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ABSTRACT 

Hydro-viscous drive (HVD) plays a significant role in smoothly transferring torque, and flexibly regulating the velocity of the disks. By 

hydro-viscous drive, we mean that the viscous shear stress of the thin oil film between a multi-layer assembly of rotating parallel disks is 

generated to transmit torque and power. The laminar-to-turbulent transition is an extremely complicated issue due to the combined effects 

of squeeze and shear on the oil film within the microscale friction pair system. Hence, a comprehensive and thorough analysis of flow 

instability in fluid-thermal-solid interaction of tribodynamic behavior is highly desirable. Following a brief introduction of fundamentals 

of HVD, this paper provides an overall review on the instability mechanisms for three types of canonical flow dynamic models, i.e., plane 

squeeze flow, plane shear flow, and rotating-disk flow. The effects of various aspects of wall conditions and working media, such as 

surface microstructure, and temperature-dependent viscosity, on flow instability are then summarized, which can serve as a reference and 

guidance for optimizing the design of friction pair systems. Based on the review of the former progress, this paper not only explores the 

in-depth mechanisms regarding the laminar-to-turbulent transition in microchannel flow, but also provides the possibility of bridging the 

gap between flow instability and tribodynamic behavior. 

Key words: hydro-viscous drive, flow instability, squeeze flow, shear flow, rotating-disk flow. wall boundary, working medium

1. INTRODUCTION

1.1. Background 

Hydro-viscous drive (HVD) utilizes the viscous shear stress of the thin film between a multi-layer assembly 

of rotating parallel disks to transmit torque. As the lubricant oil serves as the working medium, it has been 

successfully used for speed regulation or soft-start of high-powered industrial equipment, such as tunnel boring 

machines (TBM), wind-driven generators, belt conveyors, controlled start transmission (CST) systems, etc [1]. 

Based on both the squeezing and shearing of the oil film, the torque transmission mechanism of HVD is similar to 

that of the wet clutch system, as shown in Fig. 1. During the process of torque transfer, the disks are immersed in a 

cooling lubricating fluid that flow through the working intake. Simultaneously, the oil flows through the control 

intake and then into the hydraulic actuator, which is used for regulating the film thickness between the disks. The 

HVD system transmits torque or rotation between shafts by engaging, while the input shaft is driven by the engine, 

and the output shaft is connected to the transmission or some other device. It links these two rotating shafts to be 
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connected together and rotate at the same speed, or be separated and rotate at different speeds. In the 

hydrodynamic lubrication stage, as the clearance between the disks decreases, the hydrodynamic torque increases 

due to the squeeze action. After reaching its peak value, the torque starts to decrease until a constant level is 

established in the high-speed range. At this partial lubrication stage, the film thickness is reduced to an extent that 

surface asperities come in contact with each other. Then, the friction torque due to the contact pressure at the 

asperity level begins to develop, which significantly influences the tribodynamic behavior. For this typical friction 

pair system (consisting of two disks and the oil film), the lubrication regime undergoes a transition from 

hydrodynamic to mixed or boundary lubrication regime [2-3], as shown in Fig. 2. 

(a)  

(b)  

Fig. 1. Schematic of HVD: (a) Multi-layer model; (b) Single simplified friction pair system 
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Fig. 2. Torque vs Time: typical soft-start process 

1.2. Flow configuration and flow instability 

The transmission performance of the friction pair system in HVD largely depends on the dynamic 

characteristics of the oil film between the disks. Actually, in contrast to the breadth of the disks, there is a distinct 

smaller order of the film gap where the oil film is given by a combination of squeeze-film flow and rotating shear 

flow [3]. When the disks move normally to each other with a prescribed time-dependent speed, i.e. squeeze-film 

flow only, the velocity field developed in the thin layer of fluid can be approximately identified as plane Poiseuille 

flow (PPF). Then the magnitude of the flow velocity is dependent on time and also on the coordinate parallel to the 

planes. It should be noted that PPF still exists under the assumption that there is no relative movement between the 

two disks. This is due to the fact that the oil film flows from the inner to the outer radius, effectively lubricating the 

space between the disks. On the other hand, viscous shear stress is generated when the driving and driven disks 

rotate at different speeds (in rpm) without axial motion, which can be classified as plane Couette flow (PCF). If the 

cooling effect of the oil flowing through the microchannel is also considered, it can be seen as the so-called plane 

Couette-Poiseuille flow (PCPF). PCF and PCPF are the most elementary types of laminar motion, and are widely 

investigated for hydrodynamic stability. Such kind of working conditions correspond to the open mode of HVD [4]. 

When HVD is open, the drag torque depends on the viscosity of the oil film and is also affected by the presence of 

air bubbles that may be trapped between the disks. However, there is a great discrepancy between PCF and viscous 

shear of HVD. As shown in Fig. 3, the rotating flow between parallel disks is located in a cylindrical polar 
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coordinate system (r,  , z) where the r-axis is on the driven disk surface. The fluid particle in the flow is assumed 

to rotate about z-axis with relative angular velocity  . Then the driving shear force is balanced by the Coriolis 

force component 2 dVrv  (   is the density, 
rv  is the radial velocity component and dV  is the volume of 

fluid particle), while the centrifugal force 2dVr   and the Coriolis force component 2 dVv  ( v  is the 

tangential velocity component) will accelerate the flow of the fluid particle in the radial direction [5]. Therefore, it 

can be seen that both the centrifugal force and the Coriolis force have a significant effect on the rotating flow.  

 

Fig. 3. Diagram of force balance on a fluid particle in the driven disk surface 

To some extent, HVD may be approximated as rotating plane Couette flow (RPCF) or Taylor-Couette flow 

(TCF); however, almost all the RPCF flows consider channel flow driven by the in-plane motion of the parallel 

channel walls, subject to a system rotation about a spanwise axis instead of the wall-normal axis. In addition, TCF 

is the closed motion of fluid lying between concentric cylinders driven by the rotation of these cylinders about 

their shared axis, which is governed by the combined effects of rotation, shear and curvature of the walls. Whether 

about the centrifugal force or the Coriolis force or the shear force, it is obvious that the viscous shear of HVD will 

have absolutely different effects on film dynamics as compared to RPCF and TCF [6]. Regarding the common 

mode of speed-regulating or soft-start, the flow configuration generated within the film can be taken as a 

combination of PPF and PCF in the coaxial rotating system. Due to viscous dissipation and also interaction of 

asperity contact, a large amount of frictional heat is generated, which greatly affects the hydrodynamic torque and 

the overall operational stability. Moreover, thermal stresses may be developed in the bounding surfaces when the 

temperature rise exceeds the cooling capacity of the oil film [7].  
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Based on the viscous shear effects of the oil film, HVD can be used for transferring the torque from the 

engine or motor to the transmission output shaft, thereby affecting the overall driven-train efficiency. For 

speed-regulating or soft-start mode, in order to adequately realize the flexible transmission potential, i.e., 

hydro-viscous flexible drive, it is necessary to keep the friction pair system at either hydrodynamic or mixed 

lubrication regime [7]. Although the friction pair system appears simple, it is difficult to predict the highly 

nonlinear tribodynamic behavior, characterized by the complexity of physical mechanisms about microscale 

wall-bounded hydrodynamic lubrication and fluid-thermal-structure interaction. It is closely related to the response 

of a stable flow system to any amplitude of disturbance, i.e., flow instability. More specifically, flow conditions are 

always assumed to be laminar due to oil viscosity and gap dimensions in HVD. Wall effects may suppress 

turbulence in the oil film over the entire range of rotational speeds [8]. Nevertheless, according to Huang et al. [6], 

flow behavior can be predicted by tangential Reynolds number Re  as follows 

2
r

Re



=                                            (1) 

where   is the kinematic viscosity of the oil film. The transition to turbulence can be observed as Re  exceeds a 

critical value (of the order 3×105). As a result, the laminar flow may evolve into a more complicated state when 

subjected to small disturbances. Inevitable irregular fluctuations of the multi-physical field within the thin oil film 

occur, which will have a dramatic effect on the original dynamic equilibrium of the squeeze and shear film process. 

Therefore, a good understanding of the flow stability of the microscale oil film between the sliding disks is 

necessary to accurately capture the tribodynamic torque characteristics.  

Flow instability is undesirable because sustained flow oscillations may cause premature occurrence of critical 

heat flux as well as other undesirable secondary effects, such as torque oscillations. Additionally, flow instability 

can also disturb effective control of the film thickness and cause operational problems about HVD [9-10]. Over the 

years, several kinds of instabilities have been observed in microchannel flow system excited by different 

mechanisms. And because of the multi-physics aspects of the flexible drive process, the stability of fluid flows in 

HVD usually depends on various influencing factors. A bifurcation occurs provided that one of the parameters 
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reaches the critical value. Then, the friction pair system starts evolving towards a new state, either steady or 

unsteady. As a typical fluid-thermal-solid interaction system, the main influencing factors are: wall boundary 

(surface microstructure, porous media of the friction material, and surface roughness) and working medium 

(temperature-dependent viscosity, non-Newtonian fluids and cavitation). A number of research works, in fact, have 

already been done to determine the effects of the above factors on flow instability in modern engineering and 

industrial applications, e. g. micro-electro-mechanical system, microchannel flow boiling, and microchannel heat 

sink. However, it can be observed that the friction pair system in HVD is required to transfer torque smoothly via 

the oil film when suffering from extremely demanding microscale conditions [11]. Whether the established model 

is accurate or not, it is very difficult to specify how the realistic transition-to-turbulent flow occurs in 

microchannels. In general, the true mechanisms of flow instability are either unknown or very poorly defined. In 

order to offer physical insights into complex flexible transmission behaviors, the influencing mechanisms of 

various factors on the stability of plane microchannel flow are examined.  

1.3. Objectives of present work 

It is worth emphasizing that, although consistent efforts have been made to identify the effects of various 

factors on the transmission performance of HVD, the underlying mechanisms regarding the tribodynamic behavior 

within the friction pair system are yet to be fully explored. For example, most of the existing studies reported the 

performance based on the assumption of laminar flow. Obviously, it does not correspond to the real situation and 

may not satisfy the design requirements, either. In fact, flow instability like velocity fluctuations, pressure drop 

oscillations, and flow maldistribution in the microchannel, can cause an irreversible failure of the system. 

Therefore, to bridge the gap, the objective of this work is to provide a comprehensive review of flow instability of 

oil film in HVD. It should be noted that the fluid in the microgap is in motion due to the relative rotation of the 

disks, which is similar to in other applications, such as hydrodynamic journal bearings, cylinder linear-piston ring 

systems in internal combustion engine, piston cylinder interface in axial piston pump, mechanical seals, and 

microelectromechanical systems (MEMS), etc. Therefore, even though this present work is focused on HVD, we 
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believe that it will also be of significant value for the above applications. More importantly, this work could 

highlight broad aspects of causes of complicated tribodynamic behavior that is caused by flow instabilities within 

microscale flow system. 

The paper is divided as follows: Section 2 summarizes the flow instability characteristics of three basic flow 

models in HVD, namely plane squeeze flow, plane shear flow, and rotating-disk flow. Section 3 analyzes the 

effects of two main influencing factors from the fluid-solid interaction system, including the wall conditions and 

the working media, on the flow instability of the oil film. Finally, Section 4 presents conclusions and proposes 

some perspectives.  

2. INSTABILITY CHARACTERISTICS OF BASIC FLOW MODELS 

2.1. Plane Squeeze Flow 

HVD is featured by an incompressible viscous squeeze flow in a thin gap. For such a small aspect ratio of the 

gap separating the two parallel disks /G h r=  (h is the gap), flow stability may be neglected over a controllable 

time scale. However, it is clear that, whether soft-start or speed-regulating, squeeze film flow does not vary 

smoothly but fluctuates in a quite disordered manner [12]. Related studies can be traced back to the Reynolds 

lubrication theory, which is recognized as an important problem in fluid mechanics since it appears in many 

practical applications such as printing, human joints, injection molding, shock absorbers, and lubrication systems, 

etc.  

The simplest means of investigating hydrodynamic stability is through approximation methods, such as the 

perturbation method. One of the earliest attempts to analyze the unsteady laminar flow of an incompressible fluid 

in a narrow gap between two parallel discs was made by Ishizawa [13], in which a multifold power series solution 

was developed as the gap varies arbitrarily with time. The analysis showed that the varying hydrodynamic force 

acting on the wall surface becomes distorted in the wave form. There is a coupling between a time-dependent 

inviscid core flow and the growth of an unsteady boundary layer [14]. According to the linearized solutions of the 
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resulting nonlinear partial differential equations, thin layers of vorticity are initially concentrated at the surfaces 

due to the initial impulsive movement. The vorticity then diffuses out from the surfaces, and the radial velocity 

profiles tend to become parabolic [15].  

For the first time, Stuart et al. [16] established a two-dimensional viscous squeeze-flow model in which two 

parallel plates were moved normally to each other with a time-dependent speed. They systematically derived the 

Orr-Sommerfeld (O-S) equation governing the squeeze-flow stability at a Reynolds number Re. Then the 

relationship between time-dependence and flow instability was obtained through both linear and quadratic 

approximations. They found an asymptotic solution to the equations governing the growth of Tollmien-Schlichting 

(T-S) waves, which reflects PPF with amplitude varying slowly in time and space. Furthermore, Hall and 

Papageorgiou [17] investigated the instability of time-periodic oscillatory squeeze bearing flows subjected to wave 

or vortex disturbances. It was concluded that if the basic flow is disturbed slightly, the growth and decaying of the 

disturbance are closely related to linear stability. Whether the plates are squeezed together or pulled apart, both 

kinds of squeeze flows are characterized by the equivalent Reynolds number, which considers the disturbance 

wave at or near a particular station. With the increase in the equivalent Reynolds number, chaotic flow resulting 

from a quasi-periodic flow is closely associated with the amplitude of oscillation, especially in the presence of 

unsteady periodic flows. Obviously, these methods and their numerical applications fall under the linear theory of 

hydrodynamic stability, in which only approximate linear equations for the disturbances are used. The stability 

analysis usually satisfies the assumption that any small disturbance of the laminar flow considered can be 

represented by a sum of normal modes that exponentially depend on time.  

Instead of using the normal-mode method to deal with special “wave-like” infinitesimal disturbances, the 

Kelvin mode was used by Aristov and Gitman [18] to analyze the asymptotic behavior of periodical 

one–dimensional disturbance. When the disks move apart from each other, there is an instability that wave 

structures with different configurations are formed with the evolution of perturbation. In order to deal with the 

global stability of dynamic systems with slow time dependence or weakly non-parallel flows, i.e., steady or 
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unsteady periodic flows, low-dimensional Garlerkin method (LDGM) is developed by Zhu et al. [19] to investigate 

the asymptotic behavior in a long period of time or the transient behavior in a short time interval. It has been found 

that wall boundaries have a stabilizing influence due to the inertial terms in the squeeze lubrication film. With the 

increase in the Reynolds number, the effect of the inertial term has to be considered [20]. However, the resulting 

viscous shear may tend to destabilize the flow because of its viscosity diffusion. In this case, similarity solutions 

have been developed to include both the viscous and inertial effects in the momentum equation. Meanwhile, 

approximation methods were developed using series solutions due to the non-linear squeeze characteristics. 

Engmann et al. [21] conducted a thorough review of the squeezing flow theory about the non-linear term in the 

momentum equation. Most studies established the validity limits of self-similarity solutions by comparing them 

with numerical results. However, this does not mean that all branches of the self-similar solutions can occur under 

all conditions. For example, if the Reynolds number is larger than 500 for accelerating flows, Espin & 

Papageorgiou [22] found it difficult to obtain the exact solution due to the dimensionality and nonlinear nature of 

the system. Another limitation is the approximate results for unsteady axisymmetric squeezing flow of 

non-Newtonian fluid in the presence of a magnetic field [23]. It can be seen that squeeze films appear not 

subjected to a comprehensive evaluation under extreme conditions.  

Particularly, it is necessary to examine unsteady squeezing flow where the fluid inertia and the viscous effect 

are equally important [24]. In this case, the reduced quasi-steady linear (QSL) model provided excellent 

comparisons between the velocity measurements and computational fluid dynamics (CFD) analysis results. 

Velocity oscillation can be attributed to the interplay between temporal inertia, spatial inertia, and viscous effects 

[25]. Given that the application limits for the similarity method that the gap has to be the form ( )1/2
h At B= + , 

where t represents the time, and A and B have to be the constant, the families of exact non-self-similar solutions of 

the axisymmetric Karman equations [26] and two-dimensional Hiemenz equations [27] were considered. Likewise, 

when the distance between plates changes over time according to a power-law h～
s

t  or an arbitrary-power law, 

there exists a self-similar solution for s = 1/2, and the best approximations of the solutions are found by means of 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
3
2
9
8



 

11 
 

asymptotic series for s = 1, 2, or in the case of uniform motion and uniformly accelerated motion of the plates 

[28-30]. Then, the critical Reynolds number can be determined, which corresponds to the development of 

counterflow near the boundary where the velocity is directly opposite to the average velocity.  

There are inherent limitations about the perturbation methods assuming small parameters, in spite of their 

advantages in analytically solving nonlinear boundary value problems. Many constructive methods were put 

forward for more efficient solutions with various complicated boundary conditions. In 2008, the Optimal 

Homotopy Asymptotic Method (OHAM) was introduced to find approximate solution of nonlinear differential 

equations in thin film flow [31]. By comparison, it was found that OHAM is more appropriate for controlling the 

convergence to the exact solution [32-33]. Based on this method, Qayyum et al. [34] solved an unsteady squeezing 

fluid flow between two circular disks with slip and non-slip boundary conditions. They observed that the Reynolds 

number has opposite effects on the normal velocity and longitudinal velocity near the central axis of the gap. Hayat 

et al. [35] investigated the Cattaneo-Christov heat flux effect in the two-dimensional squeezing flow of second 

grade fluid between two parallel plates. The homotopy analysis method was employed for the development of 

convergent series solutions for velocity and temperature. It was observed that the velocity profile is enhanced by 

increasing the squeezing parameter. Similarly, analytical approaches such as the collocation method, the homotopy 

perturbation method, and the homotopy analysis method demonstrate highly accurate and rapid solutions for 

nonlinear differential equations, in comparison to the fourth-order Runge-Kutta method [36-37].  

More recently, in order to precisely capture the instantaneous fluid flow response inside a very thin gap during 

a sudden impact, analytical approaches including an exact solution, i.e., the Laplace transform method, and an 

approximate method, i.e., the boundary layer integral method, were proposed [38]. It was found that the 

time-dependent local acceleration of the fluid cannot be neglected since the magnitude of the viscous effect and the 

inertia effect are comparable. Later, Lang et al. [39] demonstrated that the pressure gradient in the radial direction 

is balanced by the local acceleration, the viscous force, and the porous resistance. As the squeezing depth increases, 

the oscillation of the velocity profile will be intensified due to the alternating dominance of the viscous and inertial 
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effects [40]. They concluded that porous media significantly stabilize the fluid field and decrease the fluctuation in 

the velocity profiles. Besides, it should be noted that the flow detachment may be caused by the moving 

boundaries and the force wall motion induced by fluid dynamic forces, which results in oscillatory flows 

downstream of the moving wall. Because of the complex fluid-solid interaction mechanism, a simplified analytical 

model considering asymptotic solutions of the Navier-Stokes equations was developed with a perturbation 

technique [41]. Therein, it was found that the mean velocity in the channel with one wall periodically pulsating, is 

larger than that for the horizontal squeeze flow. Last but not least, electric/magnetic lubricants have been widely 

used as smart lubrication in modern tribological systems since they can be manipulated for regulating the 

load-carrying capacity of the lubricants through external electric/magnetic fields [42]. It was observed that the 

load-carrying capacity of squeeze film lubrication could be significantly increased by the applied magnetic field. 

The mean squeeze time is lengthened as compared to the corresponding non-magnetic case [43-44]. The 

electroviscous effect modifies the velocity profiles inside thin films to be much sharper, which reflects an interplay 

of electrostatic body force and the law of mass conservation [45]. Based on the spectral local linearization method 

(SLLM), increasing the film squeezing ratio is helpful in intensifying the velocity profiles, which also plays a 

significant role in controlling the friction factor of radiative squeezing flow [46].  

For quick reference, Table 1 summarizes representative instability analyses for plane squeeze flow.  

Table 1. Selected studies on the stability in plane squeeze flow 

References Methods Instability mechanism Remark 

Stuart et al. [16] LSA / WKJB Re 

Damping rate of transition for the 
dilatation case is larger than that for 
the squeezing case. 

Hamza [15] LSA Injection / suction 
Velocity profiles are decreased or 
increased due to the effect of suction 
and injection. 

Aristov and Gitman [18] LSA / Kelvin mode Dilatation / squeezing 
Different types of stability depend on 
whether the disks move towards or 
away from each other. 

Zhu et al. [19] LSA / LDGM Wall boundaries 
Velocity shear is diffused by viscosity 
and tends to destabilize the flows. 
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Moss et al. [24] XP / LSA 
Visous / spatial /temporal 

inertia effects 
A primary pressure spike is mainly 
caused by the temporal inertia effects. 

Krassnokutski et al. [25] XP / LSA A constant energy impact 

Small values of initial film thickness 
lead to the uncertainty of pressure 
spike between the initial and final 
stages. 

Petrov and Kharlamova 
[29] 

Asymptotic 
expansions 

The distance between 
plates changes in time 

The counterflow at plates moving apart 
occurs when the Reynolds number 
exceeds its critical value. 

Qayyum et al. [34] OHAM / RK4 Slip boundaries 
Reynolds number has opposite effects 
on the normal velocity in case of slip 
and no-slip boundaries. 

Lang et al. [38] 
Boundary layer 

integral method / 
CFD 

Viscous effects / local 
acceleration 

The pressure drop in the radial 
direction is balanced by the viscous 
force and the local acceleration of the 
fluid. 

Zhao et al. [45] 
Lubrication 

approximation 
Electroviscous effects 

Electroviscous effects modifies the 
velocity profiles to be much sharper. 

Prakash et al. [42] 
Similarity 

transformations 

Squeeze form / 
electroosmosis effects 

/zeta potential 

Axial acceleration is affected by the 
squeeze form and also enhances with 
increasing electroosmosis parameter 
and zeta potential parameter. 

2.2. Plane Shear Flow 

For the shear flow of viscous incompressible fluids between two parallel plates, although the 

laminar-turbulent transition mechanism about PCF or PCPF has been investigated intensively, there is still a 

significant difference in the critical Reynolds number between experimental and theory results [47-49]. So far, the 

stability of plane shear flow is insufficiently understood. The disturbance growth mechanism in plane shear flow 

has always been the object of a series of theoretical and experimental studies. In general, the main interest is to 

determine whether a laminar flow, which experiences a perturbation, is able to return its original stable state or 

evolves toward a new state, either steady or unsteady [50-51]. There exist extensive specific analytical and 

numerical solutions that have been devoted to this issue, so the following review is by no means exhaustive. 

Emphasis is placed on recent representative developments in the flow instability of plane shear flow. 

There are two classical methods that yield rigorous stability results, i.e. the linearized stability analysis and 
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the energy method. The former method deals with the evolution of infinitesimal disturbances satisfying the 

linearized Navier-Stokes equations. Whether the dynamic system is stable or not depends on the critical Reynolds 

number that is obtained from the O-S eigenvalues. The initial linear stability theory focused on PPF in which the 

stability problem can be reduced to a one-dimensional problem, an approach usually referred to as the local 

stability approach [47]. However, the transition to turbulence may occur at Reynolds numbers much lower than the 

critical value provided by linear stability theory [52]. This is due to the fact that the critical Reynolds number is 

found to increase monotonically with the decrease of the aspect ratio. The classical linear stability theory of plane 

shear flow is concerned with the development in space and time of infinitesimal perturbations around a given basic 

flow [48]. For wall-bounded shear flows, the mean-velocity profile is non-uniform in the streamwise direction. In 

order to characterize the impulse response of the baseflow when subjected to disturbances in different regions, the 

spatio-temporal evolution mechanism is analyzed to reflect the local and global instability properties, which 

indicates the instability of the local velocity profile and of the entire flow field, respectively [53]. The growth of 

localized disturbances spreading in both upstream and downstream directions will result in absolute instability. By 

contrast, locally convective instability occurs as the disturbances develop only in the downstream direction from 

the source [54]. Furthermore, Monkewitz et al. [55] assumed that the mean flow is weakly non-parallel or nearly 

plane-parallel, i.e., varies slowly in the streamwise direction. Then the complete solutions are obtained through the 

study of the temporal evolution of global modes. Specifically, the recent development of high-performance 

computers and computational methods offers an opportunity for extending the classical linear stability analysis into 

the global instability analysis. Instead of solving the ordinary-differential O-S and Squire equations, the system of 

partial differential equations is considered to analyze the global instability problem in a three-dimensional domain 

with two inhomogeneous and one homogeneous directions (BiGlobal) or three inhomogeneous spatial directions 

(TriGlobal) [56-58].  

Due to the strongly nonlinear characteristics, linear stability analysis does not predict the observed 

bifurcations in PCF or PCPF. The energy methods are based on a variational approach and yield global asymptotic 
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stability for Reynolds numbers below some value at the order of 102 [59]. According to Squire’s transformation, an 

unstable 3-D mode disturbance can be converted into a more unstable 2-D mode disturbance at a lower Reynolds 

number. Then, the optimal perturbations using variational methods make construction of tight bounds on 

perturbation growth rate possible [60]. However, even though all eigenvalues may be stable, the non-normal O-S 

operator may cause the initial disturbances to grow at a greater rate than any single normal mode [61]. Based on 

energy methods, Hooper and Grimshaw [62] found the relationship between the maximum growth and the growth 

caused by the adjoint of the leading eigenmode for both PPF and PCF. It has been verified that the operators from 

the linear modal analysis in shear flows are exponentially far from normal, which indicates that the flow 

nonnormality increases with the shear rate. Consequently, the complex interplay between transient growth and 

nonlinear processes may result in the transition to turbulence [63]. In general, the linearized Navier-Stokes 

operators applied to most wall-bounded shear flows are non-normal, and the corresponding eigenmodes are 

non-orthogonal [48]. Nonmodal stability can be determined by analyzing the response of the linearized 

Navier-Stokes equations to general (deterministic or random) input variables, whether they be in the form of initial 

conditions, external disturbance environment, internal uncertainties, or geometric constraints [64].  

Until now, there are some discrepancies between the linear / nonlinear analysis and the experiments, i.e., the 

Couette-Sommerfeld paradox. For example, different from the Reynolds numbers between 300 and 450 of PCF 

obained in the experiments, Kaiser et al. [65] found Reynolds numbers below Re  = 44.3 for PCF by presenting 

a generalized energy functional  , which can be applied to a couple of hydrodynamic stability problems. 

Meanwhile, Kaiser and Mulone [66] proved conditional nonlinear stability for arbitrary plane parallel shear flow in 

the case of Re  > 44.3. As a consequence, Re  turns out to be 
x

ERe , which is the ordinary energy stability limit 

for perturbations that do not vary in the spanwise direction. Because of the complexity of the transition from 

laminar flows to instability, it is difficult to accurately obtain the solution to such a paradox. This is partly due to 

the fact that quasi-steady states in arbitrarily small neighborhoods of the linear shear can be linearly unstable 

[67-68]. Small-amplitude and high spatial frequency sinusoidal perturbations may cause the shear flow to become 
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more oscillatory. Then an attempt is made to find the initial conditions on the laminar-turbulent boundary closest to 

the laminar states, from which the route that leads directly to the statistically steady turbulent state can be 

optimized using non-equilibrium [69]. In order to determine the minimal seeds that triggers transition to turbulence 

in shear flows, Pringle et al. [70] constructed a variational problem that identifies turbulent velocity fields by 

taking significantly enhanced values compared to those for laminar fields. They utilized the ratio of the final to 

initial perturbation kinetic energies (energy growth) as the function, which proved that the converged optimal 

below the threshold smoothly converges to the minimal seed at the threshold. In the same year, Rabin et al. [71] 

found the critical energy for transition by using the energy gain at a fixed target time as the optimizing function, 

with the same associated minimal seed emerging. Interestingly, it has been verified that optimal disturbances 

obtained for large initial energies and target times induce bursting events, whereas for lower values of these 

parameters, the flow is directly attracted towards the turbulent state [72]. Furthermore, it was discovered that 

bursting events correspond to optimal energy flow structures embedded in the fully turbulent flow. Optimal 

structures inducing energy peaks at short times are initially composed of highly oscillating vortices and streaks 

near the wall [73]. From the framework of a finite-dimensional set of ordinary differential equations (ODEs) to a 

spatially-extended system described by a set of partial differential equations (PDEs), Kerswell et al. [74] used a 

simple optimization technique for identifying the most efficient way to disturb the flow system, thereby bridging 

the gap between (linear) optimal perturbation theory and (nonlinear) dynamic system approach. This provides a 

useful tool for quantifying the nonlinear stability of a flow state, which opens up the possibility of subsequently 

manipulating or designing a better system [75].  

It is worth emphasizing that, the critical values obtained from linear instability are larger than those from 

nonlinear stability, and the critical values obtained through experiments are between these two. Falsaperla et al. [76] 

recently published their work on the energy-stability conditions under which PCF or PPF are stable against tilted 

perturbations. Based on the measured perturbation growth, the results showed that the critical Reynolds numbers 

are in good agreement both with the experiments of Prigent et al. [77] and the numerical simulation of Barkley et 
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al. [78]. For a fixed inclination angle and any wavelength, the Orr-Reynolds critical values orrRe = 44.3/sinθ for 

PCF, and orrRe = 87.6/sinθ for PPF (θ is the angle between the spanwise direction and the wavevector of the 

perturbations). Moreover, the nonlinear stability of plane Couette and Poiseuille flows was analyzed with the 

Lyapunov second method by using the classical L2-energy [79]. It has been proven that the streamwise 

perturbations are L2-energy stable for any Reynolds number, which is inconsistent with the results of Joseph et al. 

[80] who used the classic energy norm. In terms of a streamwise perturbation, it is probably due to the significant 

discrepancies between the growing effect of the classical energy method and the exponentially decaying effect of 

the classical L2-energy method. However, it does not agree with the experimental results that most critical 

perturbations are neither spanwise nor streamwise. For example, the structure of the perturbation aligns with a 

certain angle to the streamwise direction experimentally [77]. In addition, localized nonlinear traveling wave 

solutions may emerge at Re = 367 with a tilt angle of 45o, which is lower than the non-localized solutions [81].  

Over the past several decades, many efforts have been devoted to reducing the gap between flow stability 

theory predictions and experimental data. To this end, the Lyapunov methods for improving the stability 

predictions have been widely used. For example, Goulart et al. [82] developed optimization methods based on 

sum-of-squares decomposition to construct a polynomial Lyapunov function. It can be seen that this function 

always shows better results than the classical energy methods in determining a lower-bound on the maximum 

Reynolds number at which a flow is globally stable. Moreover, many research results are heavily dependent on the 

monotonic decrease of perturbation energy, while the transient growth of energy is not fully considered. Fuentes et 

al. [83] proposed a general method for constructing polynomial Lyapunov functions to show global stability of 

fluid flows. Consequently, it effectively verified the stability of 2D PCF in a regime where energy grows 

transiently. In the same year, it is observed by Nagy et al. [84] that the predicted critical Reynolds number by using 

enstrophy as the norm of perturbations, is significantly smaller than that from the direct numerical simulations 

(DNS), as well as that with the energy method for tilted perturbations. However, the new critical value is much 

larger than that obtained from the classical theory or the results of Falsaperla et al. [79]. Besides, the enstrophy 
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change and the kinetic energy change are zero for the long-wave perturbations at the tilting angle 45o, which 

explains the reason why the tilted waves are critical values in the nonlinear stability analysis [81].  

More importantly, instead of the kinetic energy, the region of the wave-number-Reynolds-number map where 

the enstrophy of any initial disturbance cannot grow, can be found by using the vorticity norm. And then a critical 

Reynolds number for spanwise perturbations critRe = 155 was predicted by Fraternale et al. [85]. Based on the 

viscous Arnolds’s identity that are closely related to the perturbation’s enstrophy identity, Lee et al. [86] 

established a novel weighted perturbation’s enstrophy identity including general streamwise translation-invariant 

shear flows. This may be the reason why the stability of the disturbance can be determined. In fact, it reflects a 

subtle interaction between a critical layer and its adjacent boundary layer. Another important fact to mention is that 

the solution of the Navier-Stokes equation may be not regular in the presence of the wall-bounded conditions 

except when the compatibility condition is fulfilled. So, Nagy et al. [87] added the conditions to the original 

problem as non-linear constraints in the cases of PCF and PPF flow. As can be seen, adding the constraint 

significantly increases the critical Reynolds number in the case of a streamwise perturbation, but only slightly in 

the case of a spanwise one. The application of physically reasonable constraints may reduce the gap between 

theory and experiments.  

2.3. Rotating-disk Flow 

As introduced earlier, the open operating condition of HVD corresponds to the flow between a stationary and 

a rotating disk (rotor-stator configuration), while the soft-start and speed-regulating modes of HVD are associated 

with the flow between differentially rotating disks. Since the rotation of a flow system dramatically affects the 

stability characteristics of flows in many other practical situations, e. g. the cross-flow vortices that develop near 

the leading edge of a swept wing [88], turbomachinery, rotating compressors, computer storage devices, and so on, 

a great number of theoretical and experimental research have dealt with the viscous flow that is confined between 

two rotating disks, or swirling flows, which has become a model for the study of instability and transition in 

three-dimensional flow [89].  
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In the general context of rotating-disc flow, there are three different cases of stationary fluid above a rotating 

disc (von Kármán flow), rotating fluid above a stationary disc (Bödewadt flow) and both the disc and the fluid 

rotate at approximately equal rates (Ekman flow). These three scenarios are commonly referred to as the 

Bödewadt-Ekman-von Kármán family of flows [90]. Von Kármán was the first author to describe the flow and 

identify the boundary layer developing near a single rotating disk, whose thickness depends on the rotation 

velocity and the fluid kinematic viscosity [91]. As shown in Fig. 4, the fluid near the surface is pulled into 

azimuthal circulation by viscous stresses and, without a radial pressure gradient to balance the centrifugal forces, is 

thrown radially outward to be replaced by an axial downward flow; the radial velocity component exhibits a profile 

typical of wall jets being zero both on the wall and outside of the boundary layer and demonstrating a maximum 

(increasing with increasing radius r) in the vicinity of the wall. Thus, an inflection point in the radial flow 

component can be observed from the three-dimensional velocity distribution in the boundary layer, which 

represents the cross-flow component [92]. 

 

Fig. 4. The three velocity components of rotating-disc flow 

➢ Instability mechanisms 

The flow between rotating disks can be represented by self-similar functions, which are exact solutions to the 

complete Navier-Stokes equations for steady laminar flow [91]. Both the shape of laminar velocity profiles and the 

boundary-layer thickness are independent of the radius. There is a wide variety of instability patterns resulting 

from these exact self-similar solutions about the flow, which have been found to be unstable with respect to 
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infinitesimal unsteady disturbances [93]. In general, two types of local convective instabilities arise for different 

Rossby numbers, ranging from Ro = -1 (von Kármán flow [94]), Ro = 0 (Ekman flow), to Ro = 1 (Bödewadt flow) 

[89, 95-96]. The Type Ι instability, i.e., crossflow instability, is caused by the inflection point that appears in the 

radial mean velocity profile of the boundary layer, which is similar to the T-S instability of the flat-plate boundary 

layer [97]. This profile leads to a convectively unstable flow regime, which is shown in the form of co-rotating 

crossflow vortices. Based on the same crossflow instability, Type Ⅱ instability is related to the combined effects of 

Coriolis and viscous forces, which occurs at a lower Reynolds number than Type Ι instability [98-99]. A 

sixth-order system of linear stability equations in which the effects of viscosity, Coriolis acceleration, and 

streamline curvature are included [100]. Both type Ι and Ⅱ instabilities are unstable to stationary disturbances and 

also to disturbances traveling relative to the disk surface, but with different critical Reynolds numbers and over 

different parameter spaces.  

It should be mentioned that, both type Ι and Ⅱ instabilities will appear as traveling vortices rolling up around a 

circular or spiral axis when there is vorticity in the disturbances [101]. In other words, the spatial structure consists 

of traveling vortices in the boundary layers that expand in rings or spirals along the azimuthal direction [92]. As 

the disturbances convect radially outward, the convectively unstable flow may become absolutely unstable at a 

critical radius, which causes the onset of transition to turbulent flow [102]. It is a very important theoretical study 

on absolute instability that comes neither from the Coriolis effects nor from streamline curvature effects. As the 

first example of a distinct instability characteristic, it provides a fixed Reynolds number that corresponds to the 

onset of nonlinearity and the subsequent transition process. Following this, the absolute instability above the 

critical Reynolds number was experimentally confirmed by introducing a traveling wavepacket into the boundary 

layer [103]. In this situation, the propagation velocity of the trailing edge decreases dramatically as the radius 

increases, until the wave packet reaches zero when the Reynolds number of 510 for the absolute instability is 

attained. It is important to emphasize that, absolute instability is a local concept in that it is theoretically defined by 

a stability analysis of the local velocity profiles. However, the instability analysis ignores the spatial development 
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of the mean flow, which is equivalent to the parallel-flow approximation made for growing boundary layers, such 

as the Blasius boundary-layer flow [104].  

As the local Ro varies with the radius, the global stability properties of the boundary layers will be affected, 

which may reflect a certain amount of inconsistency between the non-parallel stabilizing effects and the 

destabilizing non-linear effects [104-105]. For a fixed rotation rate, the linear radial variation in Reynolds number 

leads to spatial inhomogeneity, which is often called the non-parallel effect, despite the similarity solution for the 

rotating-disk flow being physically parallel. The global response of locally absolutely unstable flow that is affected 

by the non-parallel effect, is investigated by Davies and Carpenter [104]. Based on DNS of the complete linearized 

Navier-Stokes equations, it is found that the rotating-disk boundary-layer flow is linearly globally stable. The 

conclusion is also confirmed by Davies et al. [106] because of the ‘detuning’ effect arising from the radial variation 

of the temporal absolute frequency, i.e., a consequence of the non-parallel effects. However, Healey [107] 

discovered that linear global instability can be induced by local absolute instability at the edge of the disk, 

provided the absolutely unstable region is sufficiently larger prior to the edge. As compared to the solutions of the 

Ginzburg-Landau equation, the experimental relationship between the onset of transition and the Reynolds number 

at the edge of the disk cannot be found by Imayama et al. [108]. Following these contradictory results, Pier [109] 

found in his experiments that the flow over the edge of the disk acts as a strong source of fluctuations. The 

nonlinear results of Healey [107] and Imayama et al. [108] could align if the downstream boundary was modeled 

as a source of random noise rather than by a vanishing fluctuating amplitude.  

In addition, the global self-sustained behavior of the rotating-disk flow can only be explained by resorting to 

the nonlinear framework [104, 109]. In this situation, an absolutely unstable mode can easily lead to the occurrence 

of nonlinear global instability in connection to the nonlinear assumption that is made by Pier et al. [111], Bassom 

et al. [112], Pier and Huerre [113] and van Saarloos [114]. Pier [110] showed that the primary saturated waves 

initiated at the critical radius, are already absolutely unstable with respect to secondary perturbations. It revealed 

the secondary absolute instability properties of the naturally selected primary nonlinear crossflow vortices. 
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Considering the primary absolute instability, Viaud et al. [115] performed a spectral DNS for the nonlinear stability 

properties of the rotating-disk flow. It was discovered that only large-amplitude initial perturbations will trigger the 

nonlinear global mode, which is made up of a front located at the upstream boundary of the absolutely unstable 

domain, followed by a saturated spiral mode, i.e., elephant mode. Furthermore, Viaud et al. [116] found a second 

front in the lee of the primary saturated waves, where small-scale instability develops by extending the flow both 

in the radial and azimuthal direction. Rapid turbulent breakdown at Re = 565-590 is correspond to the results from 

Imayama et al. [117], who suggested that the nonlinear interaction of the traveling disturbances and the stationary 

vortices leads to a rapid transition to turbulence. On the other hand, previous studies have shown that the 

absolutely unstable mechanism was not sufficient to generate global instability [104, 118]. To explain the transition 

process, Thomas and Davies [119] revealed that disturbances become globally linearly unstable for sufficiently 

large azimuthal mode numbers significantly greater than those associated with the onset of absolute instability. 

Subsequently, the regions of local-global linear stabilities in the (Re, n) space are described in Fig. 5, where Re is 

the Reynolds number, n is the azimuthal mode number, and na is the azimuthal mode number for the onset of 

absolute instability [122].  

 

Fig. 5. Diagram illustrating the local and global linear stabilities of the rotating disk boundary layer. Reproduced 

from Thomas et al., Phys. Fluids 32, 074105 (2020) with the permission of AIP Publishing [122] 

More recently, Appelquist et al. [120] performed linear DNS of rotating-disk flow that is perturbed by an 
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impulsive disturbance, which showed that there is a linear global instability, if the Reynolds number at the radial 

end is sufficiently larger than the critical Reynolds number for the onset of absolute instability. Based on the same 

growth of an impulsive disturbance, it was found that the critical Reynolds number for the nonlinear global 

instability is independent of the disk-edge configurations [121]. As having just been experimentally indicated by 

Imayama et al. [108], the onset of nonlinearity is found to emerge at Re = 510~520. Both stationary disturbances 

and traveling disturbances in the transitional regime were identified by Imayama et al. [117]. The former is excited 

by unavoidable surface roughness, which may modify the flow in such a way that transition occurs at a smaller 

radius [121]. Then the primary instability was found to be convectively unstable, and secondary instabilities were 

triggered spontaneously while the flow was developing. For sufficiently large azimuthal mode numbers, the 

transition to turbulence may be dominated by the huge spatial growth associated with local convective instabilities 

[119]. Similar behavior can also be found in the numerical results regarding the effects of small-scale surface 

roughness [122] and the receptivity characteristics relating closely to roughness distributions [123]. 

For quick reference, Table 2 summarizes some representative instability analyses for the rotating-disk flow. 

Table 2. Selected studies on the stability for the rotating-disk flow 

References Methods Instability mechanism Remark 

Lingwood [102] LSA Absolute instability 
It is not caused by Coriolis effects nor by 
streamline curvature effects. 

Lingwood [89] LSA Absolute instability 
Absolute instability is caused by a pinch point 
between a spatially growing and a spatially 
damped branch of the dispersion relation. 

Davies and 
Carpenter [104] 

Linearized DNS Convective behavior 
Absolute instability may not give rise to the 
global instability mode. 

Pier [110] LSA 
Secondary absolute 

instability 
Primary absolute instability is essential for 
the transition location. 

Viaud et al. [115] DNS 
Large-amplitude 

initial perturbations 
Non-parallel effects counteract the absolute 
instability and restabilize the flow. 

Healey [107] 

Linearized complex 
Ginzburg-Landau 

equations with weakly 
spatially varying 

coefficients 

Local absolute 
instability on a finite 

rotating disk 

The Reynolds number at the edge of disk is 
the only global parameter. 
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Viaud et al. [116] DNS 
Large-amplitude 

impulsive 
perturbations 

A second front appears in the lee of the 
primary bifurcation. 

Pier [109] XP 
Locally absolute 
instability in the 

vicinity of the edge 

The flow over the edge of the disk acts as a 
strong source of fluctuations. 

Imayama et al. 
[108] 

XP 
Local absolute 

instability  

The finite nature of the disk lead to linear 
global instability (supercritical) and then to a 
nonlinear steep-fronted global mode. 

Imayama et al. 
[117] 

XP 
Travelling 

disturbances 

A primary nonlinear steep-fronted global 
mode interacts with the stationary vortices, 
which leads to a secondary instability. 

Appelquist et al. 
[118] 

Linearized DNS 

An impulsive 
disturbance within a 

linear global 
framework 

Reynolds number at the radial end of the 
simulated linear region by linear global 
instability is sufficiently larger than the 
critical Reynolds number for the onset of 
absolute instability. 

Appelquist et al. 
[120] 

Nonlinear DNS 
An impulsive 
disturbance 

Nonlinear global instability depends on the 
outer turbulent region generating a linear 
inward-travelling mode. 

Thomas and 
Davies [119] 

Linearized complex 
Ginzburg-Landau 
equations and the 

radially homogeneous 
base flow 

An impulsive 
disturbance for larger 

azimuthal mode 
numbers 

Convective instability with large spatial 
growth may dominate the transition to 
turbulence. 

Appelquist et al. 
[121] 

Nonlinear DNS 

Convective instability 
for primary modes / 
Global instability for 

secondary modes 

High-amplitude roughness are more likely to 
give a turbulent flow as compared to 
low-amplitude roughness. 

Thomas et al. 
[122] 

LSA Roughness patterns 
Both concentric and radial roughness can be 
used for delaying the onset of local absolute 
instability. 

Thomas and 
Davies [123] 

Adjoint linearized NS 
equations / 

Monte-Carlo  

Randomly generated  
surface roughness  

Receptivity increases for roughness 
distributions near the conditions for neutral 
linear instability. 

➢ Open mode 

When the flow is confined between a rotating (rotor) and a stationary disk (stator), i.e., the open mode, a 

system of ordinary differential equations is obtained from the reduction of the Navier-Stokes equations. As for the 

stability analysis of stationary and traveling disturbance waves, following the same instability mechanism as the 
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Ekman layer [95], there are two types of rotating-disk flow instability that is related to two separated layers: 

Ekman type on the rotating disk and Bödewadt type on the stationary disk [124]. In this situation, different 

instability patterns are controlled by two parameters: the Reynolds number Re  and the aspect ratio G , which 

are varied over large continuous range [125]. Thus, four flow regimes, including two separated boundary layers 

and two merged boundary layers, were firstly proposed by Daily and Nece [126] based on the combination of Re 

and G. For the merged boundary layers, it is closely related to a pure shear flow joined boundary layers, i.e., the 

torsional Couette flow, in which a quasi-linear profile of the azimuthal component of the flow velocity develops 

[127]. There are finite-size localized turbulent structures that characterize the subcritical transitions in the form of 

spots or solitary waves [128]. As shown in Fig. 6, the onset of transition is characterized by a regular pattern of 

spiral vortices, which can be observed when the rotating-disk velocity exceeds the critical value. [127]. Both spiral 

waves and turbulent spirals can be sustained by wall compliance [129].  

(a)    (b)

(c)    (d)
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Fig. 6. Instability patterns observed in torsional Couette flows: (a) Spiral waves SRⅢ; (b) Turbulent spirals; (c) 

Turbulent spots; (d) Mixed states. Reproduced with permission from Cros et al., J. Fluid Mech. 481, 177 (2003). 

Copyright 2003 Cambridge University Press. [129] 

In the case of separated boundary layers, the transition to turbulence is preceded by two types of waves: 

circular waves and spiral waves, due to the development of instabilities in the boundary layer of the stationary disk. 

The circular waves propagate in the flow direction, which can be recognized as a Type Ⅱ instability [130-131]. It 

seems that the instability leading to circular rolls has the general properties of a shear instability in the radial 

velocity profile [130]. As the rotation rate increases, spiral waves develop at the periphery and co-exist with the 

previous circular waves [125]. As a type Ι instability, supercritical transition to turbulence occurs within the 

stationary disk boundary layer despite the confinement by viscous effects, which is caused by the mixing of spiral 

and circular rolls [96]. Besides, based on the peripheral velocity of the rotating disk and the gap, the experimental 

study about two types of instability pattern via stereoscopic PIV (particle image velocity) highlight the existence of 

an absolute threshold for the Reynolds number [132-133]. It should be noted that the flow direction in these 

experiments (Fig. 7) is opposite to that of HVD, which may need further investigation. 

(a)     (b)  

Fig. 7. Experimental visualizations of circular waves (a) alone, and circular waves and spiral arms (b) in the 

inward boundary layer close to the stationary disk. Reproduced with permission from Gauthier et al., J. Fluid Mech. 

386, 105 (1999). Copyright 1999 Cambridge University Press. [130] 

In order to understand the nature of both circular and spiral rolls, Poncet et al. [134] particularly investigated 

the transition to turbulence in the flow of an annular rotor-stator cavity, as shown in Fig. 8. It’s reported that the 
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circular roll instability under permanent conditions can be sustained by noise, as indicated by a combined 

experimental and numerical study. A permanent perturbation induces the temporal coexistence of spiral and 

circular rolls, which appear through a supercritical Hopf bifurcation [130]. In other words, the transition to 

turbulence seems to be governed by the nonlinear interactions between the circular and spiral modes of the 

stationary disk flow [101]. Using visualization analysis and the Bi-Orthogonal Decomposition (BOD) technique, a 

torus doubling bifurcation is revealed before its complete destruction during the transition to weak turbulence 

[135]. With regard to the rotating boundary layer, the mean flow is qualitatively similar to the von Kármán 

self-similarity solution [136]. However, because of the shear and centrifugal effects, a locally unstable mean flow 

may act as a strong source of perturbations, which eventually leads to incipient turbulence. More specifically, the 

critical Reynolds number for the convective/absolute transition was found to be smaller than that for the equivalent 

von Kármán solution at the same Rossby number [137]. Due to the fluctuations in the form of a steep front 

followed by a saturated spiral wave, the superposition of various absolutely unstable modes with different 

azimuthal wavenumbers leads to convectively unstable rolls travelling outwards in the direction of the mean radial 

flow [138]. It can be seen that the characteristics of these flows are the coexistence of adjacent and coupled flow 

regions that are radially different in terms of the flow properties and the thickness scales of the Ekman and 

Bödewadt boundary layers. According to the combination (G, Re), the flow structures mentioned above can be 

observed as mapped by Schouveiler et al. [125], as shown in Fig. 9.  
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Fig. 8. Experimental flow visualizations for instability (G = 0.114). (a) Circular roll for Re = 16400. (b) Circular 

and spiral rolls for Re = 26400. (c) Circular and spiral rolls for Re = 32500. (d) Wave turbulence for Re = 61600. 

Reproduced from Poncet et al., Phys. Fluids 21, 064106 (2009) with the permission of AIP Publishing. [134] 

 

Fig. 9. Transition diagram. Reproduced with permission from Schouveiler et al., J. Fluid Mech. 443, 329 (2001). 

Copyright 2001 Cambridge University Press. [125] 

➢ Speed-regulating/soft-start/soft-brake mode 
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When two parallel disks are in relative motion, i.e., speed-regulating or soft-start mode, co-rotating and weak 

counter-rotating flows may affect the properties of boundary layer instabilities. Two Reynolds numbers based on 

the film thickness h: 2 /i iRe Ω h = (
iΩ  (i=b, t for bottom and top disk) is the angular velocities), the rotation ratio 

s= /b tΩ Ω  ( 1s  ) and the aspect ratio G, are used for characterizing the flow. Then it is noted that s > 0 for the 

co-rotation case and s < 0 for the counter-rotation case, s = 0 corresponding to the rotor/stator case [93]. Two kinds 

of frequently encountered fluid flow with high rotation rate, Ekman-Poiseuille flow and Ekman-Couette flow, 

becomse first unstable to type Ⅱ Ekman boundary layer instability, which is caused by the combined effects of 

Coriolis and viscous forces [139]. There is a continuum of codimension two points where both type Ι mode and 

type Ⅱ mode become simultaneously unstable and where nonlinear interactions may occur. Also, the S-mode found 

by Hoffmann and Busse [139] correlates closely with the inflection point at the mid-plane corresponding to the 

extra mode of Hoffmann et al. [140]. 

In the case of co-rotating or weak counter-rotation flow, the basic flow is found to be of Batchelor type flow 

above a given radius [141] and of torsional Couette type flow below [127]. The flow is constituted by two 

boundary layers, but the core will be separated into two parts rotating in opposite directions, separated by a 

transition layer [142]. Two different kinds of instabilities lead to axisymmetric propagating vortices and positive 

spirals [93], which have been investigated in the rotor-stator configuration by Schouveiler et al. [125]. As shown in 

Fig. 10, different flow patterns, including propagating circular vortices, and the mixing of axisymmetric 

propagating vortices and positive spirals, appear successively on increasing 
tRe , and then the flow becomes more 

and more disordered. It was found that positive spirals occur in the inward boundary layer of the bottom disk, 

while the boundary layer of the top disk, as well as the core, are found to remain stable. Furthermore, as the 

rotation ratio increases, the impact of additional global rotation on the instability threshold of the positive spirals is 

more pronounced when compared to that of the circles [143].  
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(a)   (b)   (c)  

Fig. 10. Experimental flow visualizations for instability (s ≥ 0): (a) propagating circular vortices. (b) mixing of 

axisymmetric propagating vortices and positive spirals. (c) disordered flow. Reproduced with permission from 

Gauthier et al., J. Fluid Mech. 473, 1 (2002). Copyright 2002 Cambridge University Press. [93] 

On the other hand, when the disks rotate in opposite directions, there are both instabilities of boundary layer 

and free shear layer about counter-rotating flows, which is suitable for the soft-brake condition of HVD. As a 

consequence, the flow between counter-rotating disks appears to be much richer. Lopez et al. [144] observed 

rotating waves in the form of funnel-like vortices arising from a shear instability in the bulk of the flow. Based on 

the same free shear layer instability, a new instability pattern, i.e., negative spirals, rolls up from the periphery 

towards the center in the direction opposite to that of the faster disk [93]. As 
tRe  increases, the negative spirals, 

mixing of positive and negative spirals and positive spirals appear successively (Fig. 11). Increasing tRe  further, 

the structures become disorganized and the flow becomes turbulent. In other words, this instability leading to the 

propagating circles, can only take place in an axisymmetric region of the flow. The conclusions were 

experimentally confirmed by Moisy et al. [145] that vertical vortices are surrounded by these negative spirals. 

From the measurement results on the azimuthal wavenumber and phase velocity, it is found that the propagating 

negative spirals is controlled by the Reynolds number [145]. The internal shear layer that separates two regions of 

opposite azimuthal velocities is prone to azimuthal symmetry breaking, which can be described in terms of a 

classical Kelvin-Helmholtz instability. Such destabilization of the azimuthal shear layer always exhibits travelling 

waves, modulated travelling waves and chaos before the emergence of a turbulent spectrum [146]. 
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(a)    (b)    (c)  

Fig. 11. Experimental flow visualizations for instability (s < 0): (a) negative spirals. (b) mixing of positive and 

negative spirals. (c) positive spirals. Reproduced with permission from Gauthier et al., J. Fluid Mech. 473, 1 

(2002). Copyright 2002 Cambridge University Press [93]. 

When the Reynolds number is increased, the axisymmetric region becomes unstable and gives rise to multiple 

complex dynamic behaviors: a single vortex associated with an azimuthal wavenumber of 1 instability; travelling 

waves; near-heteroclinic cycles; and a co-rotating vortex pair associated with an azimuthal wavenumber of 2 

instability [147-149]. Furthermore, Nore et al. [150] found that the thresholds for axisymmetric instabilities are 

always higher than those of non-axisymmetric modes, thereby indicating the dominating role of the latter modes. 

Their findings also illuminate the feasibility of improving the stability of von Kármán swirling flow by actively 

controlling the height-to-radius aspect ratio [151]. More importantly, increasing the Reynolds number make the 

unstable flow to exhibit a two cat’s eyes pattern. This is associated with vortices in 3D steady flows with 

characteristic azimuthal modes [152]. Another fact is that the time-dependent behavior at high Reynolds number is 

concerned with the pulsation of the two vortices found in the steady regime [153].  

In the presence of a stationary sidewall, it may substantially reduce the effectiveness of the counter-rotating 

endwalls in driving a torsional flow. For example, impellers are used for counteracting the sidewall effects in 

Giesecke et al. [154]. Instead of having a stationary sidewall, Gutierrez-Castillo and Lopez [155-156] split the 

sidewall into two halves (top and bottom), with each half rotating with the corresponding endwall, as shown in Fig. 

12. Obviously, the O(2) symmetric basic state is dominated by the shear layer at the mid-plane separating the two 

counter-rotating bodies of fluid. Due to the mode competition between different non-axisymmetric steady states, 
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primary circle-pitchfork bifurcations lead to different time-dependent state, including rotating waves, 

direction-reversing waves, and a variety of pulse waves dominating the unsteady flow regimes [157]. Particularly, 

for a codimension-2 point in the Re-G space, pulse waves occur because of the interaction between two steady 

states with the azimuthal wavenumbers m = 1 and m = 2 [158]. Furthermore, the split at midheight provides a 

localized perturbation from the corners where the endwalls and the sidewall meet. The ensuing inertial wave beams 

produce intricate patterns that are very sensitive to the modulation frequency [159-160].  

 

Fig. 12. Schematic of the counter-rotating split-cylinder flow system. Reproduced with permission from 

Gutierrez-Castillo and Lopez, J. Fluid Mech. 816, 719 (2017). Copyright 2017 Cambridge University Press. [159] 

3. INFLUENCE FACTORS FROM FLUID-SOLID INTERACTION SYSTEM 

3.1. Wall Conditions 

➢ Surface microstructure 

Because of the requirements of load-bearing capacity and stabilization, thin films flow over micro-textured 

surfaces have drawn considerable attention over the years. Due to the small scale of these well-designed features, 

surface microtextures are generally associated with the fluid dynamics of the oil film between sliding surfaces, 

which have an influence on the tribological performance of lubricated contacts. When the oil film surpasses the 

cavities of the substrates resulting in air encapsulation, it may significantly affect the vibration damping effect 
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[161-162]. With the development of efficient algorithms and solution techniques combined with the increase in 

computational power, most of the research in the field of surface microtexturing has been based on theoretical 

modeling, which use different forms of Navier-Stokes equations with sophisticated models about viscosity, density 

and temperature. Examples of such models can be found in Papadopoulos et al. [163], Gherca et al. [164], Marian 

et al. [165] for thrust bearings, Etsion et al. [166], Feldman et al. [167], Brunetiere et al. [168], Adjemout et al. 

[169] for mechanical seals, and Zhou et al. [170], Usman et al. [171], Pawlus et al. [172] for cylinder liners. On the 

other hand, relatively small number of publications are based on experimental setups including 

pin-on-disc/ball-on-disc tests and reciprocating sliding tests. Examples of such tests can be found in Etsion et al. 

[173], Henry et al. [174], Liu et al. [175] for thrust bearings, Yu et al. [176], Qiu et al. [177], Chen et al. [178] for 

mechanical seals, and Borghi et al. [179], Wang et al. [180], Ma et al. [181] for cylinder liners. 

⚫ Topography substrate 

For the capillary ridge effect of the non-flat surface, the substrates generally exhibit a topography that leads to 

the variation of the film thickness. Viscous flow over varying topography substrates is closely related to the 

delicate interplay between the substrate features, which create interfacial shapes that reflects the topography, and 

surface tension which tends to flatten the surface [182]. It is found that the dynamics of thin films in microchannels 

are governed by three pertinent parameters corresponding to the feature depth, feature width, and the capillary 

scale. In view of the parametric research conclusions, Kalliadasis and Homsy [183] considered the stability of 

thin-film flows with respect to small disturbances. The flow in the streamwise direction driven by a body force is 

the only term that represents energy production, which reflects the rearrangement of fluid in the flow direction. 

Based on the coupling mechanism of perturbation with the base flow, the topography-driven ridge is expected to be 

linearly stable to transverse perturbations for a wide range of parameters [184]. This can be confirmed by Davis et 

al. [185], who performed a transient nonmodal analysis because of nonlinear perturbations effects. They found that 

unstable ridge on a smooth, flat and homogeneous surface is more prone to experience flow instability when 

compared to closed, recirculating streamlines beneath the capillary ridge.  
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It should be mentioned that, as an important derivation of thin-film equations, the lubrication-based models 

for these pronounced capillary ridge effects were used to investigate the flow conditions above, which were 

observed experimentally by Decré and Baret [186] and were captured by Mazouchi and Homsy [187]. The 

lubrication approximation is based on the asymptotic reduction of the governing equations and boundary 

conditions to a simplified system. It often consists of a single nonlinear partial differential equation formulated in 

terms of the local thickness of the film [188]. However, since the solution of the equations governing the flow must 

include the precise location of the interface, the presence of the deformable interface that bounds the film makes 

the direct modeling of interfacial flows more complicated. Moreover, one has to track the interfacial position while 

simultaneously solving an evolution governing equation coupled to temperature, electric, or other fields [189]. 

Considering the problem, by extending the boundary-integral calculation work of Mazouchi and Homsy [187], 

Gaskell et al. [190] studied the thin film flow over two- and three-dimensional topographies by means of multigrid 

finite difference predictions within the frame-work of the lubrication approximation. It was concluded that an 

increase in the Reynolds number increases the amplitude of the free-surface disturbances and slightly reduces their 

wavelength.  

Other alternative methods have devoted extensive efforts to solving the increasingly complex system and 

number of equations. In 2007, they reported a finding that adaptive local mesh refinement and multigriding offer 

increased flexibility together with a significant reduction in memory requirements. They also put forward an 

efficient and accurate automatic local grid refinement strategy that effectively restricted the use of fine grids to 

regions of rapid flow development, e. g., the upstream capillary ridge and the downstream surge region [191]. In 

order to make it comparable to the adaptive multigrid approach, the authors exploited the finite element method 

(FEM) to solve a weak form of the governing equations, which offered an attractive alternative to the 

non-specialist user. It is revealed that occlusions may lead to many of the features inherent in the flow of thin 

liquid films over fully submerged micro-scale topographic features; namely, the presence of capillary ridges linked 

to the “bow wave” plus “comet-tail” free-surface disturbances [192]. As has been demonstrated, the disturbances 
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induced by small-scale topography can persist over length scales several orders of magnitude larger than the size of 

the topographical feature itself [186]. This can be explained by the numerical work of Veremieiev et al. [193] in 

which a depth-averaged form of the Navier-Stokes equations, akin to the integral boundary-layer approximation of 

Mazouchi and Homsy [187], was used to model the problem. In their subsequent work, Veremieiev et al. [194-195] 

further enabled inertia effects and surface tension effects to be incorporated within the long-wave approximation. 

In addition, they have examined a discrete analog of the full Navier-Stokes equations, including continuity and the 

boundary conditions for both two- and three-dimensional flows using a finite element formulation. As a result, they 

successfully predicted the internal flow structure and the corresponding free surface disturbance. Based on the 

above analysis, it can be observed that the modeling strategy suffers from a lack of accurately predicting the 

instability threshold correctly.  

More recently, Veremieiev and Wacks [196] presented a stability analysis of free-surface gravity-driven liquid 

film over a periodic corrugated substrate. They successfully extended the standard first- and second-order weighted 

residual integral boundary-layer method (WIBL), proposed by D’Alessio et al. [197], to include third- and 

fourth-order terms in the long-wavelength expansion. Due to the trade-off between the accuracy of a full 

Navier-Stokes computation and the efficiency of an integral method, the model facilitated a valuable insight 

towards the understanding of the stability mechanism of thin film flows over topography. In particular, it has been 

shown that the accuracy decreases as the Reynolds number and corrugation amplitude increase, but increases with 

the steepness parameter and the ratio of wavelength to capillary length. Furthermore, as the most important factor, 

microstructure’s shape and dimension have a great influence on the stability of the overflowing liquid film. To this 

end, Bonart et al. [198] reported their work on the dynamical modeling of two-phase flow through the coupling of 

the Cahn-Hilliard and Navier-Stokes equations. In this model, the linearization and decoupling of the equations 

and preconditioned Krylov methods were used to enable efficient and accurate simulations. Results indicated that 

the stabilizing effect could be the dissipation of energy in the film while flowing over these sharp corners. 

Likewise, from the perspective of energy balance, the energy integral method (EIM) developed by Usha and Uma 
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[199] for examining the stability and dynamics of a continuous thin film over topography accounts for depth

averaged kinetic energy balance, and is based on velocity weighted averaging of the Navier-Stokes equations. 

Evidently, the merit of this method is that it captures the effects of large Reynolds numbers and moderate surface 

tension. This eliminates the explicit depth-coordinate dependence from the full Navier-Stokes system of equations. 

Therefore, a weighted-depth averaged model, based on EIM was established to predict accurately the instability 

threshold [200]. The analysis paves the way for similar investigations on three-dimensional flows related to film 

flow over a substrate featuring topographies. 

More in-depth investigations about the stability analysis including thermocapillary effects and electric fields 

effects have been taken into consideration. Davies and Rideal [201] found that a temperature gradient at the 

free-surface will produce a surface tension gradient or Marangoni stress on account of varying degrees of surface 

tension with temperature in the gas-liquid interface. This partly explains the occurrence of film deformation and 

spontaneous rupture of thin films when considering the interfacial instabilities caused by thermocapillary flows in 

case of such stresses. When the microstructured wall is heated, the films tend to accumulate at the deepest 

locations of the wall, which may trigger flow instability compared to films covering flat walls [202]. Furthermore, 

it was found that the special characteristic of flow over topography is that a high cumulative length of contact lines 

becomes unstable with respect to transverse perturbations [203]. In this case, different kinds of rivulet instabilities, 

including the long-wave falling film instability, the capillary instability, and the thermocapillary instability, may 

lead to the development of wavy flow patterns and to the rupture of the rivulet [204]. In order to prevent such 

instability, the study by Tiwari and Davis [205] considered the influence of topographical features on the linear 

stability of liquid films flowing over surfaces with localized heating was considered using a long-wave lubrication 

analysis. Simple step-down and mound features were found to effectively stabilize the film effectively, as the 

Marangoni number Mc at the instability threshold increases substantially with the appropriate topography. In this 

situation, the optimal topographical features that suppress all variations in the free surface were determined. Then 

it is recommended to use an energy analysis to provide insight into the mechanism. Based on the same energy 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
3
2
9
8



 

37 
 

calculation as Kalliadasis and Homsy [183], it is observed that the streamwise gradient in the capillary pressure is 

destabilizing for flow over the locally heated topographical surfaces. In contrast, despite the destabilization of the 

free surface response to the wall deformations, the amplitude growth remains independent of the evolution of 

time-dependent perturbations imposed on the free surface, which can be stabilized by cooling from the wall [206]. 

Alternatively, spatial resonance is more effective than cooling to stabilize the free surface time-dependent 

perturbations. Different from the above gas-liquid interface stability analysis, Yoo et al. [207] systematically 

investigated the effects of system parameters, including substrate topography, on the temperature and flow fields of 

two-dimensional steady thermocapillary flows. Because of the temperature gradient along the gas-liquid interface, 

recirculating flows occur under low Marangoni number and low capillary number. Consequently, horizontal 

diffusion of heat weakens the overall flow and the convection of heat intensifies it.  

The interaction of an externally applied electric field with a thin liquid film can give rise to interesting flow 

instabilities and pattern formation. This is due to the fact that the electric field affects the flow through an 

additional Maxwell stress term in the stress balance at the film surface. The general conclusion is that the effect of 

an electric field is destabilizing [208]. To be specific, an electric field can either reduce or promote irregularities on 

the film surface, depending on the local geometry. It is capable of eliminating the capillary ridge found at a 

downward step but leads to the creation of a free-surface ridge at an upward step [209]. Research such as this work 

focused primarily on the interplay between the Maxwell stress at the free surface and the capillary force present 

due to surface tension. Of particular interest has been to see how this balance of forces can be exploited to 

manipulate the film shape, to influence the progress of surface waves, or mitigate instability [210-211]. 

Furthermore, as trains of periodic waves or solitary waves are generated, the electric field can serve as a local 

modification to the ambient film pressure at each point on the free surface. Under this condition, the shape of the 

liquid layer’s surface can be manipulated to become wave-free [212]. It can be inferred that the interface 

deformation depends on various problem parameters. In this sense, the interface deformation mimics the cavity 

shape in case of small-amplitude sinusoidal cavities. For trapezoidal cavities and perfect dielectrics, the interface 
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deforms near the cavity edges, rising toward the top electrode. This behavior can be enhanced by the leaky 

dielectrics due to charge accumulation [213]. Following this mechanism, the effects of imposed flow and electric 

fields on the nonlinear dynamics of undulating channel walls were investigated [214]. For sinusoidal lower channel 

walls, nonlinear time-periodic traveling waves are strongly influenced by on the wall amplitude, the flow rate, and 

the applied electric field measured by the lower wall potential. A type of “walking” motion emerges that causes the 

lower fluid to wash through the troughs and create strong vortices over the peaks of the lower boundary. It should 

be mentioned that electric fields can also modify contact angles. Therefore, in view of the stability of dynamic 

contact lines, Conroy et al. [215] studied the linear stability of gravity-driven spreading of a thin liquid film in the 

presence of electric and temperature fields. It was found that electric fields in the capillary ridge destabilize the 

film front to transverse perturbations, which is also responsible for the enhancement of the perturbation growth.  

⚫ Superhydrophobic surfaces 

Thin films are related to the wettability and spreading of fluids over superhydrophobic (SHP) nature of 

surfaces fabricated using nano- or microtechnology [216]. In pressure-driven laminar flows, the use of 

superhydrophobic surfaces represents a promising technique for delaying the transition to turbulence. In general, 

liquid wetting on rough surfaces is commonly elucidated by two classical models: Wenzel model [217] and 

Cassie-Baxter model [218]. Generally speaking, these two models dramatically exhibit different slippage effect, 

from which the Cassie-Baxter state (or partially wetted state) can provide a significant slip effect due to the 

presence of the inner liquid-gas interface [219-221]. It has been acknowledged that, when a fluid does not 

completely wet an atomically smooth substrate, i.e., under superhydrophobic conditions, even a small amount of 

slip on the surfaces is expected to ease the fluid transport appreciably. In particular, the presence and effects of 

molecular slip can no longer be neglected since the Knudsen number increases beyond the continuum limit (Kn > 

10-2) [222-223]. To quantify the amount of slip, as shown in Fig. 13, Navier’s slip boundary condition in which the 

slip velocity 0u , is proportional to the shear rate experienced by the film at the wall can be defined as [224]: 

0

u
u

y
 

=


                                            (2) 
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where   is the slip length that is proportional to Kn.   = 0 corresponds to a no-slip condition, and   =   to 

a fully slipping surface. A number of theoretical, numerical, and experimental studies have shown that the slip 

length can be structurally determined by the SHP surface features, such as the pitch, solid fraction, and pattern type, 

and further affected by secondary factors, such as the state of the liquid-gas interface, for laminar flows [222, 225, 

226-228] and turbulent flows [229-234].  

 

Fig. 13. Schematical diagram of slip at a fluid-solid interface 

The delay in transition, for example, can lead to a substantial reduction in the power required to move the 

fluid within the microchannel. Then based on the Navier-Stokes linear stability equations with slip boundary 

conditions, the influence of slip length on flow instability has been widely studied [235-248]. As the slip boundary 

condition on a smooth wall is a simplified treatment of complex superhydrophobic surfaces, most of the researches 

above is applicable for the analysis of flow stability and the transition to turbulence associated with 

superhydrophobic surfaces. Min and Kim [249] performed a linear stability analysis with slip boundary conditions 

and a few direct numerical experiments of transition to turbulence initiated by two-dimensional 

Tollmien-Schlichting (TS) waves in different configurations. The results showed that velocity slip greatly 

suppresses linear instability and modestly affects the non-normality [237], which agrees with that of Gersting [250], 

Spille et al. [251], Sahu et al. [239], and Matthews and Hill [252]. Besides, as opposed to spanwise slip, 

streamwise slip increases the critical Reynolds number with the increase proportional to the slip length in 

wall-bounded shear flows. It can be inferred that streamwise (longitudinal) slip results in a decrease in frictional 
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resistance, whereas spanwise (transverse) slip leads to an increase in overall frictional resistance. Following this 

study, Yu et al. [253] performed a modal analysis of pressure-driven flows through a channel patterned with 

superhydrophobic surfaces containing periodic grooves and ribs aligned longitudinally to the flow direction. By 

performing a BIGlobal linear stability analysis [58], a stabilizing effect can be predicted for flows over 

longitudinal superhydrophobic grooves with small values of full-channel height, in agreement with the results 

obtained using local stability analysis that employs a homogeneous slip conditions along the walls, and also similar 

results have also been found accounting for anisotropic surfaces [254-255], symmetric and asymmetric slip 

surfaces [256], and spatially homogeneous slippery surfaces [257-258].  

However, the seemingly reasonable conclusion about the flow stability characteristics cannot always be 

achieved since most of the previous reports have been limited to the direct analysis of two-dimensional 

perturbations [244]. In fact, if a considerable amount of anisotropy in the slip length is considered within 

three-dimensional modes, both streamwise and spanwise slip will trigger different types of linear instability and 

different optimal nonmodal perturbations [245-246, 259]. To be specific, the Navier slip boundary conditions at the 

channel wall for streamwise and spanwise velocities can be expressed as 

 
 

 
,

1, , 0
x z

yx z x z

u
u

m
 =

 
+ =  

                                    (3) 

where m is the outward wall-normal direction, and 
x  and 

z  are the streamwise and spanwise slip lengths, 

respectively. It was found that the critical Reynolds number first slightly decreases and then modestly increases as 

x  increases [244]. This is due to the fact that streamwise slip only enlarges the growth time window of 3D modes, 

which has no effects on the distribution of the maximal transient growth in the wave number plane. In the presence 

of equal slip length in the streamwise and spanwise directions, three-dimensional leading instabilities that would 

occur in pure streamwise with zero spanwise velocity. Furthermore, from the eigenvalue equations characterizing 

the least stable modes, Xiong and Tao [246] obtained the first-order approximation ( )3 3
, 01 2.41

x z

E D E D

l l x z
R l l R + −    

of the critical Reynolds number for the nonlinear stability. Results showed that in the three-dimensional PPF with 

the anisotropic slip boundary condition, the critical Reynolds number increases with the increase in 
x  and with 
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the decrease in 
z . Regarding the case of the isotropic slip boundary condition, the critical Reynolds numbers are 

found to be 3 2 3
01 8.37E D E D

l
R l R  +   for the 3D mode and 2 2 2

01 14.95E D E D

l
R l R  +   for the 2D mode. From the 

results, it appears that developing a superhydrophobic surface with specified directional sensitivity is quite 

necessary and practical for delaying the early triggering of transition.  

As shown in Fig. 14, in order to model more complex superhydrophobic surfaces, a slip tensorial   in the 

plane of the walls (x, z) is used for representing the anisotropic boundary condition [225-226, 254], as follows. 

0
u u

wm



   

+ =      
                                     (4) 

0

0
T

Q Q



⊥

 
=  

 

‖

, with 
cos sin

sin cos
Q

 
 

− 
=  
 

                             (5) 

where u  and w  denote the streamwise and spanwise velocity components, respectively. ‖ and ⊥  are the 

eigenvalues of the slip tensor   corresponding to the streamwise (  = 0) and spanwise (  = 90°) slip lengths, 

respectively, and   represents a rotation of the tensor.  

 

Fig. 14. Sketch of the wall pattern with definition of axes, angle  , and ridges periodicity. Reproduced with 

permission from Pralits et al., Phys. Rev. Fluids, 2(1), 013901 (2017). Copyright 2017 American Physical Society. 

[254] 

Such a tensorial slip boundary condition is then used for modeling the slip effect induced by microgroove-type 

superhydrophobic surfaces [259]. They showed that a proper tilt angle in the microgrooves along the streamwise 
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direction can significantly reduce the critical Reynolds number for the onset of linear instability, which showed a 

good qualitative agreement with Pralits et al. [254]. However, it is also worth noting that the lowest critical 

Reynolds number can be obtained with two superhydrophobic walls, which is significantly lower than those 

reported in Pralits et al. [254]. Increasing the anisotropy in the slip length reduced the critical Reynolds number 

due to the decrease of the difference in tilt angles between the two walls. These results may be of interest for 

enhancing mixing or heat transfer in small flow systems where turbulence cannot be triggered.  

➢ Porous media of the friction material 

Since the grooved friction disk consists of a porous material, the permeability of the friction material may 

affect the squeeze velocity, which plays a major role in the torque profile. Generally speaking, increasing the 

permeability of a rotating porous disk effectively decreases the required time to arrive at a specific film thickness 

[260]. The maximum load capacity is sensitive to the anisotropic permeability of the friction material [261]. For 

such wall-bounded shear flows, the flexible dynamic model including porous walls plays a significant role in the 

prediction of the transition from laminar to turbulent flow. This is due to the fact that in the presence of porous 

boundaries, the turbulence can be attenuated and even inhibited by the effects of suction and blowing [262]. Hence, 

the instability analysis has been extensively used not only in the community of hydrodynamic flow control but also 

in reducing skin friction drag in wall-bounded shear flows.  

When the viscous fluid flows past a porous surface, the effects of viscous shear appear to penetrate into the 

permeable material in a boundary layer region. For such the fluid-porous system, most of the theoretical and 

numerical studies have been based on so-called the two-domain approach. The governing equations are prescribed 

on the fluid domain and the porous medium. And the main aim is the derivation of appropriate boundary conditions 

rather than the solution of the transition layer at the fluid-porous interface, which is also quite challenging for 

unsteady flows [263]. When it comes to the two-domain approach, Beavers and Joseph proposed a velocity slip 

condition across the fluid-porous interface based on an experimental study of steady flow over a saturated porous 

medium [264], which is theoretically justified by Saffman [265]. Subsequently, for the jump in tangential stress 
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boundary conditions, Goyeau et al. [263], Bars et al. [266], and Valdéa-Parada et al. [267] deciphered the explicit 

expression of the jump coefficient that depends on the macroscopic variation of properties at the interface. 

Recently, using the homogenization approach, Lācis et al. [268] derived a tensorial generalized version of the 

empirical Beavers-Joseph interface condition. On the other hand, for the single-domain approach, a single set of 

governing equations that is simultaneously valid in both the fluid and porous domains can be derived via volume 

averaging [266]. Despite its suitability for numerical simulation of unsteady flows, such simulations are 

particularly scarce except some specific models, e.g. turbulent flow over a permeable wall [269]. Finally, 

comparisons between the two approaches for the fluid-porous system have been performed in the stability analysis 

by Hirata et al. [270] and Samanta et al. [271]. 

It is usually simply assumed to be governed by Darcy’s law, which is the nature statistical result about the 

empirical equivalent of the Navier-Stokes equation. As far as we know, Chang et al. [272] firstly studied the linear 

instability of the PPF fluid overlying a porous medium by solving an eigenvalue problem for the O-S equation. The 

established model includes not only Darcy flow in the porous-layer but also the Beavers-Joseph interface condition 

[264], i.e., the two-domain model. Three different modes of instability are found to be triggered by the shear stress 

of the Poiseuille flow in the fluid layer. Since the highly coupling effects about the viscous term in the Brinkman 

equation, it has been widely applied in the instability analysis [241]. Based on the volume-averaging method, Bars 

et al. [266] employed the single-domain Darcy-Brinkman equation to eliminate the discontinuity in the velocity 

profile between the fluid and porous layers. They focused on studying the interaction between flow and 

solidification within the mushy layer during binary alloy solidification in a corner flow. There are difference 

velocity profiles only in the viscous transition zone based on the comparison with Beavers and Joseph [264]. By 

means of considering a three-layer configuration including a Brinkman porous transition layer, Hill and Straughan 

[273] found that the key parameters, which affect the bi-modal instability characteristics, are the depth ratio 

between the porous and fluid layers and the Brinkman transition layer depth. Only two instability modes of a 

fluid-porous system predicted by the Brinkman model, i.e., the porous mode and the even-fluid-layer mode, are 
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found by Liu et al. [274]. Wu et al. [275] investigated the instability of a coupled fluid-porous system, where the 

bottom plate was coated with various porous media. Depending on these parameters such as depth ratio, 

permeability and porosity of the porous medium, instability is dominated either by the fluid or by the porous 

region.  

The effects of PCF on the instability of thermal convection in a fluid-porous system were investigated by 

Chang et al. [276]. The neutral curves of both modes, including longitudinal and transverse rolls, may be bimodal 

which depends on the depth ratio. Furthermore, an increase in the depth ratio leads to a more unstable system, 

while the increases of Reynolds number and Prandtl number make the system more stable [277]. Based on a 

variation of the unsteady Darcy-Brinkman model, Antoniadis et al. [278] studied the stability of plane-parallel 

shear flows over a highly porous medium. It is shown that the shear flow is always unstable at all porosities and 

exhibits similar flow dynamics characteristics with different porous microstructure. As regards to the case of PCPF 

flow, Chang et al. [279] found that Couette flow may destabilize Poiseuille flow at a small depth ratio d̂  and 

induces the tri-modal shape of the neutral curve. With an increase of d̂  in the fluid-porous system, the Couette 

flow enhances flow stability as the magnitude of the moving boundary velocity increases, until eventually pure 

Couette flow becomes unconditional stable. Furthermore, in order to apprehend the momentum diffusion effect at 

the interface, the modal and non-modal stability analyses of three-dimensional PCPF flow in a porous medium was 

investigated by Samanta [280] using the Darcy-Brinkman equations. Consequently, when the Couette flow is 

considered, the fluid layer and the porous layer exhibit virtually opposite stability trends, respectively. Also, the 

non-modal stability analysis shows that short time energy growth exists in the parameter space and becomes 

significant. Following the method of the energy budget, Kirthy et al. [281] revealed that negative energy 

production is located near the plate that has a higher relative velocity in the direction of the bulk flow. And there is 

an additional unstable mode manifested in the neutral curves as a bifurcation of the unstable region into primary 

and secondary regions. Besides, the energy production due to the Reynolds stress causes disturbances that trigger 

instability [282].  
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In addition, Tilton and Cortelezzi [262] adopted the volume-averaged Navier-Stokes equations to characterize 

the flow in the porous regions. In the case of two porous walls with identical or differing permeability, it was 

shown that wall permeability plays a dominating role in determining the O-S spectrum and can dramatically 

decrease the stability of the channel flow. The same model was solved by Rosti et al. [269], who carried out a 

number of direct numerical simulations to determine the response of turbulent channel flow to a permeable wall, 

which is experimentally verified by Suga et al. [283]. For the stability problem of convection in a porous medium, 

Chen et al. [284] found that the onset of thermal convection may be bi-modal in which whether the instability is 

dominated by the fluid layer or the porous layer depends on the depth ratio. 

➢ Surface roughness 

Surface roughness plays a substantial effect on the stability characteristics of HVD [285]. It is of considerable 

practical importance to predict the stability of macroscopic or microscopic flow system, especially when the film 

thickness is of the same order as the roughness or when the system is at high Reynolds numbers. For example, 

compared with the smooth surfaces, the minimum value of the skin-friction drag coefficient increases in the range 

of 5 to 30 percent with increasing the roughness size in the study of Abdel-Rahman et al. [286]. The flow 

characteristics around the airfoil is greatly influenced by different roughness patterns. Carefully designed surface 

roughness could be used to enhance or reduce the drag coefficient in any particular application [287]. In classical 

fluid dynamics, the research about laminar-turbulent transition and the structure of turbulent flows is closely 

related to the rough surface [288-289], as shown in Fig. 15. Also, the inclusion of surface roughness in the flow 

stability has recently become more and more valuable due to the advancement of microflow technology.  

(a)  
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(b)  

Fig. 15. A graphic illustrating boundary layer flows over two kinds of surfaces: (a) Smooth surfaces; (b) Rough 

surfaces. Reproduced with permission from Kadivar et al., Int. J. Thermofluids 816, 100077 (2021). Copyright 

2021 Elsevier Ltd. [289] 

Due to free-stream unsteadiness, small amplitude roughness over the appropriate range of surface locations 

may excite traveling wave instabilities, or act as a direct source of stationary crossflow instabilities. Moreover, 

roughness at intermediate heights may have a significant impact on the growth characteristics of the boundary 

layer perturbations by scattering the instability waves [290]. One of the most important factors that affects the fluid 

characteristics is the distribution, amplitude and geometry of roughness elements. Watanabe et al. [291] 

experimentally investigated the laminar-turbulent transition of the boundary layer over a rotating cone. General 

distributed roughness level was found to be effective in stabilizing the Type Ι mode with a reduction in the number 

of vortices from 32 to 26. In order to simulate distributed surface roughness, wall suction was introduced by 

Floryan [292] to establish a linear stability model for three types of flow, i.e., PPF, PCF and Blasius boundary layer. 

The model predicted the effects of suction amplitude on the critical Reynolds number and the appearance of 

streamwise vortices. The formation criterion of suction Reynolds number corresponds to transitional Reynolds 

numbers of rotating-disk flow, from which the threshold relative roughness can be obtained [293]. Since viscous 

stresses at the wall/flow interface may result in an increase in energy production, the effect of wall compliance on 

the viscous Type Ⅱ mode can be strongly destabilizing [100], which has been experimentally verified by Colley et 

al. [294].  

Transition induced by isolated roughness has been extensively studied [295-297]. In view of the transition 

over distributed surface roughness, it mainly focuses on the effects of roughness height, roughness spacing, section 
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feature and the streamwise proximity of roughness elements. Corke et al. [298] suggested that transition is most 

likely to be triggered by the few highest peaks. For roughness with small amplitudes, transition is induced through 

a linear amplification of the exponentially growing disturbances. Large-amplitude roughness, by contrast, creates 

so-called “bypass” transition where local separations occur. It also means that the linear instability processes such 

as T-S waves are bypassed [299]. By examining the mean wall pressure, Muppidi and Mahesh [300] indicated that 

strong shear over the roughness surface generates counter-rotating pairs of streamwise vortices. The interaction of 

these vortices causes the shear layer to break up and then are followed by a transition to turbulence. Particularly, 

with closely packed roughness elements, both upstream spacing and spanwise spacing are insufficient to induce 

transition. Loiseau et al. [301] showed that flow over a cylindrical roughness exhibits a sinuous global instability at 

low roughness aspect ratios and a varicose shape as the aspect ratio is increased, which is qualitatively similar to 

flow over the cuboid roughness element [302]. Also, a cylindrical roughness seems to delay the transition to 

turbulence, when compared to the cuboid roughness element. Vadlamani et al. [303] suggested that for roughness 

elements inside the boundary layer, secondary sinuous instabilities on the streaks promote transition to turbulence 

due to the occurrence of an elevated layer. In contrast, transition occurs due to the shedding from the roughness 

elements that are higher than the boundary layer. In the context of the instability wavelengths, they are governed 

by the roughness spacing between the roughness elements. von Deyn et al. [304] also found that the streak 

instability in the presence of roughness occurs within the boundary layer. Both the roughness height and density 

have an impact on the onset of transition.  

There are two distinct theoretical models for the steady boundary-layer flow over rough surfaces. Miklavčič 

& Wang [305] proposed the MW model that is empirically modeled by converting the no-slip boundary conditions 

to partial-slip conditions at the disk surface. Two forms of anisotropic roughness (radial grooves and concentric 

grooves) and isotropic (general) roughness were used for the convective stability of the boundary-layer flow over a 

rotating disk [306]. Instead of independent modelling about the roughness level in both the radial and azimuthal 

directions of the MW model, Yoon et al. [307] imposed a particular mathematic form of surface distribution as a 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
3
2
9
8



 

48 
 

function of radial position only and a rotational symmetry, as presented by Garrett et al. [308], i.e., the YHP model. 

Due to the limitations of the YHP model, the MW model is more suitable for modeling various forms of distributed 

roughness, including anisotropic and isotropic roughness.  

Recently, based on the MW model, Alveroglu et al. [309] revealed that stabilization of the Type Ⅱ mode in 

terms of radially anisotropic roughness is achieved for all boundary layers. Isotropic surface roughness can be used 

as a passive drag-reduction mechanism for a wide range of rotating boundary-layer flows [308]. Similarly, the 

linear instability of the non-Newtonian boundary-layer flow over rough rotating disks was investigated by Alqarni 

et al. [310] to account for the effects of isotropic and azimuthally anisotropic surface roughness on the behavior of 

the critical Reynolds number and growth rates of two modes of instability. With due consideration of the enforced 

axial flow, both radially anisotropic and isotropic surface roughness have a strong stabilizing effect on the 

boundary-layer flow for the type Ι mode. However, for the type Ⅱ mode, both energy production and dissipation 

decrease for higher levels of radially anisotropic roughness, which showed a strong destabilizing effect [311-312]. 

This conclusion is not applicable for traveling modes studies of crossflow instability due to the increase of the 

frequency at which the most dangerous modes occur [313]. Besides, following the azimuthal velocity profile, it has 

been found that the resemblance between roughness-induced and confinement-induced effects [294] on the 

rotating-disk flow is remarkable. The effects induced by changes in the geometric boundary conditions is of the 

same nature and magnitude as the effects induced by roughness [90]. 

3.2. Working Media 

➢ Temperature-dependent viscosity  

There has been a vast amount of research concerning the flow analysis of Newtonian fluid in HVD. Viscosity 

is one of the most considered factors that subjected to viscous dissipation. Under temperature-viscosity dependency, 

the fluid viscosity decreases with increase in temperature rise [314]. Viscous heating plays an important role in the 

fluid dynamics with temperature-dependent viscosity because of the coupling between the energy and momentum 

equations causing profound changes in the flow structure [315-316].  
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In case of flow with temperature-dependent viscosity, the velocity profile is affected by the viscosity 

dissipation heat, which induces unstable mode in the flow system [317]. From the existing literature, there are two 

types of temperature-viscosity relationship, namely Arrhenius-type and Nahme-type. Sukanek et al. [318] used the 

Nahme-type law to investigate the stability of PCF with viscous heating. Four different modes of instability are 

found: an inviscid mode, a viscous mode, a coupled mode, and a purely thermal mode. They indicated that the flow 

may become unstable for moderate Reynolds and Brinkman numbers. This finding is also verified by Yueh and 

Weng [319], who indicated the difference between the two models mentioned above. They found that the fluids 

obeying the Arrhenius-type model are more stable than those of the Nahme-type model if both are based on the 

same temperature-sensitive viscosity. However, the second viscous mode for the instability is not observed by 

Eldabe et al. [320] who examine the effect of shear thinning and shear thickening on the pow-law fluid that obeys 

the Arrhenius-type model. Also, the Brinkman numbers for the instability of the shear thinning/thickening fluid 

occurs are different from the Newtian fluid. Based on the Nahme-type model, Sahu and Matar [316] showed that 

the critical Reynolds number decreases by one order of magnitude with increase in the Nahme number.  

One of the well-known methods for delaying a transition to turbulence, for example in boundary layers, has 

been to reduce the viscosity at the wall. Such a reduction could be brought about by heating the surface [316]. Wall 

and Wilson [321] included the effects of temperature-dependent viscosity and heating of the channel walls to 

analyze the linear stability of the viscous channel flow. A non-uniform increase of the viscosity will stabilize the 

flow whereas a non-uniform decrease of the viscosity may either destabilize or stabilize the flow [322]. In order to 

more fully understand the differences between different viscosity models, the nonlinear secondary flows that 

bifurcate from the basic flows were analyzed. It was found that the secondary flow is destabilized relative to the 

corresponding isothermal flow when the viscosity decreases with increasing temperature, and vice versa [323]. 

Govindarajan et al. [324] studied the effects of a weakly space-dependent viscosity on the stability of 

hydrodynamic flows. Due to reduced energy intake from the mean flow to the fluctuations, about 10% viscosity 

changes may lead to obvious increase in the threshold Reynolds numbers for instability. Jasmine et al. [325] 
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investigated the linear absolute and convective instability of rotating disk flow by taking the fluid viscosity to be 

an inverse linear function of temperature. It is established that the flow stability is sensitive to changes in viscosity. 

More specifically, flows with temperature-dependent viscosity are found to be less stable than cases with 

temperature-independent viscosity [326].  

Furthermore, detailed mechanisms such as temperature-dependent viscosity, viscosity stratification and 

buoyancy were considered by Sameen et al. [327]. They found that the temperature difference between the walls 

has a stabilizing effect whereas buoyancy, even at fairly low levels, gives rise to high levels of subcritical energy 

growth. As compared to the primary instability, wall heating has a converse effect on the secondary instabilities, 

destabilizing significantly when viscosity decreases towards the wall. Sahu and Matar [316] considered the linear 

stability of pressure-driven flow undergoing viscous heating through an asymmetrically-heating channel. It was 

found that increasing the temperature difference between two walls can help to promote instability for viscous 

heating. However, since the temperature at the walls due to viscous heating is expected to increase continuously, 

such an assumption about the boundary condition at the walls is unphysical. In view of that, Srivastava et al. [328] 

investigated the non-isothermal flow behavior via direct numerical simulations and a temporal linear stability 

analysis. They found that increasing the Reynolds number or decreasing the Prandtl number enhances the 

instability behavior. In particular, the Grashof number does not change the stability characteristics qualitatively.  

➢ Non-Newtonian fluids 

Many fluids are non-Newtonian, for which the slope of the shear stress versus shear rate curve is a function of 

the shear rate tensor. In general, non-Newtonian fluid exhibits certain distinct features, such as shear-rate 

dependency of viscosity (related to shear-shinning or shear-thickening aspects of the fluid), etc. [329]. The 

constitutive equations of non-Newtonian fluids are usually too complex to solve because of high nonlinearity than 

Navier-Stokes equations. For power-law fluids, Andersson et al. [330] presented numerical solutions for the 

extremely non-linear ODEs arising in the presence of the shear-thinning and shear-thickening fluids, which may 

have a stabilizing effect on the flow. Based on two viscous models, Pinarbasi et al. [331] investigated the effect of 
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temperature-dependent and shear-thinning viscosity on the stability of a channel flow, which showed different 

instable mode for the same temperature-sensitive viscosity. The decrease of the viscosity with temperature leads to 

flow instability [332]. For a PCF of a power-law fluid with viscous heating, it was observed that shear thinning has 

a destabilizing effect on the fluid flow, while shear-thickening has a stabilizing effect [320]. Following that, Nouar 

et al. [333] conducted a linear stability analysis on the effects of shear-thinning fluid on PPF, and they concluded 

that viscosity stratification delays the transition. As for PCF, since there is no viscosity stratification, the stress 

tensor is anisotropic aligned with the strain rate perturbation. Shear-thinning significantly increases the amplitude 

of the response to external excitations and initial conditions [334]. For the stability problem of PCPF, the influence 

of the velocity of the moving wall on the critical conditions is qualitatively similar to that for a Newtonian fluid 

[335].  

For the rotating-disk flows, Ming et al. [336] solved the non-linear ODEs over a rotating disk, assuming that 

the thermal conductivity follows the same function as the viscosity. It was indicated that the parameters of the 

power-law index and Prandtl number have significant effects on the velocity and temperature fields. The presence 

of non-Newtonian fluids causes the thickness of the boundary layer to decay with a power-law index. In addition, 

under the assumptions of a large Reynolds number and generalized Fourier heat conduction, it has been found that 

the relationship between the viscous coefficient and heat conductivity of fluids is nonlinear which depend strongly 

on the power-law index [337]. Griffiths et al. [338] considered a rigorous asymptotic stability analysis of the 

shear-thinning boundary-layer flow over a rotating disk. Predictions for the wavenumber and wave angle of the 

disturbances suggest that shear-thinning fluids may have a stabilizing effect on the flow, which is also applicable to 

the convective instability analysis of the BEK (Bödewart, Ekman, and von Kármán flows) family by Abdulameer 

et al. [339], Using the Carreau model for a range of shear-thinning and shear-thickening fluids, local convective 

instability of the incompressible boundary layer flows over rough rotating disks is analyzed by Alqarni et al. [310]. 

It was indicated that isotropic and azimuthally-anisotropic surface roughness leads to the stabilization of both 

shear-thinning and –thickening fluids. With the occurrence of non-uniform heat source/sink, the temperature 
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decreases along with the similarity variable with the increasing Prandtl number but enhances with the enhancement 

in heat source/sink parameters [340]. Instead of the power law model that predicts both shear thinning/thickening 

impacts, the Ree-Eyring model from kinetic theory can be utilized for the study of flow behavior. With the 

assistance of the particle swarm optimization algorithm and artificial neural networks (ANN), substantial 

optimization has been achieved for the nonlinear mixed convective behavior of Ree-Eyring fluid between two 

rotating disks [341]. The results showed that enhancing the viscous effect of the Ree-Eyring fluid has a dramatic 

effect on flow instability.  

In addition, the Bingham model is often used to describe the rheological behavior of a viscoplastic fluid. Peng 

et al. [342] and Landry et al. [343] found that the yield stress fluid flow is less stable than the corresponding 

Newtonian fluid flow, which is caused by an increase in the rate of strain of the basic flow. Nouar et al. [344] 

performed a linear stability analysis of plane Poiseuille flow of a Bingham fluid using modal and non-modal 

approaches. Within the range of parameters considered, plane Bingham-Poiseuille flow is found to be linearly 

stable. Ahmadpour et al. [345] derived numerical results for the swirling flow of Bingham fluids above a rotating 

disk. The effects of the Bingham number on the velocity profiles and wall shear stress distribution were presented. 

With the increase of the Bingham number, the heat penetration depth grows and the variation in solution profiles 

reduces in magnitude. Also, Bingham fluids have led to an increase in the rate of entropy generation within the 

boundary layer [346]. 

The use of an Magento-Hydro Dynamics (MHD) fluid as a lubricant in industrial applications is appealing 

because it prevents the anticipated variation of lubricant viscosity with temperature. There is a strong coupling 

between the unsteady equations of mass and momentum conservation and the variable magnetic field and energy 

equations. Alam et al. [347] and Jayavel et al. [348] considered the effects of a magnetic field on the squeezing 

flow between parallel plate. Based on the similarity transformations from nonlinear PDEs to nonlinear ODEs, they 

found that the thermo-fluid properties in the lubrication regime are strongly affected by the combination effects of 

the electromagnetic field and plate squeezing/separating. 
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➢ Cavitation 

As the relative angular velocity of the friction disk increases, or the film truly occupies the clearance space 

with increasing volume in the divergent region, air bubbles are formed, i.e., cavitation effect. This effect in the 

transmission oil needs to be considered in order to anticipate the accurate dynamic torque behavior [8]. There has 

been very little research on the stability analysis of HVD or wet clutch considering cavitation effects. It is observed 

that based on the same flow shear mechanism, the fluid film in the converging-diverging geometry of the 

hydrodynamic journal bearing will cavitate within the divergent region. Rao et al. [349] presented a 

two-dimensional linear stability analysis considering the fluid film in both the full film and cavitation regions. 

Based on the infinitesimal perturbation amplitude, the stability threshold increases with an increase in supply 

pressure in the case of a grooved journal bearing. Then, Rao et al. [350] developed a numerical procedure for 

stability analysis of a lubricated rough journal bearing using the same Elrod’s cavitation model. They found that 

the threshold speed for instability increases significantly for the roughness patterns on the grooved bearing surface 

only at higher eccentricity ratios.  

Despite the limitations of these studies investigating the dynamic characteristics, interfacial waves that exist 

on the interface of a gas-liquid two-phase flow have a significant effect on the heat and mass transfer 

characteristics of the system. In terms of two-phase flow in the microchannel, some of the frictional heat that is 

convectively transferred from the oil to the disks, will regenerate a relatively stable heat flux on the oil-disk 

interface [351]. As has been proved, some physical effects, such as capillary or shear, can cause large pressure drop 

excursions, and occasionally result in a negative drop with a corresponding flow reversal in the channel [352]. The 

resulting two-phase flow instabilities may take place which may induce some undesired effects, such as 

mechanical vibrations in the system or a decrease in hydrodynamic performances, etc. Therefore, it is necessary to 

perform an in-depth instability analysis about the gas-liquid two-phase flow instability.  

As an important part of static instability, Ledinegg instability, which are relevant to pressure drop excursions, 

is a system-level instability that deals with internal and external pressure characteristics within a two-phase flow 
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system. Stelling et al. [353] obtained the pressure drop in a heated tube under downflow conditions. The 

occurrence of Ledinegg instability depends on the L / D (L is the length of heated channel and D is the tube inner 

diameter) ratio of the channel, the inlet temperature, exit pressure, and surface heat flux, which may effectively 

predict the minimum point velocity, i.e., the onset of flow instability (OFI). Similarly, demand curves (pressure 

drop versus mass flow rate curves for fixed wall heat flux and channel exit pressure) were experimentally 

investigated, and thereby the onset of flow instability points can be specified [354]. In this case, it can be 

summarized as follows: For a nonzero heat flux, with the reduction of the flow velocity, pressure drop behavior 

begins to deviate from that for single-phase flow and then two-phase effects become more pronounced with OFI as 

demonstrated in Fig. 16. As mass velocity is reduced further, pressure drop begins to increase due to added body 

force and acceleration effects present in two-phase flows [355]. As observed in the experiments, the OFI always 

occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the 

bubbly-churn transition in flow pattern [356]. For more information, the identified minimum mass flux conditions 

imply that flow excursion points that were close to the onset of a significant void. This highlights the fact that the 

flow excursion is triggered by the coalescence of facing bubbles (for Pe < 14000) or wavy vapors (for Pe > 14000) 

on opposing heated surfaces [357]. Furthermore, in order to make it comparable with the concurrent thermal 

hydraulic behaviors, the ONB, OSV, and OFI under constant heat flux and constant mass flux conditions were 

sequentially investigated. Based on the two experimental methods, the OFI can be identified using pressure drop 

and inlet pressure fluctuations [358]. More recently, Lu et al. [359] defined OFI as the point at which significant 

flow oscillations were observed. On account of the significant channel restriction and surface tension, the flow 

patterns rapidly evolved to the annular flow for OFI, while the flow state simultaneously transferring from a stable 

state to an unstable state.  

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
3
2
9
8



 

55 
 

 

Fig. 16. Pressure versus mass velocity characteristics curves for flow boiling (internal characteristics, q>0). 

Reproduced with permission from O’Neill and Mudawar, Int. J. Heat Mass Tran. 157, 119738 (2020). Copyright 

2020 Elsevier Ltd. [354] 

For high heat fluxes in micro-channels, the phase change will cause the bubble to expand towards the channel 

exit as well as the inlet. Then, an increase in the pressure drop will lead to a delayed response in the mass flow rate, 

i.e., density wave oscillations (DWOs). More specifically, local instabilities are caused by the rapid expansion of 

confined bubbles. Under specific conditions, there are inlet pressure signals that exhibit fluctuations with high 

amplitudes, which showed how confined growth could lead to a rapid transition from bubbly flow to annular flow 

[360], as shown in Fig. 5. When using a compliant buffer tank, unsteady flows are observed with a different 

intensity and across a different range of operating conditions. A critical Reynolds number to delimit steady and 

unsteady states behaviors was determined [361]. Wang et al. [362] found that in the stable regime, isolated bubbles 

were generated and then squeezed out of the microchannel. Two unstable regimes showed the effects of heat fluxes 

and mass fluxes on flow instability, including the expansion of vapor bubbles and the transition of flow pattern. 

Later, due to the difficulties in local accurate measurements of wall temperatures, platinum microheaters were 

fabricated on a Pyrex glass wall in the single microchannel. Pressure drop oscillations (PDOs) with superimposed 

DWOs may lead to reverse flow [363]. Similar to measuring local temperature, local heat transfer coefficients were 

measured in conjunction with visualizing local flow [364]. It was found that vapor recoil instabilities are 
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responsible for triggering flow reversal and high fluctuations in both temperature and pressure. This also greatly 

implies the fact that reverse flow in the upstream direction does not absolutely correspond to back and forth 

oscillations with flow instabilities [365]. In order to damp out or even eliminate DWOs, Fan and Hassan [366] 

investigated the effects of an orifice on flow oscillation, pressure drop, and heat flux at the onset of flow stability 

under uniform heating conditions. This method provides a way to avoid the adverse impact of DWOs. It was 

reported that the heat flux at the onset of flow instability for the microtubes with orifices of 50% and 35% area 

ratios was much larger than that of the microtube without an orifice, which effectively shows the potential to 

stabilize the flow without active control. More importantly, given that bubble dynamic processes are usually 

related with quantitative instability criteria, He et al. [367] presented an analytical model to predict pressure 

fluctuation through the analysis of bubble growth. The relationship between bubble reversal flow and pressure 

fluctuation is determined by solving the conservation equations for the momentum of the liquid column, coupled 

with the equations of the force balance at the bubble interface. Furthermore, based on a similar model, Li and 

Hrnjak [368] made a comparison between the simulation and available experimental measurements. It is shown 

that the model is capable of capturing the transient flow regime and quantitatively demonstrates the mechanism of 

flow reversal.  

The rapid growth of the bubble towards the inlet leads to DWOs, while the interaction of the bubbles with the 

upstream compressible volume triggers PDOs. As discussed for Ledinegg instability, pressure drop instability is 

also a system-level instability. This instability occurs when the system is operating on the negative-slope portion of 

the internal pressure curve and there is a compressible volume within the system [369]. According to Maulbetsch 

and Griffith [370], in high power density systems, the amount of compressible volume needed to sustain the 

oscillation is very low. The frequency of the oscillations is partly controlled by the compressible volume dynamics 

in which PDOs mode were experimentally investigated. More experimental studies about PDOs can be found in 

Yuncu [371], Qu and Mudawar [372], Huh et al. [373], Zhang et al. [374], Kuang et al. [375], etc. It can be found 

that PDOs with high amplitude and low frequency are usually characterized by the transition of flow pattern (a 
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bubbly/slug flow and elongated slug/semi-annular flow), which can be used as an index for the appearance of 

reversed flow [376]. Due to the changes in flow patterns, heat transfer is enhanced both in the downstream region 

and in the upstream region. And the effect of instabilities on heat transfer is amplified in microchannels [377]. 

Based on the amplitude-frequency characteristics, five different flow pattern evolution modes are caused by the 

coupling effects of inertial force, evaporation momentum, heating wall, etc. [378]. Some influencing parameters 

leading to the onset of PDOs are concentrated in inlet mass flow rate, inlet subcooling degree, mass and heat flux, 

compressible volume, etc. [379]. On the other hand, most of the theoretical studies concerning two-phase flow 

commonly use correlations synthesized from experimental data. A lumped model for pressure-drop type 

instabilities in an upflow boiling system is developed for predicting the oscillation amplitude and period [380]. The 

upstream compressibility and the associated oscillatory transients can be quantified using the lumped model [374]. 

Also, the effects of upstream compressible volume, heat flux, mass flow rate, and inlet sub-cooling degree on the 

pressure drop instability were comprehensively investigated [375]. Then the flow oscillation amplitude can be 

regulated based on a family of state and dynamic output-feedback active flow controllers. And the controllable 

parameters of the system, including the valve setting, can be chosen to avoid pressure drop oscillation [381]. 

Moreover, the model revealed that a fully confined bubble may result in bubble reversal flow and pressure 

fluctuations [382]. The local pressure peak caused by the build-up of downstream flow resistance can cause 

negative pressure gradient, which induces flow reversal [383]. It has been demonstrated that the model can guide 

the selection of system inputs for efficient operation and support the development of effective control strategies to 

suppress PDOs [384].  

Moreover, Qu and Mudawar [372] found that large-amplitude flow oscillations are the result of the interaction 

between vapor generation in channels and the compressible volume in the upstream flow loop. As pressure drop 

oscillation becomes severe, pre-mature critical heat flux (CHF) can be eliminated simply by throttling the flow 

upstream. Particularly, in the case of higher pressures, the rapid growth instability of bubbles can be inhibited by 

the low superheat temperature and then boiling instability was significantly delayed [385]. Based on the results 
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regarding the onset of flow oscillation and CHF, it was observed that system pressure has a significant impact on 

flow instabilities.  

4. CONCLUDING REMARKS AND PERSPECTIVES 

4.1 Conclusions 

Microscale flow stability of the incompressible viscous fluid in HVD plays a significant role, offering a 

maximum of versatility as power transmission elements, such as large-scale equipment with high-power and large 

reduction ratio. Although the nonlinear development of the tribodynamic behavior is complicated, the flow 

configurations leading to final flexible outcomes can be probably categorized as three simple idealized 

plane-parallel flow: plane squeeze flow, plane shear flow and rotating-disk flow. As a typical fluid-solid coupling 

system, it is no doubt that flow instability will be greatly affected by the physical characteristics of the coupling 

interface, from which the combined interaction may show a dramatic evolution trend according to the extreme 

working conditions. In addition, the presence of frictional heat, due to the tribodynamic behavior, also has a major 

influence on the boundary conditions, the oil viscosity, as well as the multi-physical coupling mechanisms of the 

friction pair system. These flow configurations, along with the wall conditions and the working media, provide 

analytical characterizations of key mechanisms and physical phenomena about flow instability. In this review, 

detailed elucidation of the laminar-to-turbulent transition in such a wall-bounded flow have been carried out, which 

may open new routes to prevention and control of system instability of HVD. Main highlights are as follows: 

(1) Squeeze-film flow stability depends on whether the disks move towards or away from each other. The case 

of squeezing may help enhance the stability caused by the suppressive effects of wall boundaries. However, the 

resulting viscous shear may tend to destabilize the flow due to viscosity diffusion. Since, for the rotating-disk 

boundary layer, suction has a greater stabilizing effect on the absolute instability than the destabilizing effect of 

injections, it can be inferred that the rotating-disk flow has a comparative significance over the squeeze-film flow 

during the flexible drive process of HVD.  

(2) Since there are discrepancies between the linear/nonlinear analysis and the experiments, it is necessary to 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
3
2
9
8



 

59 
 

first revisit the shear flow instability from the prospective of (linear) nonmodal stability analysis. This analysis 

should comprehensively incorporate time-dependent characteristics, spatially varying configurations, stochastic 

influences, and complex microstructures of the wall boundary. For the transition to turbulence in wall-bounded 

flows, nonlinear nonmodal analysis can be coupled with a search over disturbance amplitude to identify the critical 

disturbance, i.e., the minimal seed for transition, that first breaches the basin boundary of the reference state.  

(3) As the local Ro varies with the radius, the affected global stability properties of the rotating-disk 

boundary-layer flow reflect the inconsistency between the non-parallel stabilizing effects and the destabilizing 

non-linear effects. Linear global instability can be created by local absolute instability at the edge of the disk. 

Moreover, for sufficiently large azimuthal mode numbers that are greater than those associated with the onset of 

absolute instability, disturbances become globally linearly unstable. The transition to turbulence may be dominated 

by the significant spatial growth associated with local convective instabilities. 

(4) Whether for the merged boundary layers or the separated boundary layers, the transition to turbulence 

appears to be governed by the nonlinear interactions between the circular and spiral modes of the stationary disk 

flow. In the case of co-rotating or weak counter-rotation flow, various flow patterns including the propagating 

circular vortices, mixing of axisymmetric propagating vortices, and positive spirals appear successively on 

increasing tRe . Subsequently, the flow transitions into a more disordered state. When the disks rotate in opposite 

directions, negative spirals, mixing of positive and negative spirals, and positive spirals appear successively as 

tRe  increases. 

(5) Developing a superhydrophobic surface with specified directional sensitivity is useful for delaying the 

early onset of transition. Increasing the anisotropy in the slip length may reduce the critical Reynolds number due 

to the decrease in the difference in the tilt angles at the two walls. These results may be of interest for enhancing 

mixing or heat transfer in micro-channel flow systems, such as HVD, where turbulence cannot be triggered. 

(6) Depending on parameters such as depth ratio, permeability, and porosity of the porous medium, the 

stability over porous surfaces is influenced by the velocity slip at the liquid-porous interface. From the perspective 
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of energy analysis, flow instability seems to be triggered by an increase in energy transfer from the base flow to 

disturbances. As regards PCPF, the presence of the Couette flow component intensifies the most unstable fluid 

layer mode while it attenuates the most unstable porous layer mode. It effectively highlights once again the 

dominating role of shear flow stability as a sufficient condition for flexible controllability in HVD.  

(7) Surface roughness typically results in statistically inhomogeneous flow fields in the roughness sublayer on 

the length-scale of the roughness. This leads to an early transition from laminar to turbulence through bypass 

transition. As an effective passive flow-control method, understanding the flow stability mechanism of the 

boundary layer is crucial. The diverse variety of roughness, the chaotic and random nature of turbulent flows, and 

the lack of systematic studies on the structure of turbulent flows are possible reasons for considerable 

discrepancies.  

(8) The critical Reynolds number decreases as the viscous heating increases. It may be caused by the coupling 

effects between velocity perturbations and the base temperature gradient, which ultimately reduce the dissipation 

energy of the disturbances. Increasing the temperature difference between two walls can help promote instability 

due to viscous heating. The instability behavior can be enhanced by increasing the Reynolds number or decreasing 

the Prandtl number. In terms of HVD, as there is obvious difference in thermal conductivity between the disks, the 

conclusions mentioned above are of great reference value for improving the flow stability.  

(9) In light of the amplitude of response to external excitations and initial conditions, as well as the phase 

exchange of energy caused by viscosity stratification, the stability of PCPF of a power-law fluid may be influenced 

by the balance between PCF and PPF. With the increase in the power-law index of shear-thinning fluids, a 

universal stabilizing effect on the entire BEK family of flows can be predicted, which can be be utilized to delay 

laminar-turbulent transition in HVD under high rotational speeds.  

(10) DWOs and PDOs are caused by the rapid growth of bubbles and the interaction of the bubbles with 

upstream compressible volume, respectively. Both types of instability are closely related to pressure fluctuations. 

For the two-phase flow of HVD, due to its high sensitivity to disturbances, the trigger mechanism of instability 
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should be further studied by combining experiments with numerical simulation methods, especially focusing on the 

crucial factors such as squeeze-film flow and the physical properties of the working medium.  

4.2 Perspectives 

Although numerous valuable works on flow instability of basic flow patterns have been carried out in the past 

decades, and lots of progresses have been achieved with respect to the effects of key influence factors from the 

fluid-solid interaction system, there are still som aspects that should be further investigated. 

 (1) Regardless of whether the working mode is speed-regulating or soft-start or soft-brake, the tribodynamic 

behavior depends on the simultaneous motion of squeeze-film and shear-film. In particular, the shear flow is 

affected by both the centrifugal forces and the Coriolis forces, which are of great importance in rotating machinery. 

Such superimposed instabilities in wall-bounded microscale flows are of an entirely different character compared 

to the three aforementioned flow patterns. Therefore, understanding the complicated flow characteristics and 

establishing an appropriate analytical model or a specific numerical model, or both, including the most recent 

nonlinear developments, is an important further work. 

(2) In a sliding system involving frictional heat, a disturbance might change the nominally uniform pressure 

distribution and hence the friction heat generation. The associated non-uniform thermoelastic distortion will 

eventually evolve into frictionally-excited thermoelastic instability or TEI if the sliding speed is in excess of a 

certain threshold value. For the frictional system with lubrication, there is no doubt that flow instability can be 

influenced by TEI, in which the constantly evolving non-uniform distribution of frictional heat will transform the 

various physical characteristics of the oil film in turn. In order to further investigate the unsteady flow and heat 

transfer in HVD, there is an urgent need for analyzing the coupling mechanism between flow instability and TEI. 

(3) Current studies mainly focus on the negative effects of flow instability. However, the positive effect of 

flow instability can be exploited to enhance the heat and mass transfer efficiency of the oil film, or to reduce the 

fluid transportation energy consumption, on condition that flow instability should be kept within a limited level. 

This, to some extent, depends on the implementation of flow control, which attempts to introduce perturbations 
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into the flow field to alter the original flow development path towards an ideal state. Thus, the effects of different 

flow control methods need to be researched and assessed in terms of the operating range and performance of HVD.  
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ABBREVIATIONS 

HVD hydroviscous drive 

TBM  tunnel boring machine 

CST controlled start transmission 

O-S Orr-Sommerfeld 

PPF plane Poiseuille flow 

PCF plane Couette flow 

PCPF plane Couette-Poiseuille flow 

RPCF rotating plane Couette flow 

TCF Taylor-Couette flow 

MEMS microelectromechanical system 

LDGM low-dimensional Garlerkin method 

QSL quasi-steady linear 
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CFD computational fluid dynamics 

OHAM optimal homotopy asymptotic method 

SLLM spectral local linearization method 

DNS direct numerical simulations 

LSA linear stability analysis 

CFD computational fluid dynamics 

EIM energy integral method 

SHP superhydrophobic 

FEM finite element method 

WIBL weighted residual integral boundary-layer 

T-S Tollmien-Schlichting 

ANN artificial neural networks 

MHD magento-hydro dynamics 

DWOs density wave oscillations 

OFI onset of flow instability 

PDOs pressure drop oscillations 

CHF critical heat flux 

ODEs ordinary differential equations 

PDEs partial differential equations 

BOD bi-orthogonal decomposition 

PIV particle image velocity 

BEK 

TEI 

Bödewart, Ekman and von Kármán flows 

thermoelastic instability 

NOMENCLATURE 
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a , b  = inner, outer radius of disk, respectively 

1 /
tΩ , 2 /

bΩ ,   = angular velocity of separator/top and friction/bottom plate, and relative angular velocity, 

respectively 

th  = average gap height 

  = density of lubricating oil 

rv , v  = radial and tangential velocity component 

  = kinematic viscosity of the oil film 

Re  = tangential Reynolds number 

 , E= generalized energy functional 

Ro = Rossby number 

n = azimuthal mode number 

na = azimuthal mode number for the onset of absolute instability 

G = aspect ratio of the gap separating the two parallel disks 

Mc = Marangoni number 

Kn = Knudsen number 

0u  = slip velocity 

x , 
z = streamwise and spanwise slip lengths, respectively 

m = outward wall-normal direction 

  = slip tensorial 
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