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ABSTRACT 

Agile and accurate detection of construction equipment operators (CEOs) with 
severe fatigue is critical for preventing accidents and ensuring precision 
construction occupational health and safety (COHS). Monitoring CEOs’ fatigue 
status has become a critical component of the smart work package (SWP) system 
for heavy equipment operation. CEOs with drowsiness can be identified using deep 
learning based on their non-invasive facial videos or invasive biosignals. However, 
the dilemma between technology achievements and data privacy is widening. Thus, 
to help monitor facial fatigue data from CEOs on worldwide construction sites 
without privacy exposure risks, this study introduces the Smart Work Package 
Learning (SWPL), a decentralized deep learning approach that improves the 
previously proposed federated transfer learning-based smart work package 
framework by involving a consortium blockchain network without a centralized 
model parameters aggregator. To illustrate the feasibility of SWPL for developing 
fatigue classifiers, this study research on non-invasive facial fatigue monitoring 
and SWPL merges the model updates from distributed SWPs. These updates are 
validated by the SWPs in the blockchain network and are then stored on the 
blockchain. More than 351 videos were derived from 119 operators. The results 
show that SWPL outperforms individual SWP. Moreover, SWPL achieves data 
privacy-preserving and security by the design of the blockchain network. The 
SWPL proposed in this study will significantly open up the advanced development 
of precision COHS. 

1 INTRODUCTION 
With increasing advancements and adoptions of intelligent 
construction equipment systems (ICES), construction 
equipment operators’ (CEOs) operation information in each 
cockpit can be gathered distributedly by smart work package 
(SWP) module (Li, 2019), which can provide real-time CEOs 
fatigue analytics to monitor fatigue states using real-time data 
sensed from various sources, e.g, heart rate, camera, 
electroencephalogram. (Li et al., 2020). As an essential 
component of ICES, the SWP can help monitor each CEO’s 
fatigue status, alert to CEO and site superintendents when the 
fatigue level exceeds the given threshold, and improve shift or 
break mechanism, ultimately guaranteeing the on-site 
construction occupational health and safety (COHS). 
    Monitoring the facial fatigue of CEOs, e.g., eye state, 
yawning, nodding, compared with measuring physiological 
signals, is a non-invasive, fast-speed, and cost-effective way 
for the precision COHS (Li et al., 2019; Liu et al., 2020). 
Currently, deep learning techniques demonstrate the efficient 

performance for facial fatigue prediction through learning 
facial expression features and improving prediction 
performance (Yu et al., 2018; Dua et al., 2021). It will use 
massive spatial-temporal facial image data for training 
purposes. As SWP is inherently decentral in distributed 
construction equipment, the size of local data is always 
inadequate to train reliable classifiers or predictors. 
Consequently, aggregating data into central is a way that has 
been widely applied to address the local insufficiency.  
    While centralized solutions are more technology achievable, 
they have built-in drawbacks, such as traffic for boosted data 
and increased issues with ownership, privacy, security of 
information, and the formation of data monopolies (e.g., big 
data discriminatory pricing) that favor data collectors. 
FedSWP proposed by the authors addresses some of these 
aspects using federated learning (Li et al., 2021), which is a 
distributed learning paradigm that enables individuals (e.g., 
SWP) to collectively train a global model published by the 
central server. The application of federated learning can 
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effectively reduce privacy exposure risks for SWP by 
performing facial fatigue monitoring (FFM) tasks locally. 
However, model parameters are still processed in a central 
server, and this centralized setting decreases fault tolerance. If 
the central server is compromised, the complete SWP systems 
face a risk of single-point-of-failure (SPoF), which might 
readily expose personal information. Furthermore, suppose 
malicious SWP systems submit erroneous or poor model 
parameters to the central server. In that case, the convergence 
of loss or accuracy deteriorates, which can reduce the SWP 
system's FFM performance, ultimately affecting the safe 
equipment operations. 
    To address these challenges, this study introduces smart 
work package learning (SWPL), which aims to form a 
consortium blockchain-based decentralized SWP network 
with distributed learning to improve the accuracy of FFM with 
high-level privacy-preserving. Model updates can be shared 
and verified via this network but built independently on private 
data at each SWP. To this end, three objectives are designed 
accordingly: (1) To create an SWPL model for decentralized 
and privacy-persevering FFM; (2) To develop consortium 
blockchain for SWPL to avoid SPoF and ensure the quality of 
model updates; (3) To evaluate the SWPL in FFM with real-
life datasets. 
    The remainder of this study is organized as follows: Section 
2 reviews the state-of-the-art literature on FFM, SWP, and 
federated or distributed deep learning. Section 3 establishes the 
methodology for SWPL. An experiment using real facial 
fatigue datasets is to demonstrate and evaluate the performance 
of the proposed method in Section 4. Section 5 compares with 
existing works to discuss innovations and drawbacks in this 
study. Finally, conclusions and future works are presented in 
Section 6. 

2 RELATED WORK 

2.1 Facial Fatigue Monitoring (FFM) 
Construction equipment operators (CEOs), such as crane 
operators, paver, and truck drivers, should be physically strong 
and have agility in the hearing, vision, and reactions for safe 
and productive operation (Tam and Fung, 2011). However, 
these capacities will be degraded when CEOs fall into fatigue 
or drowsiness. Previous studies have made efforts to develop 
various fatigue monitoring systems for detecting and alerting 
driver’s or operator’s fatigue operation, which mainly uses 
equipment trajectory, facial expression, and physiological 
signal to judge the level of fatigue (Thiffault and Bergeron, 
2003; Ji and Yang, 2002; Borghini et al., 2014). Equipment 
trajectory can be measured by movement speed, acceleration, 
path deviation, steering, and turning angle. The physiological 
signals mainly collect electrocardiogram (ECG), 
electroencephalogram (EEG), electromyogram (EMG), 
electrooculogram (EOG), and heart rate, as the measurement. 
However, many disturbances (e.g., operation faults owing to 
inexperience, ineffective communication with site signallers) 
may impact construction equipment operation trajectory, and 
the physiological signals are aggregated in an inconvenient and 
invasive manner for CEOs. As a result, fatigue monitoring 

through facial expressions (e.g., eye state, yawning, nodding) 
may be a more practical, speedy, and cost-effective method. 
After deep learning is boosted, FFM has a high level of 
accuracy. For instance, Zhang et al. (2015) employed a 
convolutional neural network (CNN) to extract yawning 
features in the nose rather than the mouth due to the impact of 
head turns. However, it can be difficult to discern between 
fatigue states, such as blinking and closing eyes. Huynh et al. 
(2016) used the 3D-CNN as a more realistic method by taking 
into account more face features as well as temporal features in 
sequential video frames. However, It is still challenging to 
discriminate lengthy dependent statuses on the face, e.g., 
talking and yawning. Guo and Markoni (2018) and Lyu et al. 
(2018) improved the model with temporal features extractor by 
combing CNN with a Long Short-term Memory (LSTM) that 
enables the detection of long-term dynamic features over 
consecutive frames. Li et al. (2019) further considered 
backward dependencies learned from reverse-order frames to 
develop deep bi-directional LSTM for learning dependencies 
of periodic fatigue facial expression in the crane operations 
(e.g., discriminate the fatigue nodding and head slant to track 
the crane hook movements, yawning and talking with 
signallers). However, monitoring the CEO’s facial fatigue in 
each construction equipment has a great privacy exposure risk. 
Particularly in the global privacy crisis, privacy-preserving 
deep learning solutions are demanding to avoid contemporary 
data privacy scandals (Newman, 2015; Tuttle, 2018). At the 
same time, a growing number of regions or countries have 
promulgated laws policies, or regulations to respond to the 
issues of privacy and security in data, such as European Union 
issued the General Data Protection Regulation (GDPR) (Voigt 
et al., 2017) and Personal Information Protection Law by 
China (Determann et al., 2021). As a result, technical solutions 
for monitoring the CEOs’ facial fatigue while preserving 
personal information are urgently needed. 

2.2 Smart Work Package (SWP) 
SWP can be defined as the smallest distributed agent to 
facilitate tasks planning and executions with smart capacities, 
e.g., perceiving, computing, networking, inferencing, and 
predicting. SWPs can be performed in an autonomous manner, 
resilient to dynamics in their real-world situation, and real-
time interaction with the other SWPs and environment (Li et 
al., 2019b). Many approaches have been developed in SWP to 
enhance modeling, optimizing, and monitoring data for 
distributed construction workers. For instance, the hybrid SD-
DES model in SWP is developed to assist the dynamic 
assessment of the impacts of construction workers’ task 
execution constraints on project performance, e.g., schedule 
(Li et al., 2019c). Furthermore, by calculating the dynamic 
distance between crane loads and site dynamic obstacles (e.g., 
walking workers), the probabilistic roadmap using A* 
embedded in SWP can assist operation decision optimization 
(Li et al., 2020). Additionally, SWP’s hybrid deep neural 
networks have been successfully employed to monitor and 
predict CEOs’ fatigue (Li et al., 2019a; Li, 2019).  
    Instead of providing a new workflow in workers’ FFM, 
SWP can enable current workflows with smart properties, such 
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as adaptivity, sociability, and autonomy (Li, 2019). The CEO 
FFM required in heavy equipment operations is one of the 
applications to leverage SWP’s autonomy with proactive 
tracking, updating, and predicting. Previous investigations by 
the authors have looked into the SWP-enabled FFM service, 
and the service system architecture is presented in Li et al. 
(2019c, 2021). The infrastructure and functions of this service 
are enabled by construction resources with embedded IoT 
sensors, namely, smart construction objects (SCOs) (Lu et al., 
2021) and the smart building information modeling (BIM) 
platform (Li et al., 2022). To facilitate the efficiency in data 
provision and capture, the SCOs are developed by empowering 
objects, such as human (operator), machine (crane cabin, 
helmet), material (prefabricated components) with multimode 
IoT sensors, e.g., bio-medical ped, camera, IMU, temperature, 
and humidity sensors. SCOs can also help enrich the semantics 
of BIM or exchange information with BIM. SWP can then be 
enabled to perform the FFM tasks after the trigger from CEOs 
through the human-machine interfaces. Models and 
approaches developed into SWP may frequently require data 
sharing or aggregating from each construction worker. 
However, widely using CEOs’ private data may expose them 
to privacy risks. The privacy concerns expressed by CEOs may 
stymie the adoption of SWP and other wearable innovations at 
construction sites. 

2.3 Distributed Learning 
In COHS, previous studies mainly rely on training worker-
related data, including massive private information, such as 
location, motion, and images. But direct worker-related data 
gathering is not always easy or allowed in real-life construction 
sites. Thus, the emergence of Federated Learning (FL) 
addresses some of these aspects. After being introduced by 
Google  (Konečný et al.,2016), FL quickly received attention 
from researchers and pushed forward its revolution, such as 
communication cost optimization and heterogeneity 
improvement (Sattler et al., 2019), advanced encryption and 
differential privacy algorithms (Ali et al., 2019), and 
applications in a wide field including medicine data in 
healthcare, IoT data in industrial engineering, financial and 
personal data in mobile devices (Li et al., 2020a). In FL, in 
each round of model training, each participant downloads an 
initial global model, completes local model training, and 
transmits local model parameters to the central server without 
submitting data. The central server then combines all updates 
from local trained models to form an aggregated global model, 
which is subsequently released to the local. This process is 
repeated iteratively until convergence is achieved. However, 
FL for SWP-based FFM may present the following issues: (1) 
the centralized model updates may suffer from the SPoF; (2) 
malicious SWPs can provide erroneous or poor model 
parameters to the central server. 
    To address the above issues, the latest studies have made 
efforts to use blockchain with distributed databases, consensus 
mechanisms, and encryption algorithms to incentivize 
participants to share data parameters and verify them. By 
combining blockchain with federated learning (FL), Kang et 
al. (2019) used blockchain to achieve tamper-proof reputation 

management for an incentive mechanism in model learning. 
The reliability of FL is also improved in further investigation 
(Kang et al., 2020). Lu et al. (2020a) developed an 
asynchronous FL scheme with blockchain for private data 
sharing on the internet of vehicles, and this scheme is also 
extended to the digital twin application (Lu et al., 2020b). Qu 
et al. (2020) evaluated the performance of blockchain-based 
FL, including latency, consensus delays, cost of 
communication, and computation for optimal block generation 
rate. Moreover, they adopted this blockchain FL framework 
for cognitive computing (Qu et al., 2020b). Zhao et al. (2021) 
created a Blockchain FL system by using a reputation 
mechanism to incentivize customers in data provision to 
facilitate the manufacturers of home appliances in training 
machine learning models. Qi et al. (2021) also established an 
FL framework with a consortium blockchain by involving a 
noise-adding mechanism-based differential privacy method to 
improve privacy preservation of traffic flow prediction. 
Although previous studies investigated many privacy-
preserving methods, those methods normally protect privacy 
by sacrificing model performance or system efficiency, and 
these methods are difficult to be directly applied to FFM of 
CEOs due to the statistical heterogeneity. Inspired by the 
concept of swarm learning (Warnat-Herresthal et al., 2021), 
this study explored a consortium blockchain-based distributed 
learning method among SWPs, namely SWP learning, to 
protect privacy and ensure the data quality shared in CEO-
FFM. 
    In summary, an ideal scenario is that sufficient image data 
could be available locally, and deep learning algorithms can be 
performed locally in each SWP. However, each SWP may 
collect image data only from an individual construction site, 
single construction equipment, or even one operator resulting 
in data shortage, which requires gathering data into the cloud 
to train and test better deep learning models. This data 
centralization issue can lead to data privacy exposure risks. 
Although FL-based methods have raised great attention with 
advantages in only aggregating the model parameters and 
keeping data locally, it still has a centralized structure with a 
fixed global model to aggregate parameters, which not only 
have parameter exposure risks but also increased the 
communication cost in exchanging parameters between global 
and local model. 

3 SMART WORK PACKAGE LEARNING  

3.1 Problem Statement 
This study considers the CEOs as the entities in facial fatigue 
monitoring (FFM). Each CEO corresponds to an SWP with the 
sensory camera. This study uses the SWP (See Fig.1) to 
represent CEOs entities in the proposed SWPL framework. 
Each SWP includes specific CEOs’ facial fatigue image 
datasets. SWPL aims to prevent privacy exposure and improve 
FFM accuracy by sharing model parameters among isolated 
SWPs in the consortium blockchain network. The SWP set is 
denoted by 𝑊𝑊 = {𝑊𝑊1,𝑊𝑊2,⋯𝑊𝑊𝑁𝑁}, while SWPs’ datasets are 
defined by 𝐷𝐷 = {𝐷𝐷1,𝐷𝐷2,⋯𝐷𝐷𝑁𝑁}. Let 𝑡𝑡 and 𝑂𝑂𝑡𝑡   stand for the t-th 
timestamp of temporal data and the t-th facial fatigue state. Let 
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𝑓𝑓(𝑡𝑡,𝐷𝐷) presents the function for FFM, and the followings are 
problem definitions for privacy and accuracy: 

3.1.1 Privacy 
Privacy in this study is defined as the avoidance of model 
parameters leaking, which may potentially lead to revealing 
sensitive facial image data. For example, model parameters are 
always processed in a central server, even for an FL model. If 
the central server is compromised, it may suffer from SPoF 
risk. The local datasets in each SWP in this study will be used 
to train its local model, and SWP shares the model parameters 
via the consortium blockchain, and parameters are aggregated 
by a dynamic leader SWP rather than submitting the 
parameters to a fixed central cloud. 

3.1.2 Accuracy 
The accuracy is defined in this study as achieving better 
performance in classifying CEOs’ facial fatigue levels in each 
SWP. SWPL approach share all model parameters 𝑃𝑃 = 𝑃𝑃1 ∪
 𝑃𝑃2 ∪ ⋯∪ 𝑃𝑃𝑁𝑁  to train a model locally and compute 𝑂𝑂𝑡𝑡+𝑠𝑠  = 
𝑓𝑓𝑖𝑖(𝑡𝑡 + 𝑠𝑠,𝐷𝐷𝑖𝑖)  for each SWP and its accuracy is defined as 
𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where s is the prediction frame at 𝑡𝑡. For the traditional 
method, if there exists data insulation, the accuracy of training 
model locally and conducting classification individually can 
be represented by 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆. This study’s hypothesis is to see if the 
accuracy of SWPL outperforms the method on individual 
SWP, which can be denoted in Equation (1) 
𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 > 0               (1) 

3.2 Overview of SWPL framework 
Inspired by the swarm learning in Warnat-Herresthal et al. 
(2021), this section introduces smart work package learning 
(SWPL) to share model parameters via smart work package 
chain (SWPC) and train deep learning models on private facial 
image data locally at SWPL nodes. SWPC is achieved via 
consortium blockchain, and each SWP should be defined and 
authorized before parameters sharing. The framework of 
SWPL is presented in Fig.1(a), which includes SWPC node, 
SWPL node, SWP control interface (SWPCI) node, license 
server, and server node. SWPC nodes form the Ethereum-
based consortium blockchain network to broadcast and keep 
global state information from model updates while not holding 
the whole model. SWPL nodes run the deep learning models 
to train and update models in FFM. SWPCI is the command 
interface tool to view, control, and manage the processes of 
parameter sharing, merging, and updating via application 
programming interface (API) ports. SWPC nodes can obtain 
license tokens from the license server for running the SWPC 
network and SWPL nodes. Sever nodes use the SPIRE 
(SPIFFE Runtime Environment, SPIFFE refers to Secure 

Production Identity Framework for Everyone) framework to 
provide SVID (SPIFFE Verifiable Identity Document) and 
trust bundles to SWPC nodes and SWPL nodes. The process 
of SWPL is shown in Fig.1 (b). A new SWP joins through 
smart contracts in blockchain, receives the model, and trains 
the model locally until defined synchronization conditions are 
satisfied. Before initiating a new round of training, model 
parameters are shared through an API in SWPCI and 
aggregated to build an updated model. For each SWP (see 
Fig.1(c)), SWPL is composed of layers of application, 
middleware, and infrastructure. The CEO-FFM task is one of 
the application scenarios. The middleware layer contains 
blockchain and deep learning models. The infrastructure layer 
includes a containerized API for executing SWPL in hardware 
environments. 

3.3 Deep neural networks in SWPL 
This study leverages and makes improvements of hybrid deep 
neural networks for FFM in the authors’ previous work (Li et 
al., 2021). As shown in Fig.2, the private facial data (e.g., 
image or video) from each SWP is considered as the input data, 
which would be preprocessed locally by a face detector and a 
spatial feature extractor. The MultiTask Cascaded 
Convolutional Neural Network (MTCNN) can achieve real-
time face detection with high accuracy and robustness (Zhang 
et al., 2016). Thus the face detector in this study used MTCNN 
to retrieve bounding boxes and facial landmarks with three-
stage models: P-Net, R-Net, and O-Net. As MobileNets are 
compact, low-latency, low-power models and can be 
parameterized to facilitate real-time fatigue feature extraction, 
the latest MobileNet V3 Large is applied as the spatial feature 
extractor to proceed common features, e.g., eyes, mouth, head, 
on the face through start stage: one convolutional layer (Conv 
1), middle stage: a mobile block with two expansion layers and 
several depthwise separable convolution layers (Conv 2-18), 
later stage: one average-pooling layer (Avg pooling), and two 
convolutional layers (Conv 19 and 20) (Howard et al., 2019). 
The MTCNN and MobileNet V3 Large are used to preprocess 
data locally, which indicates, in backpropagation, their 
parameters will not be updated. 
    FFM involves the periodicity of temporal data, especially 
for repeating fatigue patterns. Bidirectional LSTM (Bi-LSTM) 
can play a critical role to help extract high-level dynamic 
temporal features by learning both forward and backward 
long-term dependencies (Greff et al. 2016). Thus, this study 
will update and share parameters of Bi-LSTM during the 
training process. The sigmoid activation function is used to 
normalize the classification output to a probability distribution. 
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FIGURE 1. SWPL framework for decentralized and privacy-preserving facial fatigue monitoring of CEOs 

 
FIGURE 2. Deep neural networks for facial fatigue monitoring 
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3.4 Consortium Blockchain for SWPL 
As shown in Fig.3, a permissioned blockchain, namely SWPC, 
is configured to realize the decentralized SWPL. To facilitate 
SWPL functionality, SWPC nodes are first registered on the 
blockchain network using the API. Then, SWPC nodes can 
interact with other SWPC nodes using blockchain for 
parameter sharing and can control the local model training 
process through related SWPL nodes. Thirdly, instead of 
depending on a confirmed central aggregator in federated 
learning, a dynamic selection mechanism of shifting 
aggregators is implemented at each parameter merging round 
through smart contracts to make SWPL decentralized. 
Moreover, a package of state-of-the-art security technologies, 
e.g., network encryption, trusted execution environment, 
secure containment, is applied to preserve facial images from 
direct unauthorized access. Since the SWPL network is 
typically configured starting from its lower boundary at its 
early stage, two SWPC network nodes, four SWPL nodes, and 
two SPIRE server nodes are established for this study. With 
the implementation of this setting in consortium blockchain, 
SWPL can be performed including the following stages: 
• Model training on SWPL nodes—Firstly, each SWPL 

node uses its local datasets to train the Bi-LSTM model to 
get the latest local updates and provide these parameters 
to the nearest SWPC node. 

• Parameters merging on SWPC—Secondly, when a leader 
is dynamically selected ( the first node to finish its training 
is set as the leader in each epoch) among SWPC nodes, 
the leader will aggregate their parameters and generate a 
new data block in which all model parameters will be 
stored. 

• Parameters synchronizing between SWPC nodes—
Finally, the new block with merged parameters is stored 
on the SWPC, responsible for sharing block data to each 
SWPC node. And each SWPL nodes compute their model 
using the latest merged parameters until meeting the 
determined performance metrics. 

As shown in Fig.4, a consensus process is designed for the 
consortium blockchain of SWPL. 

• Initialization—It begins with the enrollment of a set of 
construction equipment operators’ SWPs to formulate the 
operational and legal requirements of the decentralized 
system, which includes consensus on model training 
performance, parameter sharing agreements and 
synchronization frequency, incentive mechanism, and deep 
learning model to be used. 

• Configuration—All the SWPs install the SWPL function on 
their SWPC nodes to form the SWPC network, which 
overlays the underlying IP network (See Fig.3) connection 
between SWPC nodes. 

• Training—(1) SWPL training starts with each SWPL node 
enrollment via smart contract. Each SWPL node can record 
its information (e.g., uniform resource identifier (URI)) in 
the ledger to facilitate its trained parameters extracted by 
other nodes in SWPC. (2) Then, SWPL nodes iteratively 
train the local replica of the model over numerous epochs. 
For each epoch, each SWPL node trains a local model 

through various data batches for the defined iterations. 
Upon reaching the iteration number, it notifies the SWPC 
nodes that it is ready for parameter sharing. (3) When the 
number of SWPL nodes ready for parameter sharing comes 
to a minimum threshold determined in initialization, 
parameter sharing begins. After each epoch, the elected 
SWPC node leader retrieves the trained parameters via URI 
and aggregates them. (4) All aggregated parameters are 
merged through predefined methods, e.g., mean, weighted 
mean, and median, and the leader notifies other SWPC 
nodes when the merging process is completed. Each SWPC 
node can then download the latest merged parameters and 
update the local models of its SWPL nodes. (5) All SWPL 
nodes evaluate the model performance, e.g., accuracy and 
loss, using the smart contract. After completing the 
validation process in each SWPL node, the leader of SWPC 
nodes will aggregate all local validation metrics and get the 
global performance. 

• Testing—Testing new local datasets can be conducted when 
the training process reaches a reasonable performance. 
Otherwise, the SWPL nodes start the next training batch 
with the merged parameters. 

 

FIGURE 3. Consortium blockchain architecture for two-
node SWPC 

4 EXPERIMENT 
Experiments are conducted in this section to assess the 
SWPL’s performance in accuracy and privacy for FFM, which 
is one of the most privacy-concerned operations for CEOs in 
COHS. The datasets, implementation details, and results 
analysis are presented below. 

4.1 Facial Fatigue Monitoring Dataset 
YawDD, as a popular public dataset for the vehicle operator 
(Abtahi et al., 2014), is used in this study's experiment and 
evaluation process. The justification for using this dataset are 
threefold: (1) The authors have tested a similar hybrid model 
(MTCNN, MobileNet, LSTM) on existing public datasets 
(e.g., NTHU-DDD, UTA-RLDD, YawDD), which the 
YawDD outperforms others in accuracy and loss (Liu et al., 
2021);
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FIGURE 4. The consensus process for the consortium blockchain of SWPL 
 (2) monitoring of CEOs’ facial fatigue statuses are nearly the 
same as the scenarios for vehicle operators, where operators 
sit-in cockpit for operating vehicles or equipment; (3) it will be 
easier to compare the performance of SWPL with previous 
centralized or federated learning methods as training and 
testing on the same dataset. YawDD has two datasets of videos 
(640×480 pixels resolution and 24-bit true color (RGB) 
without audio) that are recorded by in-cockpit cameras and 
captured in a variety of lighting conditions within natural 
environments. Each dataset includes various facial features, 
e.g., talking, laughing, singing, normal stillness, yawning, 
nodding, slow blink rate of eyes, different gender, with and 
without glasses/sunglasses, and various ethnic groups. The 
first dataset includes 322 videos for 90 participants (47 male 
and 43 female), which all are captured through a video camera 
installed in the front mirror of the cabin. Each participant is 
documented with three or four videos, each of which covers 
normal, talking/singing, and yawning facial expressions. The 
second dataset includes 29 videos (one for each participant, 
namely, 16 male and 13 female), which are recorded via a 
video camera positioned on the dashboard of the cabin. 
YawDD datasets contain five scenarios, including Bareface, 
Glasses, Sunglasses, Mustache, and Breard, all of which were 
captured at a window size of 30 fps (frames per second). In 
datasets, each participant presents different combinations of 
fatigue expressions (yawning, nodding, slow blink rate of 
eyes) and normal signs (talking, singing, laughing, normal 
stillness). All details of YawDD have been summarized in 
Table 1. A two-node SWPC scenario with four SWPL nodes 
is established. Each SWPL node is assigned with uneven 
videos to simulate the real-world situation, where each SWP 
may include different CEOs in single construction equipment 

or a construction site that creates such COHS data that is 
subject to local privacy regulations 

TABLE 1. YawDD Details 

Participants Behavior Illumination Camera 
Type Scenarios Camera 

Position 

119 

•Normal      
Stillness 

•Talking 
or Singing 

•Yawning 

•Sleepy 
Blinking 

•Nodding 

Day (from 
early 

morning till 
sunset) 

RGB 

•Glasses 

•Sunglas
ses 

•Mustach
e 

•Beard 

•Bare 
Face 

Front 

mirror 

& 

Dashboard 

4.2 SWPL Implementation Details 
4.2.1 Experiment Environment Settings 
The experiment environment includes 2 virtual machines 
within a Linux Ubuntu 20.04 system to run the training and 
evaluation process. The computer configurations and 
development package specifications for this experiment are 
listed in the following: 

• Hardware: 20 cores, 64GB of RAM, 256 GB SSD, and 
2TB HDD 

• Network: Up to 3 open ports in each node 
• Architecture: AMD64 
• Container hosting platform: Docker 18.01.0 
• CPU: Intel (R) Xeon (R) E5-2640 v4@ 2.40 GHz (20 

CPUs) 
• GPU: NVIDIA GeForce GTX 1080 
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• Deep learning framework: Python 3.73, Keras 2.3.1, 
Tensorflow 1.15.0 

• Image operation cross-platform: OpenCV-Python 

4.2.2 Facial Fatigue Data Pre-processing 
Firstly, the MTCNN is applied locally in each SWPL node to 
recognize the faces and extract the frame landmarks. After that, 
the MobileNet v3 is used to transform the face frames to 
feature embeddings (512). The features for facial fatigue status 
can be presented by the expressions of the eyes, head, and 
mouth. The temporal fatigue features are easy to be identified 
in each video as long-term dependencies, indicating that 
accurately predicting each frame’s state should make good use 
of frames from preceding or succeeding seconds. However, 
within a few seconds, these facial expressions (e.g., closing 
eyelids, yawning, and nodding) on a sequence of frames would 
still be detected as fatigue symptoms if they had just remained 
expressions to alert following fatigue states. To accurately 
distinguish the temporal states between normal and fatigue, the 
YawDD is relabeled accurately with two fatigue levels: (1) 
Normal (label: 0): the participant shows no indicators of facial 
drowsiness. (2) Fatigue (label: 1): it indicates that the 
participant exhibits facial sleepiness. As indicated in Table 2, 
the behaviors that are least connected to facial fatigue include 
stillness, looking away, normal blinking and chatting, talking, 
laughing, and singing. Thus, the frames with such behaviors 
can be labeled to 0. As for obvious behaviors of facial fatigue, 
such as closing eyes, yawning, and nodding, they can be 
labeled as 1.  
    Table 3 and Figure 4 present the statistical details for 
samples and datasets on YawDD (image array n= 78,081), 
which is divided into well-separated training datasets (75%) 
and a test dataset (25%) that are applied for validating models 
developed by SWPL and at individual nodes. All the 
participants with different scenarios are assigned to each 
SWPL node (node 1 (23): female with glasses, node 2 (17): 
female with non-glasses, node 3 (26): male with glasses, node 
4 (25): male with non-glasses, test node (28%): all scenarios). 
For the training dataset, it is randomly and unevenly assigned 
datasets for the SWPL nodes (node 1: 20%, node 2: 14%, node 
3:18%, node 4: 23%). Within training and testing data, samples 
with varying distributions were maintained at each of the 
SWPL nodes, for simulating real-world scenarios. The ratio 
between positive (fatigue) and negative (non-fatigued) 
samples are also presented in Fig.4. 

TABLE 2. Label details on YawDD 
Behavior  State Fatigue Level 

Talking, laughing, singing 
Looking aside 
Normal blinking 
Stillness 

 

Normal 0 

Closing eyes 
Yawning 
Nodding 

 
Fatigue 1 

TABLE 3. Statistical information on samples for each 
node 
 

 

 
FIGURE 5. Statistical information on Datasets 

4.2.3 Decentralized Training 
Neural network algorithm. The hybrid deep neural networks 
that developed in the authors' previous works are leveraged (Li 
et al., 2019a, 2021; Liu et al., 2021) and there is an 
improvement in the spatial feature extractor of the hybrid 
model by using MobileNet V3 instead of Mobile Net or VGG-
16. The layers for the face detector (MTCNN) and temporal 
feature extractor (Bi-LSTM or gated recurrent unit (GRU)) 
have also been improved and are shown in Table 4. MTCNN 
and MobileNet V3 are processed locally in each SWPL node, 
and only the parameters of Bi-LSTM/GRU are trained and are 
shared through the blockchain network. The trained LSTM-2 
model consists of one input layer, 3 hidden layers, and one 
output layer. The input layer is processed by two hidden LSTM 
layers with 512  cells, a rectified linear unit activation function, 
and a dropout rate of 50%. The output layer is densely 
connected and consists of one node and a sigmoid activation 
function. The model is configured for training with RMSprop 
optimization and to compute the binary cross-entropy loss 
between true labels and predicted labels. The model is used for 
training both the individual nodes and SWPL nodes. The 
model is trained over 200 epochs with a batch size of 32 and a 

Scenario Participant Status Instance Type Shape Source 

Original 
90 2 322 Videos (:, 640, 480, 3) Mirror 
29 2 29 Videos (:, 640, 480, 3) Dashboard 

SWPC 
node1 

23 2 15675 Array (:, 30, 512) SWPL 
node 1 

17 2 10864 Array (:, 30, 512) SWPL 
node 2 

SWPC 
node 2 

26 2 14352 Array (:, 30, 512) SWPL 
node 3 

25 2 17603 Array (:, 30, 512) SWPL 
node 4 

SWPC 
Test 
node 

28 2 19587 Array (:, 30, 512) SWPL 
Test node 
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learning rate of 0.001.TABLE 4. The detailed layers of the 
hybrid model  
 
TABLE 4. The details layers of the hybrid model for 
decentralized training 

    Parameter tuning. The model hyperparameters are fine-
tuned to get better performance (e.g., higher sensitivity). For 
example, to improve accuracy and loss, the dropout rate is 
reduced to 10% and increased the number of epochs to 200. 
The optimal window size is 30. The parameter merge 
frequency can be changed through API, which dynamically 
impacts the efficiency of model convergence to reduce training 
time. 
    Parameter merging. Leader node coordinated parameter 
merging at each synchronization interval (3000 times training). 
The parameters are merged using a weighted average method, 
and it is denoted in Equation (2): 
 
TABLE 5. Hyper-parameter tuning results 

     

𝑃𝑃𝑀𝑀 = ∑ (𝑆𝑆𝑘𝑘×𝑆𝑆𝑘𝑘)𝑛𝑛
𝑘𝑘=1
𝑛𝑛×∑ 𝑆𝑆𝑘𝑘

𝑛𝑛
𝑘𝑘=1

               (2) 

    Where 𝑃𝑃𝑀𝑀  stands for merged parameters, 𝑃𝑃𝑘𝑘  presents the 
kth SWPL node’s parameters, 𝑊𝑊𝑘𝑘  denotes the kth SWPL 
node’s weight, and n indicates the number of nodes joining the 
merging. 

4.2.4 Evaluation Metrics 
The evaluation in this study is aim to compare SWPL’s 
performance with individual nodes. As the hybrid deep neural 
networks for SWPL is a binary classification model, the 
performance of SWPL can be evaluated quantitatively through 
metrics of accuracy, F1 score, AUC, sensitivity, specificity, 
and loss, which are calculated after the test. Bootstrapping is 
applied to estimate all performance metrics with 95% 
confidence intervals. The one-sided Wilcoxon signed-rank test 
with continuity correction is used to examine the differences 
in performance metrics. Each performance metric can be 
estimated in Equation (3) - (7): 
Sensitivity =  𝑇𝑇𝑆𝑆

𝑇𝑇𝑆𝑆+𝐹𝐹𝑁𝑁
                 (3) 

Specificity =  𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑆𝑆

                   (4) 

Accuracy =  𝑇𝑇𝑆𝑆+𝑇𝑇𝑁𝑁
𝑇𝑇𝑆𝑆+𝐹𝐹𝑆𝑆+𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁

                  (5) 

F1 score =  2𝑇𝑇𝑆𝑆
𝐹𝐹𝑆𝑆+𝐹𝐹𝑁𝑁+2𝑇𝑇𝑆𝑆

                  (6) 

loss =  −∑ 𝑦𝑦𝚤𝚤�𝑛𝑛
1 log 𝑦𝑦𝑖𝑖 + (1 − 𝑦𝑦𝚤𝚤�)log �(1 − 𝑦𝑦𝚤𝚤�)�               (7) 

    where TP denotes true positive, FP represents false positive, 
TN indicates true negative and FN is false negative. The 
predicted fatigue level can be denoted by 𝑦𝑦𝑖𝑖  and the ground 
truth value of the label is represented by 𝑦𝑦𝚤𝚤� . The number of 
samples (video frames) for facial fatigue prediction can be 
defined as n. 

4.3 Experiment results analysis 
4.3.1 Performance Analysis 
 

Trainability Model Name Layers 

Non-
trainable 

MTCNN 
(Face Detector) 

P-Net(12,12,3) 
R-Net(24,24,3) 
O-Net(48,48,3) 

Input_1(:,224,224,3) 
Conv_1(:,112,112,32) 

… 

Non-
trainable 

MobileNet V3  
(Spatial Feature 

Extractor) 

Conv_13(:,7,7,1024) 
Global_average_pooling2d_1(:,1024) 

Reshape_1(:,1,1,1024) 
Dropout(:, 1, 1, 1024) 

Conv_preds(:, 1, 1, 1000) 
Softmax(:, 1, 1, 1000) 
Dense_1(:, 1, 1, 512) 

Flatten_1(:, 512) 

Trainable 

Bi-LSTM/GRU 
(Temporal 

Feature 
Extractor) 

LSTM/GRU_1（:, 30, 512） 
LSTM/GRU_2（:, 256） 

Dense_1(:,128) 
Dropout_1(:,128) 

Dense_2(:,1) 

Hyper-parameter Explanation/Usage Scope Optimal 
values 

Learning rate 
Determines the step size at each iteration 
while moving toward a minimum of a loss 
function 

{5-3, 8-3,10-3,5-2,8-2,10-2}  
(Trenta et al., 2019; Shih et al., 2016; Guo et al., 2021) 0.001 

Batch size Determines the number of samples utilized 
in one iteration 

{2𝑘𝑘 k=1,2…12}  
(Dua et al., 2021; Huynh et al., 2016) 32 

Epoch Determines the number of times that the 
model processes all training data 

{50, 100, 200…1000}  
( Lyu et al., 2018; Yu et al., 2018) 200 

Dropout 
It is a regularization technique that 
randomly selected neurons are ignored 
during training 

{10%, 20%, 30%…60%}  
(Li et al., 2021; Warnat-Herresthal et al., 2021) 10% &50% 

Activation function Trigger non-linearity transformation in the 
model structure 

{sigmoid, Relu, elu}  
(Liu, 2021; Li et al., 2019) Sigmoid 

Optimizer Adjusts model parameters to minimize the 
loss 

{Adam, RMSprop, Nadam, sgd, adagrad} 
 (Michielli et al., 2019) RMSprop 
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This study firstly compares the performance of SWPL with 
two comparable temporal feature extractors (LSTM and GRU) 
as they both use getting mechanisms to learn long-term 
dependencies and outperform traditional machine learning 
models for temporal features prediction in FFM 
 (Li et al., 2021). Table 6 with the metric of accuracy shows 
the results of SWPL-LSTM and SWPL-GRU during 195-200 
epochs with the different hidden layers that indicate similar 
accuracy. Thus, this study uses LSTM with two hidden layers 
for further analysis as it has more parameters (three gates) 
compared with GRU (two gates), which can demonstrate 
whether SWPL is efficient with more parameters. 
    Fig.6 demonstrates the performance comparison among  

SWPL, individual node (individual SWP), and central model 
(traditional centralized deep learning). Fig.6 (a) indicates 
SWPL is significantly higher than individual nodes in the test 
accuracy with significance labels (asterisk), which is estimated 
with the one-sided Wilcoxon signed-rank test. The more 
asterisks (*) present more significance with smaller p-values. 
The p-values for each compared group are: node1-vs-SWPL 
(0.005<0.05), node2-vs-SWPL (0.0081<0.05), node3-vs-
SWPL (0.0129<0.05), and node4-vs-SWPL (0.0081<0.05). 
The F1 score is a measure of binary classification accuracy and 
its results in Fig.6 (b) also supports the findings that SWPL 
outperforms individual nodes significantly. 

TABLE 6. Comparison of LSTM and GRU performance in SWPL  

    
                            FIGURE 6 (a) Accuracy                                                     FIGURE 6 (b) F1 Score

     

Model Hidden Layer Test Accuracy (95-100 epochs) 
1 2 3 4 5 6 

SWPL-LSTM 
1, (256) 0.8899 0.8998 0.9003 0.9053 0.8971 0.8973 

2, (512, 256) 0.8958 0.9057 0.8964 0.8875 0.8905 0.8978 

SWPL-GRU 
1, (256) 0.8856 0.8838 0.8952 0.8852 0.8933 0.8885 

2, (512, 256) 0.8951 0.9025 0.897 0.8953 0.8924 0.8941 
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                                 FIGURE 6 (c) AUC                                                     FIGURE 6 (d) Sensitivity

    

                              FIGURE 6 (e) Specificity                                       FIGURE 6 (f) SWPL vs Central Model 

    Fig.6 (c) uses AUC to express the magnitude or value of 
separability, which indicates how well the model can 
discriminate between classes. It shows SWPL has a higher 
AUC in median than other individual nodes, which means 
SWPL performs better at distinguishing between normal and 
fatigue. Fig. 6 (d) and (e) also present the sensitivity and 
specificity. The former shows that SWPL’s ability to predict 
true positives of each available category is higher than 
individual nodes in the median value. The latter indicates 
SWPL’s ability to predict the true negatives of each available 
category is slightly worse than nodes 1, 3, and 4 in the median 
value. This is because sensitivity and specificity are inversely 
proportional. As sensitivity rises, specificity falls, and vice 
versa. More positive values are received when the threshold is 
lowered, which increases sensitivity while decreasing 
specificity. Fig.6 (f) compares the test accuracy between 
SWPL and central model, which shows SWPL evenly slightly 
outperforms the central model. To show the details for the 
FFM process, Fig.7 presents a participant’s FFM process to 
support the above results by a specific example. In Fig.7, the 
predicted results of SWPL (line with diamonds in Fig.7) for 
each frame keep more aligned with ground truth (line with 

nothing) than the results from an individual node (Node 1, line 
with triangles in Fig.7), and is comparable to the central model 
(line with circles in Fig.7). In summary, SWPL demonstrates 
better performances for FFM in a decentralized manner 
compared with performing this task in individual, local, and 
even central datasets. 
    Fig.8 and Fig.9 demonstrate the curves of loss and accuracy 
within 200 epochs during training and test for both SWPL and 
central model. The weights for two fatigue labels (normal 0, 
fatigue 1) are tuned at optimum as {0:1, 1:4}. The results show 
that the central model’s training outperforms SWPL in both 
loss and accuracy, while the SWPL is slightly better in test 
performance. It may owe to the tradeoff between loss and 
privacy. As the training of the central model has already set 
parameters for tunings, such as dropout, batch size, and 
learning rate, it does not require parameter sharing and 
merging. However, SWPL may consider more 
hyperparameters, including synchronization interval, the 
weighted average for parameters, blockchain rules, and more. 
Thus, it may sacrifice the loss during the training process to 
preserve the privacy of these hyperparameters. 
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FIGURE 7. Fatigue prediction process 

 
FIGURE 8. Binary Cross-Entropy Loss for SWPL and central model 

 

FIGURE 9. Classification accuracy for SWPL and central model

4.3.2 Privacy Analysis 
To respond to the privacy issue raised in the problem statement 
section, the privacy-preserving performance in SWPL can be 
explained from the following evidence. 

• Data parameters: this study uses the open-source 
Ethereum as the permissioned blockchain network. All 
SWPC nodes register in this network and interact with 
other SWPC nodes to keep the global state information of 
the trainable Bi-LSTM model and to track progress. 
SWPC nodes use the information of parameter merging 
state and progress to control the training process of SWPL 
nodes. Thus, this design ensures that the datasets are 
maintained in each SWPL node locally and all shared data 
parameters are blockchained. For the security of servers 
for storing the shared parameters, this study introduces the 
SPIRE server nodes and the SPIRE Agent Workload 

Attestor plugin is used to attest the identifies of SWPC 
nodes and SWPL nodes for ensuring secure interactions 
between servers and the blockchain network. 

•  Model performance: there is an inherent trade-off between 
model accuracy and privacy. To improve the model accuracy, 
increasing tuning hyperparameters is required, such as 
datasets weights, class weight, learning rate, regularization, 
batch size, and dropout rate, which results in privacy-
preserving burden during these parameters sharing process. 
If the required level of privacy-preserving is increased, 
reducing tuning too many parameters is needed thus 
sacrificing the model performance. However, the results 
show that SWPL slightly outperforms the central model with 
the same model parameters, which indicates SWPL achieving 
good performance in FFM without compromising privacy. 
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5 DISCUSSION 
With expanding endeavors to enhance data privacy and 
security in the construction industry, and to prevent data traffic 
in centralized computing and data insulation in distributed 
computing, a decentralized model will be an ideal choice for 
processing, learning, analyzing, and predicting distributed 
construction data. Particularly in COHS, numerous studies 
have reported that deep learning is successfully applied in 
construction sites, such as construction equipment detection 
(Arabi et al. 2020), detection of wearing safety helmets (Shen 
et al., 2021), and struck-by accidents monitoring (Yan et al., 
2021). However, the further advances are blocked by the 
insufficient datasets and emerging privacy regulations as the 
COHS data is generated from geographically dispersed 
construction resources and is more private when involving 
workers’ data. This makes distributed AI system is more 
appealing to COHS than a centralized one. SWPL is such a 
decentralized learning model for replacing the centralized or 
federated data sharing cross construction workers and 
preserving the private facial information of CEOs for FFM. In 
summary, there are three aspects to proposed SWPL’s 
novelties compared with existing works. 

• Firstly, SWPL is a novel framework that combines 
permissioned blockchain technology and distributed deep 
learning for FFM, which is critical progress to enhance 
privacy and incentivize data sharing in the field of COHS. 
Li et al. (2021) developed FedSWP using federated 
transfer learning to avoid data leakage and facilitate 
construction workers’ cooperation in data provision. 
However, FedSWP still exists issues in a single point of 
failure as it requires gathering the model parameters to a 
centralized model. This may expose the model parameters 
to the risks. In the SWPL process, a leader node will be 
dynamically elected to coordinate an iteration that does 
not require a fixed central parameter aggregator, which 
enhances resilience and fault tolerance. 

• Secondly, SWPL provides a more accurate and private 
deep learning strategy to monitor and predict CEOs’ facial 
fatigue status during their high physical strength 
operation, as (1) the performance of SWPL presents 
strong evidence that SWPL outperforms individual nodes 
and (2) permissioned blockchain governs all rules of 
interaction between the nodes to ensure SWPL’s privacy. 
In SWPL, it gets such performance without fine-tuning 
weights and applying these weights to SWPL nodes with 
different samples or datasets. This indicates that access to 
more data is also an option to improve performance 
compared with optimizing a centralized deep learning 
model. 

• Thirdly, SWPL shows a high capacity for performing 
complex deep learning tasks with more features and data 
parameters. The previous centralized deep learning 
strategy in Liu et al. (2021) showed that it trains on one 
operator’s image data and tests on another operator which 
leads to poor performance. It mainly results from the 
distribution differences of complex spatial-temporal 
features between various datasets in FFM. In addition, 

FedSWP, in the authors' previous work, bears high 
communication costs as each edge SWP needs to share 
and communicate with the central model, which may lead 
to data parameters traffic. 

    Despite the above innovations, our study still has a few 
limitations. 

• Firstly, this study assumes the permissioned blockchain 
that provides robust mechanisms against malicious nodes. 
In-depth privacy and security-related function 
developments, such as advanced encryption algorithms 
(Sun et al., 2021), differential privacy algorithms (Jia et 
al., 2021), and security analysis, have not been 
investigated in this study. 

• Secondly, as limited by the computer nodes for the 
experiment, SWPL is only trained and tested on two 
SWPC nodes (four SWPL nodes). In the real-life SWP 
scenario, each CEO should have an SWP which means 
hundreds of SWPL nodes will join the blockchain 
network. Thus, the scalability and parameter merging 
efficiency among massive nodes have not been measured 
in this study. 

• Thirdly, this study is still lacking the real datasets with 
multimodality for CEO-FFK, and the SWPL is only tested 
on the image data in this study. Other bio-signals, such as 
electrooculogram (EOG), electromyogram(EMG), 
electroencephalogram (EEG), and electrocardiogram 
(ECG), are very useful and important in FFM, but they 
have not been combined as multimodality for training and 
testing in SWPL. 

6 CONCLUSION 
Smart work packaging (SWP), in previous studies, provides 
strong evidence to be an inherently distributed system to equip 
each construction equipment operator (CEO) with capacities 
in managing (e.g., modeling, optimizing, monitoring) isolated 
construction occupational health and safety (COHS) data and 
provide insights (e.g., analytical results, predicated warnings) 
ready for each CEO to facilitate their safe operations. 
However, current centralized or federated deep learning 
methods used in SWP for monitoring workers’ private 
information (e.g., facial fatigue status) still need to aggregate 
their private data to a central server or share trained model 
parameters to a central server. It may expose risks to private 
data leakage or result in a single point of failure with the 
central server. These risks could prevent the willingness of 
data provision from more distributed CEOs or construction 
sites over the world to further improve the efficiency in 
monitoring fatigue or other COHS issues in the construction. 
    This study thus presents the smart work package learning 
(SWPL) as a new paradigm for CEO-FFM built on distributed 
deep learning and permissioned blockchain. SWPL is designed 
with a set of nodes, including smart work package chain 
(SWPC) nodes for model parameter sharing and SWPL nodes 
for training deep learning models locally. For the distributed 
deep learning model, this study customizes the MTCNN, 
MobileNet V3, and Bi-LSTM to form the hybrid deep neural 
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networks for performing FFM tasks. For the blockchain 
network, this study registers the SWPC nodes on SWPC using 
the API, where they can interact with each other using 
blockchain for parameter sharing and with other SWPL nodes 
for controlling the training process. For the blockchain 
consensus, a dynamic selection mechanism is adopted to shift 
aggregators for each parameter-merge round through smart 
contracts. The final experiment is conducted in two SWPC 
nodes with four SWPL nodes and results demonstrate that the 
accuracy performance of SWPL is quite better than the 
individual nodes, and even slightly outperforms the central 
model. Other performance metrics, e.g., F1 score, sensitivity, 
AUC, and privacy analysis also indicate SWPL is robust and 
outperforms individual nodes. However, future studies are still 
needed to further strengthen SWPL in the following aspects: 

• In the direction of privacy and security, advanced 
encryption and differential privacy algorithms should be 
developed and embedded into SWPL to further enhance 
the privacy-preserving and security of permissioned 
blockchain networks. 

• In the direction of scalability and resilience,  more SWPC 
and SWPL nodes should be involved to further test its 
scalability and more varieties of samples for each node, 
such as the provision of different combinations in gender, 
glasses/non-glasses, camera positions, ethnic groups, and 
illumination conditions, should be designed for test the 
resilience. 

• In the direction of data availability and deep learning 
models, multimode data (e.g., EEG, ECG, EOG, audio 
data) should be further considered to enlarge datasets for 
CEO-FFM and the latest advances in deep learning model 
(e.g., transformer) can be further applied to see better 
models or access to more enlarged datasets which is more 
sensitive for performance improvement. 
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