 

the results in Table 4. LR-BD can obtain the optimal solution within a significantly shorter solution time than 

CPLEX, and the number of iterations is drastically reduced. The gap between the LR-BD and CPLEX optimal 

solution is 0.00%. The quality of the solution obtained by the PSO-BD algorithm is poorer than that of LR-BD 

and is affected by randomness, and it thus easily falls into the local optimum. 

For example, the optimal solution for the minimum total operating costs of the green port obtained by the 

CPLEX solver is 130,758,934 RMB for ID 1-6 in ISG2, and the running time is 563 seconds. The objective 

function value of the LR-BD algorithm that we propose is the same as the value of CPLEX, but the running time 

of LR-BD is significantly shorter, as it only needs 138 seconds. The heuristic algorithm PSO is used to optimize 

BD and improve its running speed. The objective function value obtained by PSO-BD is 131,969,732 RMB, the 

gap between it and the optimal solution is 0.93%, and the running time is 342 seconds. 

CPLEX takes too long to solve the problem in the large-scale experimental scenarios, and thus LR-BD and 

PSO-BD are used to solve the model in this paper. For example, ID 2-1 in ISG5 indicates that the LR-BD 

algorithm only needs 1225 seconds to obtain the optimal solution, while PSO-BD takes 1924 seconds to produce 

an approximate solution, giving a gap of 4.81%. PSO-BD does not perform well in terms of convergence speed 

and solution quality compared to LR-BD. Thus, LR-BD solves the original model more quickly and effectively. 
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Table 4: Comparison among CPLEX, LR-BD, and PSO-BD in solving small-scale instances 

Instance CPLEX LR-BD PSO-BD 

Gap1 Gap2 

Scale ID OBJ Time(s) OBJ Time(s) OBJ Time(s) 

(1) (2) (3) (4) (5) (6) (7) (8) ((5)-(3))/(3) ((7)-(3))/(3) 

ISG1 

1-1 138286252 85  138286252 25 139045184 90 0.00% 0.55% 

1-2 116279255 63  116279255 23 117253808 88 0.00% 0.84% 

1-3 97850316 71  97856374 24 98659330 93 0.01% 0.83% 

1-4 124450220 68  124450220 23 125457559 92 0.00% 0.81% 

1-5 89038319 67  89045996 21 89666837 91 0.01% 0.71% 

ISG2 

1-6 130758934 563 130758934 138 131969732 342 0.00% 0.93% 

1-7 143842815 581 143842815 95 145727688 356 0.00% 1.31% 

1-8 94826436 529 94826436 83 95933439 334 0.00% 1.17% 

1-9 107811547 580 107811547 88 108700980 360 0.00% 0.82% 

1-10 121766252 605 121766252 103 122857944 348 0.00% 0.90% 

ISG3 

1-11 100332708 1983 100332708 324 103154925 891 0.00% 2.81% 

1-12 113063570 2206 113063570 302 114874076 773 0.00% 1.60% 

1-13 139960829 2056 139960829 302 143528487 854 0.00% 2.55% 

1-14 90906924 2005 90906924 308 93451384 821 0.00% 2.80% 

1-15 103820448 2093 103820448 271 107790446 765 0.00% 3.82% 

ISG4 

1-16 141124871 >3600 141124871 469 147884632 1235 0.00% 4.79% 

1-17 154254761 >3600 154254761 428 157192517 1153 0.00% 1.90% 

1-18 105673019 3542 105673019 460 111139815 1152 0.00% 5.17% 

1-19 145300515 3418 145300515 471 148278317 1271 0.00% 2.05% 

1-20 96209733 3528 96213367 461 99516349 1051 0.00% 3.44% 

Avg.  117777886  1336  117778755  221  120104172  608  0.00% 1.99% 

Notes: (1) ‘OBJ’ is the objective values in units of RMB. (2) ‘Time’ is the computation time in units of second (s). (3) 

‘Gap1’ is calculated by: (OBJLR-BD – OBJCPLEX) / OBJCPLEX, ‘Gap2’ is calculated by: (OBJPSO-BD – OBJCPLEX) / OBJCPLEX. 
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Table 5: Comparison between LR-BD and PSO-BD in solving large-scale instances 

Instance ID 

LR-BD PSO-BD 

Gap 

OBJ Time(s) OBJ Time(s) 

(1) (2) (3) (4) (5) (6) ((5)-(3))/(3) 

ISG5 

2-1 119315379 1225 125053467 1924 4.81% 

2-2 132918711 1135 143086294 1750 7.65% 

2-3 97165554 1145 103304441 2023 6.32% 

2-4 110617833 1052 118993050 1901 7.57% 

2-5 123107286 1029 129868805 2078 5.49% 

ISG6 

2-6 124457415 1565 139841904 2651 12.36% 

2-7 88992678 2544 102011308 2813 14.63% 

2-8 115813971 1592 130626312 2726 12.79% 

2-9 128628296 2135 141319824 2764 9.87% 

2-10 92745962 1606 108294176 2390 16.76% 

Avg.  113376309 1503 124239958 2302 9.83% 

Notes: (1) ‘OBJ’ is the objective values in units of RMB. (2) ‘Time’ is the computation time in units of second (s). (3) 

‘Gap’ is calculated by: (OBJPSO-BD – OBJLR-BD) / OBJLR-BD. 

5.3. Sensitivity analysis 

5.3.1. Analysis of charter in cost  𝒄𝒌
𝒛𝒓 and charter out revenue 𝒄𝒌

𝒛𝒄 

Figures 3 and 4 show the impact of the unit cost 𝑐𝑘
𝑧𝑟 of chartering in a YT on the total operating cost and the 

number of YTs chartered. As shown in Figure 3, with the increase of unit charter in cost, the total port operation 

cost shows an increasing trend (the black curve), while the number of YTs chartered (the blue curve) stabilized 

after a small range fluctuation. The number of YTs retrofitted is not affected by 𝑐𝑘
𝑧𝑟 (the red curve). Figure 4 shows 

the gap of the total cost between one value and the former value with regard to the charter in cost. The value of the 

gap is obviously not equal, indicating that the total cost follows a non-linear increasing trend. 



 

21 

 

50000 55000 60000 65000 70000 75000 80000

1.307x10
8

1.308x10
8

1.309x10
8

1.310x10
8

1.311x10
8

1.312x10
8

1.313x10
8

 Total cost (RMB)     Number of YTs retrofitted      Number of YTs chartered
Charter in cost (RMB)

17

18

19

20

21

22

23

 

14

15

16

17

18

19

20

 

 

Figure 3: Analysis of charter in cost 𝑐𝑘
𝑧𝑟 
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Figure 4: Total cost gap affected by charter in cost 𝑐𝑘
𝑧𝑟  

Figures 5 and 6 show the impact of the unit income of charter out a YT  𝑐𝑘
𝑧𝑐 on the total operating cost of the 

green port and the number of YTs chartered. As shown in Figure 5, with the increase of unit charter out revenue, 

the total cost shows a declining trend (the black curve), while the number of YTs chartered shows a stable trend at 

the first stage, followed by a rising trend, and then fluctuated in a small range (the blue curve). The number of YTs 

retrofitted decreases with charter out revenue above 34,000 RMB, and stables with charter out revenue above 

36,000 RMB (the red curve). Figure 6 shows the gap of the total cost between one value and the former value with 

regard to the charter out revenue. The value of the gap shows curved line, that means the total cost follows a non-

linear increase trend. 
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Figure 5: Analysis of charter out revenue  𝑐𝑘
𝑧𝑐 
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Figure 6: Total cost gap affected by charter out revenue  𝑐𝑘
𝑧𝑐   

5.3.2. Analysis of retrofitting cost  𝒄𝒌,𝒌′
𝒗    

Figures 7-9 show the impact of unit retrofitting cost 𝑐𝑘,𝑘′
𝑣  on the total cost of the green port, and the number of 

YTs retrofitted and chartered. As shown in Figure 7, with the increase of the unit retrofitting cost 𝑐0,1
𝑣  of manned 

diesel YTs to manned electric YTs, the total cost exhibits a continues rising trend (the black curve). When 𝑐0,1
𝑣  is 

between 60,000 and 95,000 RMB, the numbers of YTs chartered and retrofitted remains unchanged. Then the 

numbers fluctuate, and the sum of the numbers does not change. When the number of YTs retrofitted drops sharply, 

the number of shared YTs chartered rises to fill the vacancy of YTs and to ensure the smooth progress of YTs 
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operations. Figure 8 shows the gap of the total cost between one value and the former value with regard to the 

retrofitting cost  𝑐0,1
𝑣 . 
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Figure 7: Analysis of retrofitting cost 𝑐0,1
𝑣   
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Figure 8: Total cost gap affected by retrofitting cost 𝑐0,1
𝑣   

As shown in Figure 9, with the increase of unit retrofitting cost 𝑐0,3
𝑣  of manned diesel YTs to unmanned LNG 

YTs, the total cost and the numbers of YTs retrofitted and chartered are fluctuating. When the retrofitting cost is 

between 80,000 and 90,000, the total cost is minimized (the black curve). Because the change range of the unit 

retrofitting cost 𝑐0,3
𝑣  is close to a YT charter in cost and charter out revenue, the retrofitting cost greatly affects the 

number of YTs chartered. Therefore, the unit retrofitting cost 𝑐0,3
𝑣  has a significant impact on the deployment 
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decision of port YTs. 

40000 50000 60000 70000 80000 90000 100000

1.30818x10
8

1.30820x10
8

1.30822x10
8

1.30824x10
8

1.30826x10
8

1.30828x10
8

1.30830x10
8

1.30832x10
8

1.30834x10
8

 Total cost (RMB)     Number of YTs retrofitted     Number of YTs chartered

Retrofit cost (RMB)

18

19

20

21

 

15

16

17

18

 

 

Figure 9: Analysis of retrofitting cost 𝑐0,3
𝑣  

5.3.3. Analysis of Carbon emission quota  𝑬𝒕  

The free carbon emission quota  𝐸𝑡 does not affect the number of YTs, while slightly affects the total cost. As 

shown in Figure 10, with the increase of carbon emission quota, the total cost fluctuates slightly within a certain 

range, while the overall trend is declining. However, specific analysis is still needed. When 𝐸𝑡 is between 200 and 

400, the total cost is reduced. While when 𝐸𝑡 is set to 700, the total operating cost of the enterprise reaches the 

highest value. 
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Figure 10: Analysis of carbon emission quota 𝐸𝑡 
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5.3.4. Analysis of increased workloads 𝒉𝒕,𝟎,𝒔  

Figure 11 shows the impact of the increased workloads of non-hazardous materials transportation tasks ℎ𝑡,0,𝑠 on 

the total cost, and the numbers of YTs retrofitted, chartered in/out. With the increase of workloads, the total cost 

shows a linear increasing trend (the blue curve). The number of YTs retrofitted shows a trend of increase first and 

then stabilize (the pink curve), while the numbers of YTs chartered in/out both show a trend of decrease first, and 

followed by a rising trend (the green and orange curves). Figure 12 shows the gap of the total cost between one 

value and the former value with regard to the increased workloads ℎ𝑡,0,𝑠. It is obvious that the total cost follows a 

non-linear increasing trend. 
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Figure 11: Analysis of the increased workloads of non-hazardous materials transportation tasks  ℎ𝑡,0,𝑠 
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Figure 12: Total cost gap affected by the increased workloads  ℎ𝑡,0,𝑠 
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5.4. Discussions and analysis 

In this study, we analyze the charter in/out costs and retrofitting costs of YTs, the carbon emission quota, and 

the increased workloads in green ports, and provide the following management insights:  

(1) The automation retrofitting of some yards is restricted by their conditions when mature automation 

technologies are applied. The laying of navigation magnetic nails is unnecessary for unmanned YTs and is more 

suitable for the retrofitting of traditional ports. Production operations often continue while retrofitting takes place, 

so the retrofit of a yard is typically divided into multiple stages.  

(2) The changes in shared YTs chartered in/out, the retrofitting costs, the carbon emission quota, and the 

increased workloads will affect the total cost, the numbers of YTs chartered, and the retrofit. As Figures 3 to 12 

show, the trends in the numbers of YTs chartered in and out are generally similar, while an opposite trend in the 

number of YTs retrofitted is observed. Thus, enterprises must also be aware of the status of production and retrofit 

during the retrofitting process, to ensure that they have sufficient equipment at each stage to maintain normal 

production levels. 

(3) The number of retrofitted YTs does not appear to change with the increase in the charter cost of the shared 

YTs. The increase in the charter out revenue of YTs causes a significant uptrend of the number of YTs chartered, 

which peaks when the revenue reaches 47,500 RMB, and the flow of shared YTs is at its most active. The number 

of YTs retrofitted stabilizes after a decline when the charter out revenue is between 34,000 and 36,000 RMB. 

(4) The total cost increases with the retrofitting cost 𝑐0,1
𝑣 . When 𝑐0,3

𝑣  is between 80,000 and 90,000 RMB, the 

total operating cost of the yard can be minimized. The government subsidies provided to enterprises are based on 

the market value and assist enterprises when implementing low-carbon retrofitting of their yards and thus 

achieving the green retrofitting of the ports. 

(5) As the free carbon emission quota allocated by the government to the port  𝐸𝑡  increases, the overall 

operating cost of enterprises shows a downward trend. However, larger is not necessarily better, and specific port 

analyses are still required. In general, this can provide suggestions to the government on how to control GHG 

emissions and can help enterprises actively choose green technology upgrades. 

6. Conclusions 

This study proposes a strategic decision-making strategy for the retrofitting and deployment of YTs using a 

stochastic mixed-integer programming model. The strategy supports decision-makers and can inform the 

sustainable development of green ports. The main contributions of this study are summarized as follows. 
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 (1) Studies of the retrofitting and deployment of YTs mainly focus on the operational level. Our proposed 

model considers the transportation of hazardous materials and the introduction of a shared YTs mechanism at 

strategic level, which have not been fully considered in the reported literatures. The model is also applicable to 

other allocation problems in random operation instances. 

(2) As the time-steps and number of scenarios increase, CPLEX and exact solution methods find the proposed 

model difficult to handle. We propose enhanced Benders decomposition using a Lagrangian relaxation algorithm 

to solve the problem of YTs retrofitting and deployment. LR-BD can obtain the exact solution for large-scale real 

environments in a short time. 

(3) In addition to the support given by the quantitative mathematical model to retrofitting and deployment 

decisions at the strategic level, we also confirm the effectiveness of the proposed model and algorithm using the 

real case of a port in Shanghai. Our sensitivity analysis of the various parameters can inform decision makers 

about the optimum approach. However, we find that increasing the free carbon emission quotas provided by the 

government does not necessarily lead to improvements to control GHG emissions. 

However, there are limitations for the current study. This study did not consider the impact of different 

government emission policies on the target. Future research can optimize green ports and shipping technologies 

that may be adopted under emission classification policies and emission control policies (Zhen et al., 2019). In 

addition, other cutting plane methods can be used to accelerate the BD algorithm. 
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Appendix A. Algorithmic steps for enhanced Benders decomposition using Lagrangian relaxation. 

Algorithm 1 Enhanced Benders decomposition using Lagrangian relaxation. 

Step 1: Input: UB𝐿𝑅 = +∞ , LB𝐿𝑅 = −∞ , UB𝐿𝑅_𝐵𝐷 = +∞ , LB𝐿𝑅_𝐵𝐷 = −∞ ,iteration number 𝑚 = 1 , 

tolerance error 𝜏. 

Step 2: Introduce Lagrangian multipliers 𝜎𝑘,𝑡 to get the Lagrangian relaxation problem 𝐿𝑅(𝜎). 

Step 3: Solve the 𝐿𝑅(𝜎) to optimality, update LB𝐿𝑅. 

Step 4: Solve the Lagrangian dual problem 𝐿𝐷 along the subgradient direction, update UB𝐿𝑅. 

Step 5: Update the Lagrangian multiplier 𝜎𝑘,𝑡
𝑚+1 of the next iteration according to constraint (56), and 

return to step 3. 

Step 6: LR procedure stop conditions: (i) UB𝐿𝑅 = 𝐿𝑅(𝜎𝑘,𝑡
𝑚 ), (ii) step adjustment factor 𝜉𝑚 < 0.0001, or 

(iii) number of iterations 𝑚 > 100. 

Step 7: Substitute the current optimal value of each decision variable obtained by the LR into the MP of 

the BD to solve the solution, and obtain a better initial LB𝐿𝑅_𝐵𝐷. 

Step 8: Solve the dual problem and generate Pareto optimal cut according to the core point, update 

UB𝐿𝑅_𝐵𝐷. 

Step 9: Compare the gap between UB𝐿𝑅_𝐵𝐷 and LB𝐿𝑅_𝐵𝐷 with tolerance error 𝜏, if the gap is greater than 

𝜏, update LB𝐿𝑅_𝐵𝐷 and continue to execute step 8, repeat until the stop conditions are reached 

and output the optimal solution. 

 

Appendix B. Enhanced Benders decomposition using particle swarm optimization (PSO-BD)  

Another acceleration method of BD is to combine with heuristic algorithm. Gopalakrishnan Easwaran combines 

Tabu Search (TS) heuristic algorithm with BD. TS provides a feasible initial upper bound for BD and a good 

Benders cut (Easwaran & Üster, 2009). Santoso et al. (2005) integrated sample average approximation (SAA) and 

BD to provide solutions for large-scale stochastic programming problems in multiple scenarios. As a widely used 

heuristic algorithm, PSO algorithm possesses the advantages of fast convergence speed and simple operation. In 

this paper, PSO is combined with BD to accelerate BD algorithm. 

PSO was proposed by Eberhart and Kennedy in 1995 (Kennedy & Eberhart, 1995), which originated from the 

research on the predation behavior of birds, and used the sharing of information among individuals in the 
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population to find the optimal solution. The potential solution of the optimal problem is called "particle", and the 

velocity and position of the particle are continuously updated iteratively by following the optimal particle in the 

solution space. By introducing adaptive inertia weight and dynamically adjusting the inertia weight with the 

changes of iteration times and particle flight, the convergence speed can be effectively improved while balancing 

the global search. 

(1) Initial solution generation 

The quality of particle initial information has a great impact on the solution quality of meta heuristic algorithm. 

A better initial solution can effectively improve the solution quality of the algorithm. The steps for generating the 

initial solution are shown in Algorithm 2. 

Algorithm 2 Initial solution generation. 

Step 1  Set 0-1 variables 𝜔𝑘,𝑡,𝑙 ∼ U(0, 𝑤𝑘,𝑙], according to constraints (12), set 𝜔0,𝑡,𝑙 = 1. 

Step 2  According to constraints (1) and (2), set 𝜇𝑘,0 in the initial state. 

Step 3  According to constraints (5), set 𝛽𝑘,𝑘′,𝑡 = 0 in the initial state, in the case of 𝑡 ≠ 0、𝑘′ ≠ 0、𝑘 ≠ 2、𝑘 ≠

3 and 𝑘′ ≠ 3, when 𝑘 = 1, 𝛽𝑘,𝑘′,𝑡 is set to a random number of (0, 𝜇𝑘,𝑡−1), otherwise, 𝛽𝑔,𝑔′,𝑎,𝑡 = 0. 

Step 4  According to constraints (6), 𝜂𝑘,𝑡 is set to a random number of (0, 𝑧𝑘,𝑡). 

Step 5  According to constraints (8), because 𝜀𝑘,𝑡 is greater than or equal to 0, judge whether 𝜇𝑘,𝑡−1 − 𝑀 ∙ 𝜆𝑡−1,𝑙,𝑠 ∙

𝑤𝑘,𝑙 is greater than 0. If so, 𝜀𝑘,𝑡 is set to a random number of (0, 𝜇𝑘,𝑡−1 − 𝑀 ∙ 𝜆𝑡−1,𝑙,𝑠 ∙ 𝑤𝑘,𝑙). If not, set 

𝜀𝑘,𝑡 = 0. 

Step 6 Because 𝜇𝑘,𝑡−1  is greater than or equal to 0, judge whether 𝜇𝑘,𝑡−1 + 𝜂𝑘,𝑡 + ∑ 𝛽𝑘′,𝑘,𝑡𝑘′∈𝐾:𝑘′≠𝑘 − 𝜀𝑘,𝑡 −

∑ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘′≠𝑘  is less than 0. If so, 𝛾𝑘,𝑡 is set to the absolute value of 𝜇𝑘,𝑡−1 + 𝜂𝑘,𝑡 + ∑ 𝛽𝑘′,𝑘,𝑡𝑘′∈𝐾:𝑘′≠𝑘 −

𝜀𝑘,𝑡 − ∑ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘′≠𝑘 . If not, set 𝛾𝑘,𝑡 = 0. 

Step 7  According to constraints (4), set 𝜇𝑘,𝑡 = 𝜇𝑘,𝑡−1 + 𝛾𝑘,𝑡 + 𝜂𝑘,𝑡 + ∑ 𝛽𝑘′,𝑘,𝑡𝑘′∈𝐾:𝑘′≠𝑘 − 𝜀𝑘,𝑡 − ∑ 𝛽𝑘,𝑘′,𝑡𝑘′∈𝐾:𝑘′≠𝑘 . 

Step 8  According to constraints (10) and (11), 𝛼𝑘,𝑡,𝑙 is set to a random number of (0, 𝜇𝑘,𝑡 ∙ 𝜔𝑘,𝑡,𝑙). 

Step 9 According to constraints (18) and (19), set 𝜃𝑘,𝑡,𝑙,𝑠 = {0, min (𝛼𝑘,𝑡,𝑙 ∙ 𝑞𝑘,𝑙 , ℎ𝑡,𝑙,𝑠 + 𝜆𝑡−1,𝑙,𝑠)}. Then calculate 

the value of 𝜆𝑡,𝑙,𝑠 from equation constraints (20) and (21). When 𝜆𝑡−1,𝑙,𝑠 + ℎ𝑡,𝑙,𝑠 − ∑ 𝜃𝑘,𝑡,𝑙,𝑠𝑘∈𝐾 ≤ 0, 𝜆𝑡,𝑙,𝑠 =

0. 

(2) Evaluation the 𝑃𝑏𝑒𝑠𝑡𝑗 and 𝐺𝑏𝑒𝑠𝑡 

Take the objective function (1) as the fitness function, evaluate the fitness value of each particle, and find the 
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best position 𝑃𝑏𝑒𝑠𝑡𝑗 experienced by the individual particle 𝑗 and the best position 𝐺𝑏𝑒𝑠𝑡 experienced by the group. 

(3) Update particles 

By judging the subordinate relationship between decision variables, this paper selects the variables 

𝜔𝑘,𝑡,𝑙 , 𝜇𝑘,𝑡 , 𝛽𝑘,𝑘′,𝑡, 𝜂𝑘,𝑡, 𝜀𝑘,𝑡, 𝛼𝑘,𝑡,𝑙 to be updated. 

V𝑖
𝑘 = 𝑤𝑉𝑖

𝑘−1 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑘−1) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘−1)       (58) 

𝑥𝑖
𝑘 = 𝑥𝑖

𝑘−1 + 𝑉𝑖
𝑘−1           (59) 

Equation (58) represents the update particle velocity, and equation (59) represents the update particle position. 

V𝑖
𝑘  is the velocity vector of particle 𝑖  at the 𝑘 th iteration. 𝑥𝑖

𝑘  is the position vector of particle 𝑖  at the 𝑘 th 

iteration.  𝑤  is inertia weight. 𝑐1  and 𝑐2  represent learning factors, which adjust the maximum step length of 

learning. 𝑟1 and 𝑟1 represent random numbers between (0,1), which increase the randomness of the search.  

Select the solution with the smallest objective function value among the candidate solutions, update the current 

optimal solution and judge whether the maximum number of iterations is reached. If so, output the global optimal 

solution. If not, proceed the next iteration.  

(4) PSO-BD 

Substitute the 𝐺𝑏𝑒𝑠𝑡 obtained by the PSO and the current optimal value of each decision variable into the MP 

of the BD to solve the solution, and return to section 4.1and 4.2 for iteration.  
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