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This paper aims to systematically solve stochastic team optimization of
a large-scale system, in a linear-quadratic-Gaussian framework. Concretely,
the underlying large-scale system involves considerable weakly coupled co-
operative agents for which the individual admissible controls: (i) enter the
diffusion terms, (ii) are constrained in some closed-convex subsets and (iii)
subject to a general partial decentralized information structure. A more im-
portant but serious feature: (iv) all agents are heterogenous with continuum
instead of finite diversity. Combination of (i)–(iv) yields a quite general mod-
eling of stochastic team-optimization, but on the other hand, also fails current
existing techniques of team analysis. In particular, classical team consistency
with continuum heterogeneity collapses because of (i). As the resolution, a
novel unified approach is proposed under which the intractable continuum
heterogeneity can be converted to a more tractable homogeneity. As a trade-
off, the underlying randomness is augmented, and all agents become (quasi)
weakly exchangeable. Such an approach essentially involves a subtle bal-
ance between homogeneity v.s. heterogeneity, and left (prior-sampling)- v.s.
right (posterior-sampling) information filtration. Subsequently, the consis-
tency condition (CC) system takes a new type of forward-backward stochastic
system with double-projections (due to (ii), (iii)), along with spatial mean on
continuum heterogenous index (due to (iv)). Such a system is new in team
literature and its well-posedness is also challenging. We address this issue
under mild conditions. Related asymptotic optimality is also established.

1. Introduction. The starting point of the present work is the well-studied mean-field
team (MFT). In its standard form, a MFT involves a large-scale system with considerable
weakly interactive but cooperative agents {Ai}Ni=1. All agents are endowed with an individual
(principal) state, cost functional and admissible decision set respectively in the following
manner. The individual state dynamic of Ai is formulated by a controlled Itô-type linear
stochastic differential equation (LSDE):

(1)

{
dxi(t) = [

A(t)xi(t) + B(t)ui(t) + F(t)x(N)(t) + ft

]
dt + σt dWi(t),

xi(0) = ξ ∈ R
n, 1 ≤ i ≤ N,

where x(N) := 1
N

∑N
i=1 xi is the weakly coupled state-average across all agents, Wi is a Brow-

nian motion (BM) that might be vector-valued (e.g., with a common noise). For each Ai , its
principal cost Ji (while we may call {Jj }j �=i the marginal costs for Ai ) is measured by the
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following quadratic functional:

(2)
Ji

(
u(·))= 1

2
E

∫ T

0

[〈
Q(t)

(
xi(t) − H(t)x(N)(t)

)
, xi(t) − H(t)x(N)(t)

〉
+ 〈

R(t)ui(t), ui(t)
〉]

dt,

with admissible team strategy u(·) = (u�
1 (·), . . . , u�

N(·))�. Note individual admissible ui(·) ∈
Ud,f

i,op = L2
Fi (0, T ;Rm) with filtration F

i defined later, representing the decentralized open-
loop information of Ai .

A subtle point here is the distinction between centralized (Uc,f
i ), and decentralized (Ud,f

i,op ,

Ud,f
i,cl ) but of full information. This makes team-optimization differing from classical vector

optimization/control. Superscripts “cl”, “ol” denote the closed-loop and open-loop and “f ”
the full-information. We will address this point in more detail in Section 2. Hereafter, we
may exchange the usage of u = (u1, . . . , uN) ∈ R

m×N , u = (u�
1 , . . . , u�

N)� ∈ R
mN and u =

(ui, u−i) ∈ R
m×N with u−i = (u1, . . . , ui−1, ui+1, uN) ∈ R

m×(N−1) by noting all of them
represent the team profile among all agents, but only differ in formations. For simplicity, we
focus on Lagrange problem only, and no essential difficulty to the Bolza problem extension.

By mean-field “team” (MFT), we refer all weakly coupled agents {Ai}Ni=1 are cooperative,
aiming to optimize the following social (or, team) cost functional (the related optimal func-
tional is called mean-field team): J (N)

soc (u(·)) = ∑N
i=1 Ji (u(·)). Due to the new framework,

MFT is different from mean-field control (MFC) problem and mean-field games (MFG).
MFT v.s. MFC. (i) MFT aims to analyze a complex large-scale system including many

cooperative coupled agents, while MFC (e.g. [43]) only concerns a single agent with state
distribution (or, mean) entering dynamics or cost. So, essentially, MFT is for multi-agent
systems with decentralized information but MFC only for a single-agent with (of course)
centralized information. Consequently, MFT seeks some (joint) strategy but without infor-
mation compilation across team members; by contrast, MFC only involves a single agent
so naturally seeks control by its own centralized information. (ii) Owning to the informa-
tion distinction above, analysis of MFT and MFC also proceed very differently. For MFT,
two crucial steps are variational decomposition and duality procedure to construct auxiliary
problem for a representative agent. By comparison, MFC analysis is rather straightforward,
no need to invoke variation and duality since it involves single-agent and central-information
only. In addition, MFT essentially invokes some fixed-point arguments but this is not needed
in MFC. (iii) Although in context of the homogeneous model (i.e., all agents are symmetric),
there exists some connection between MFT and MFC (to partial content) in analysis. How-
ever, such connections will no longer be valid for the heterogenous model in the presence of
nonsymmetric agents, especially with continuum heterogeneity.

MFT v.s. MFG. Furthermore, MFT is also quite different from MFG. (i) Concept differ-
ence. Although both are for large population systems, MFC is for cooperative agents towards
a social-optima (Pareto) while MFG for noncooperative agents to an Nash equilibrium. (ii)
Analysis difference. By (i), MFG and MFT analysis are very distinctive, especially for fixed-
point arguments. In MFG, we can directly freeze state-average limit limN→+∞ x(N) to con-
struct cost functional of auxiliary problem, and derive a consistency condition (CC) to com-
plete the fixed point argument. However, for MFT, we cannot freeze x(N) directly as in MFG.
Instead, MFT auxiliary functional must be specified in an indirect way. Roughly speaking, we
should apply variational decomposition and weak duality, then auxiliary cost based on it, then
fixed-point argument. Noting such pivotal variational decomposition is not needed at all for
MFG because of its noncooperative nature. (iii) Moreover, verifications of the above MFT
asymptotic social-optima and MFG asymptotic Nash equilibrium are also very distinctive.
For example, due to the cooperative structure, all agents A1, . . . ,AN in MFT cooperate to
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minimize J (N)
soc (u(·)), and u−i (i.e., all decisions except Ai) cannot be viewed as endogenous

terms as in MFG.
Please refer to [3, 5, 9, 11, 13, 30, 31] for some recent work on MFG and refer to [8,

10, 18, 29, 36] for the limit relation between MFG and noncooperate N -player games. The
interested readers may refer to, for example, [27, 34, 39], for a detailed analysis comparison
between MFG and MFT, and [38, 40] for some recent studies from various perspectives with
different modeling variants. In particular, see [23] for MFT with volatility uncertainty; [25]
for linear-quadratic-Gaussian (LQG) mean-field social optimization with a major player; [30]
for MFG with optimal investment under relative performance criteria; [33] for LQG games
with a major player and continuum-parametrized minor players; and [41] for mean-field team
in LQG models with Markov jump parameters.

Our work distinguishes itself from all the above MFT literature by the following fairly
(even not the most) general formulation, in LQG context. Unlike (1), the individual dynamic
of agent Ai now takes

(3)

⎧⎪⎪⎨⎪⎪⎩
dxi(t) = [

A�i
(t)xi(t) + B(t)ui(t) + F(t)x(N)(t)

]
dt

+ [
C(t)xi(t) + D�i

(t)ui(t) + F̃ (t)x(N)(t)
]
dWi(t),

xi(0) = ξ ∈ R
n, 1 ≤ i ≤ N,

where {�i}Ni=1 is a sequence of independent random variables which are also independent
of {Wi(s), s ≥ 0}Ni=1 to represent diversity. The range of {�i}Ni=1 is a (possibly continuum)
subset in R

k , hence our framework includes both finite diversity and continuum diversity.
Please refer to Section 2 for more information. The admissible strategy set for Ai is

(4) Ud,p
i = {

ui(·)|ui(·) ∈ L2
Gi (0, T ;�)

}
,

where G
i ⊆ F

i or Gi ⊆ H
i is a subfiltration representing the partial information; � ⊂ R

m is
a nonempty closed convex set representing the input constraint.

There are four main modeling features in formulation (3), (4):
(i) Weakly coupled controlled-diffusion. It is remarkable that in (3), when D�i

�= 0 so
control process enters diffusion terms of LSDE, and when F̃ �= 0 so all individual states
are weakly coupled in diffusion terms also. In this case, we may call (3) to be diffusion-
controlled and weakly coupled. This differs from [27] in modeling that is only drift-controlled
and weakly coupled. Such modeling difference also brings considerable analysis distinctions,
for example, on the relevant study of Hamiltonian systems, as well as consistency condition
(CC) (see more comparison details in Section 3 and Section 6). Without loss of generality, no
forcing terms such as f , σ involve in (3).

(ii) Random diversity. Recall that (1) is homogenous since all agents are endowed with
identical parameters thus they become symmetric. Subsequently, the (decentralized) optimal
strategy and states, still denoted as {ui}Ni=1 and {xi}Ni=1, should turn to be exchangeable. By
contrast, in (3), a random index �i is introduced in parameter A, D (also possible to be
equipped on other parameters including the cost) to model the diversity across the underly-
ing large-scale system. All agents thereby become heterogenous. Although the heterogenous
large-scale system is already addressed in works such as [21, 25], we point out in these
works, the heterogenous index is technically treated as some realization after random sam-
pling, along with necessary ordinal arrangements within each subclass. Thus, essentially the
index therein is some deterministic realization. This differs substantially from our random
index treatment here along with related analysis, to be highlighted later. In addition, our in-
dex �i can assume a continuum support that distinguishes from most heterogenous literature
with only finite/discrete support (see, e.g., [21, 25]). Moreover, although continuum hetero-
geneity is also discussed in, for example, [33], but analysis therein heavily relies upon the
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LQ structure with full input and resultant explicit representation. Such analysis collapses in
the current formulation (3), due to the intrinsic diffusion-controlled weakly coupled feature
introduced before, and an input constraint feature to be introduced below.

(iii) Input constraint. Note that a convex-closed set � is introduced in (4) denoting some
pointwise constraint in control input. Recall that such pointwise input constraint is well doc-
umented in, for example, [14, 16, 22, 32]. A typical example is � = R

+ representing the
positive control, or no-shorting constraint in portfolio selection ([32]). Other examples may
include subspace ([16]) or a general convex cone ([22]). We remark that pointwise input con-
straint is also studied in large-scale/large-population context such as [20] but in a competitive
MFG setup, which differs from our cooperative MFT here.

(iv) Partial information. Last but not least, the admissible control set is confined on a
partial information set L2

Gi (0, T ;�). LQG control with partial information is also well doc-
umented (e.g., [42]). Also, partial information for large population systems is also addressed
recently (see [6, 7, 17, 24] for partial information/observation mean-field game). However, to
our best knowledge, it is the first time addressing partial information in mean-field team con-
text. Notice that the partial information setting differs from that of partial observation ([4])
for which some filtering method with innovation process should be invoked. We defer more
detailed information structure to Section 2 after more rigorous formulation.

To a certain content, our aim in our current work is to solve the LQG MFT problem in a
rather general setup, by combining the aforementioned features (i)–(iv) together. Although
we admit various effective techniques have been already proposed to tackle these features
individually, however their combination brings much more technical hurdles, and makes the
associated analysis rather challenging. For example, the continuum heterogenous large-scale
system is well studied by [33] in mean-field game setup. Nevertheless, its parallel analysis
variant to MFT fails to work in the current formulation because of the following reason-
ing. Due to the controlled-diffusion feature (i), the related CC does not admit direct char-
acterization because the adjoint process of some backward SDE should enter CC dynamics.
Therefore, the direct augmented method in [40] fails to work here. Instead, some indirect
embedding method [21, 38] becomes necessary in the presence of (i). Nevertheless, due to
the continuum heterogenous feature (ii), the classical embedding CC in [21, 38] no longer
works since we have to construct an infinite-dimensional Brownian motion-driven system (on
continuum-valued space) to replicate the empirical distribution generated by the controlled
large-scale system. Meanwhile, the method in [38] is also not infeasible since it mainly relies
on some closed-form representation of optimal state/cost. This becomes unavailable because
of the input constraint (iii) imposed above. In a nutshell, in case (i) or (iii) not combined
together, we may still handle continuum heterogenous MFT with (ii) by modifying existing
methods in, for example, [38]. However, the combination of (i), (ii), (iii) together makes all
such existing methods no longer workable.

Other examples include the person-by-person procedure due to continuum heterogeneous
(ii), and the tailor-made decentralized strategy in presence of both pointwise constraint (iii)
and partial information constraint (iv). To circumvent these difficulties, we propose some
novel analysis techniques such as weak duality and modified embedding representation, etc.
More analysis details are illuminated in Section 3 and Section 4.3.

Our main contributions can be sketched as follows: (1) First, we devise a new framework
to unify homogenous and heterogenous (discrete or continuum) setups in the large-scale sys-
tem. In particular, it is enabled to transform the heterogenous setup into a homogenous one,
with the tradeoff of an augmented randomness. (2) Second, under such new framework, we
derive a modified embedding representation of the CC system (a crux in MFT analysis) to
accommodate the continuum diversities. (3) Third, the input constraint and partial informa-
tion constraint are both tackled, and a CC system with double projection operator is derived.
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Specifically, the CC system takes a coupled mean-field type forward backward stochastic
differential equations (FBSDEs) involving both projection mapping and conditional expecta-
tion. This seems quite novel in large-scale literature. (4) Last, the well-posedness of the CC
system and asymptotic team optimality are established under mild conditions. Please refer
to Section 6 for detailed literature comparisons and discussions on homogeneity and hetero-
geneity.

The remainder of this paper is organized as follows. In Section 2, we give the formulation
of the LQG heterogeneous agents problem with input constraints and partial information pat-
tern. In Section 3, we apply variational decomposition and weak duality to find the auxiliary
control problem of the individual agent. The decentralized strategy and well-posedness of
consistency condition is established in Section 4. Section 5 studies the asymptotic optimality
of decentralized strategy. We give a synthetic analysis on homogeneity and heterogeneity and
compare our framework with those in the current literature in Section 6.

2. Problem formulation. We first introduce some standard notations used throughout
this paper. Let Rn be the n-dimensional Euclidean space with the inner product denoted by
〈·, ·, 〉. Rn×m is the space of all (n×m) matrices, endowed with the inner product 〈M1,M2〉 =
tr[M�

1 M2], where x� denotes the transpose of a matrix (or vector) x and tr is the trace of a
matrix. M ∈ S

n denotes the set of symmetric n × n matrices with real elements. M > (≥)0
denotes that M ∈ S

n which is positive (semi)definite, while M 
 0 denotes that, M − εI ≥ 0
for some ε > 0.

Assume that (�,F,P) is a complete probability space on which {Wi(t),0 ≤ t ≤ T }Ni=1 is
a N -fold Brownian motion (note here Wi might be vector-valued, say, including a common
noise component W0) and {�i}Ni=1 is a sequence of independent random variables to represent
diversity. In some sense, we may interpret {�i} as some endogenous randomness, while {Wi}
some exogenous randomness for the generic agent Ai . Moreover, we assume {�i}Ni=1 are also
independent of {Wi(s), s ≥ 0}Ni=1. Let {FW

t }0≤t≤T be the filtration generated by {Wi(s),0 ≤
s ≤ t}Ni=1 and define FW,�

t = σ(�i,1 ≤ i ≤ N)∨FW
t . The set of null sets on � is defined by

NP = {M ∈ �|∃G ∈ FW,�∞ with M ⊂ G and P(G) = 0}. Consider the augmented filtration
F = {Ft }0≤t≤T with Ft = σ(FW,�

t ∪ NP). Then F = {Ft }0≤t≤T represents the centralized
information including all Brownian motions (BMs) and diversity index components across
all agents (principal and marginals).

For any Euclidean space V, 1 ≤ p < ∞, and T > 0, introduce the following spaces:

• L
p
FT

(�;V) := {η : � →V|η is FT -measurable such that E|η|p < ∞}.
• L∞(0, T ;V) := {ϕ(·) : [0, T ] →V such that esssup0≤s≤T |ϕ(s)| < ∞}.
• L

p
F
(0, T ;V) := {ϕ(·) : � × [0, T ] → V is progressively measurable such that

E
∫ T

0 |ϕ(s)|p ds < ∞}.
We consider a weakly coupled large population system of heterogeneous agents {Ai : 1 ≤
i ≤ N} with the dynamics of the agents given in (3), and cost functional (2). For the sake of
presentation, we restate them as follows:

(5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxi = [
A�i

xi + Bui + Fx(N)]dt + [
Cxi + D�i

ui + F̃ x(N)]dWi,

xi(0) = ξ ∈ R
n,

Ji

(
u(·))= 1

2
E

∫ T

0

[〈
Q
(
xi − Hx(N)), xi − Hx(N)〉+ 〈Rui, ui〉]dt,

1 ≤ i ≤ N.

As mentioned before, state (3) and functional (2) formulate a weakly coupled large-scale sys-
tem with heterogeneous agents. The aggregate team functional of N agents is J (N)

soc (u(·)) =
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i=1 Ji (u(·)). In (5), (A�i

(·),B(·),C(·),D�i
(·),F (·), F̃ (·)) are called the state-coefficient

datum, while (Q(·),H(·),R(·)) the cost weight datum. We explain more details for the above
datum. F , F̃ are weakly coupling coefficients on state-drift and state-diffusion respectively;
H is a weakly coupling coefficient on functional; C, D�i

are diffusion state-dependence and
diffusion control-dependence coefficients respectively. Note that D�i

�= 0 represents the case
when control enters diffusion alike the risky portfolio selection (e.g., [22, 32, 44]); F, F̃ �= 0
denotes the agents are coupled in the dynamics such as the price formation problem (e.g.,
[19, 28]); H �= 0 denotes the relative performance formulation (e.g., [16]).

Unlike state (1), we introduce {�i}Ni=1 in (3) as some diversity index to characterize the
possible heterogenous features among all agents. We point out that �i may be vector-valued
on a Cartesian grid space, say [a1, b1]× [a2, b2] or [a1, b1]×{1, . . . ,K}, to represent various
feature dimensions, either in continuum space or discrete space, or in a hybrid manner.

For simplicity, we only assume that the coefficients A and D are dependent on �i . Similar
analysis can be generalized to the case when all other coefficients are also �i -dependent.
Besides, in what follows the time variable t will usually be suppressed if no confusion occurs.
We now introduce the following assumption on distribution and coefficient datum set:

(A1) For i = 1, . . . ,N , �i : � → S are independent identically distributed (i.i.d) with the
distribution function 
(θ), that is,

∫
S d
(θ) = 1, where S is a (possibly continuum) subset

in Cartesian space R
k . Note that the discrete set, that is, finite diversity, is a special example.

(A2) For any θ ∈ S , Aθ(·),F (·),C(·), F̃ ∈ L∞(0, T ;Rn×n),B(·), Dθ(·) ∈ L∞(0, T ;
R

n×m), Q(·) ∈ L∞(0, T ;Sn), H(·) ∈ L∞(0, T ;Sn), R(·) ∈ L∞(0, T ;Sm).
(A3) Q(·) ≥ 0, R(·) 
 0.

REMARK 2.1. We remark that discrete- or finite-valued �i might be transformed into
continuum one by assigning uniform distribution on compact intervals along with given par-
titions. Indeed, this is equivalent to simulating a given discrete random variable using the
quantile method by uniform distribution. Thus, hereafter we focus on vector-valued index �i

on R
k . Similar analysis can be found in [33] for MFG with continuum-parametrized hetero-

geneous minor players and [35] for MFG with a continuum of agents.

Under assumptions (A1)–(A2), the state (3) admits a unique strong solution x(·) =
(x1(·), . . . , xN(·)) ∈ L2

F
(0, T ;RN×n), and the cost functional is well defined for each admis-

sible control strategy u(·) on appropriate admissible space, to be detailed soon. Moreover,
under assumption (A3), the cost functional is uniform convex, that is, there exists some δ > 0
such that J (N)

soc (u) ≥ δE
∫ T

0 |u(s)|2 ds.
Given state (3) and functional (2), we can specify the associated information structures.

Because of interactive coupling by state-average x(N) := 1
N

∑N
i=1 xi , Ji(ui, u−i) depends on

total team-decision u = (ui, u−i). In this sense, (3) exhibits the so-called weakly interactive
coupling in decision when N → +∞. Again, by such interactive coupling, the information
structure of (3) becomes more involved:

• Decentralized, open-loop information: consider the filtration FWi
t = σ(Wi(s),0 ≤ s ≤ t),

FWi,�i
t = σ(�i) ∨ FWi

t , 0 ≤ t < ∞, and the set of null sets N i
P

= {M ∈ �|∃G ∈
FWi,�i∞ with M ⊂ G and P(G) = 0}, and create the augmented filtration F

i = {F i
t }0≤t≤T

with F i
t = σ(FWi,�i

t ∪ N i
P
). Note that {F i

t } only depends on Wi and �i instead of state
xi itself, thus we call it an open-loop (although it also differs from classical open-loop
due to the mean-field nature) information since it depends directly on underlying random-
ness.
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• Decentralized, closed-loop information: denote by {Hi
t }0≤t≤T the filtration of individual

state xi augmented by N i
P

, that is, Hi
t = σ {xi(s),0 ≤ s ≤ t} ∨ N i

P
. Note that {Hi

t } only
depends on the underlying principal state xi itself, thus we call it closed-loop (although it
also differs from classical closed-loop due to mean-field nature). We remark that xi is not
adapted to F

i due to weak coupling.
• Decentralized, partial information: Let Gi

t ⊆ F i
t be a sub-σ -field of F i

t (or, Gi
t ⊆ Hi

t be
a sub-σ -field of Hi

t ), then G
i = {Gi

t }0≤t≤T represents the decentralized open-loop (or
closed-loop) partial information available to Ai .

REMARK 2.2. For decentralized, partial information pattern, Gi
t is a given filtration

representing the information available to Ai at time t. For example, Gi
t = F i

(t−δ)+, or

Gi
t = Hi

(t−δ)+, t ∈ [0, T ], where δ > 0 denotes the fixed delay of information. In this case, Gi
t

represent the partial information in an open-loop or closed-loop sense, respectively. Another
example is that Wi = (W̃i, W̃0) takes vector-valued Brownian motion including a common
noise component W̃0, then Gi

t = σ {W̃i(s),�i,0 ≤ s ≤ t} denotes the partial information in
an open-loop. Also, in case �i = (�i1,�i2), then Gi

t = σ {Wi(s),�i1,0 ≤ s ≤ t} denotes the
partial information to underlying diversity.

Therefore, Bi
t = F i

t ∨ Hi
t and B

i := {Bi
t }0≤t≤T represent (full) decentralized information.

Then we have the following structure inclusion chart:

G
i ⊂ {

F
i (decentralized open-loop),Hi(decentralized closed-loop)

}
⊂ B

i (decentralized) ⊂ F(full).

Noticing due to state-average x(N), xi(t) /∈ F i
t , thus, NO inclusion relations between open-

loop F
i = {F i

t }0≤t≤T and closed-loop H
i = {Hi

t }0≤t≤T . This is different from classical con-
trol where the open-loop information includes closed-loop information. Given the informa-
tion structure, we are ready to formulate the relevant admissible control sets:

• Centralized full-information set: Uc,f
i = {ui(·)|ui(·) ∈ L2

F
(0, T ;�)}.

• Decentralized full-information open-loop set: Ud,f
i,op = {ui(·)|ui(·) ∈ L2

Fi (0, T ;�)}.
• Decentralized full-information closed-loop set: Ud,f

i,cl = {ui(·)|ui(·) ∈ L2
Hi (0, T ;�)}.

• Decentralized partial-information set: Ud,p
i = {ui(·)|ui(·) ∈ L2

Gi (0, T ;�)}.
We point out here G

i is general to include both open-loop or closed-loop partial information.
Now we propose the following optimization problem.

Problem LQG-MFT. Find a team strategy set ū(·) = (ū1(·), . . . , ūN(·)) where ūi(·) ∈ Uc,f
i ,

1 ≤ i ≤ N , such that

J (N)
soc

(
ū(·))= inf

ui∈Uc,f
i ,1≤i≤N

J (N)
soc

(
u1(·), . . . , ui(·), . . . , uN(·)).

Under some mild conditions on datum (Q,R) (e.g., (A3)), it is possible to ensure the ex-
istence and uniqueness of optimal mean-field team strategy in a centralized sense. This can
proceed by classical vector-optimization or control method but in a high-dimension setting
because of the existence of a large number of weakly coupled team agents. However, such
a strategy, from a computational viewpoint, turns out to be intractable because of the infor-
mation requirement to collect all agents’ states simultaneously. Instead, it is more tractable
to consider some decentralized strategy for which only the local (distributed) information for
a given agent is needed. Moreover, considering the partial information pattern, we introduce
the following definition on asymptotic social optimality.
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DEFINITION 2.3. A strategy set ũ(·) = (ũ1(·), . . . , ũN(·)) with {ũi ∈ Ud,p
i }Ni=1 is said to

be ε-social optimal if there exists ε = ε(N) > 0, limN→+∞ε(N) = 0 such that

1

N

(
J (N)

soc
(̃
u(·))− inf

u∈Uc,f
i

J (N)
soc

(
u(·)))≤ ε.

REMARK 2.4. In Remark 2.2, we emphasize Wi might be a vector-valued Brownian
motion including a common noise component. For simplicity, in the following we assume
that Wi , i = 1, . . . ,N are independent one-dimensional Brownian motions. Note that for
the case Wi = (W̃i, W̃0) takes vector-valued Brownian motion including a common noise
component W̃0 and W̃i , i = 1, . . . ,N being independent one-dimensional Brownian motions,
the procedures in Section 3 and Section 4 are still workable. However, in this case Eα in
(26) should be the conditional expectation E[α|F0

t ] where {F0
t } is the filtration generated

by the common noise W̃0. For this kind of consistency system, please refer to [21] for more
information.

As discussed before, centralized strategy based on classical vector optimization/control
turns out to be ineffective to handle weakly coupled but highly complex LQG-MFT. Alter-
natively, it is more amenable to construct some decentralized strategy on distributional infor-
mation only. Such strategy construction can be implemented using mean-field team analysis
through the following steps:

Step 1 (Section 3.1): applying variational decomposition for a generic agent;
Step 2 (Section 3.2): applying weak duality to construct auxiliary control (AC) problem;
Step 3 (Section 4): solving AC to determine the limiting state-average by consistency

condition (CC);
Step 4 (Section 5): verifying the asymptotic social optimality of the derived decentralized

team strategy.
We now proceed step by step to construct the distributed LQG-MFT strategy.

3. Mean-field team analysis. Our current work focuses on team optimization, so a
variational analysis becomes unavoidable to calibrate a response of related componentwise
Fréchet differentials for a generic agent, say Ai . Such an analysis is not required in MFG
as all agents there are noncooperative. Hence, unlike MFG, we need to quantify the total
variation of social cost δJ (N)

soc (δui) triggered by individual variation δui of Ai .

3.1. Variational decomposition. In order to quantify (total) variation δJ (N)
soc (δui) owning

to basic δui by a generic Ai , we need to compute the variation of social cost when Ai adopts
an alternative strategy while all others’ decisions remain unchanged. Subsequently, in Step 1,
we would like to figure out a variational decomposition for the original (5) around the central-
ized strategy (although we prefer to circumvent its direct but high-dimensional computation).
The variational decomposition consists of three substeps, as detailed below.

3.1.1. Decomposition of δJ (N)
soc (δui). First we will obtain δJ (N)

soc (δui) when Ai uses
an alternative strategy. Let {ūi ∈ Uc,f

i }Ni=1 be the centralized optimal team strategy (its ex-
istence can be ensured under some mild convexity conditions. But, as discussed above,
such strategies are intractable for real computation purposes because of the “curse of di-
mensionality”). Now consider the perturbation for a given benchmark agent, say, Ai to
use the alternative strategy ui ∈ Uc,f

i and all other agents still apply the strategy ū−i =
(ū1, . . . , ūi−1, ūi+1, . . . , ūN). The realized state (3) corresponding to (ui, ū−i) and (ūi, ū−i)

are denoted by (x1, . . . , xN) and (x̄1, . . . , x̄N ), respectively. We denote the agent index set as
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I = {1, . . . ,N}. To start the variational decomposition, it is helpful to present the following
causal-relation flow-chart first:

δui = ui − ūi︸ ︷︷ ︸
principal basic variation

=⇒ δxi = xi(ui) − x̄i (ūi)︸ ︷︷ ︸
principal intermediate variation

=⇒ δxj,i = xj (xi) − x̄j (x̄i)︸ ︷︷ ︸
marginal variation

=⇒ δJj,i(δui)︸ ︷︷ ︸
marginal cost variation

= Jj (ui, ū−i) −Jj (ūi, ū−i), j = 1, . . . ,N,

=⇒ δJ (N)
soc (δui)︸ ︷︷ ︸

total cost variation

= J (N)
soc (ui, ū−i) −J (N)

soc (ūi, ū−i),

where δui is the most basic variation “block” for other variation structures; we write xi(ui)

to emphasize its dependence of xi on ui , and similarly for x̄i(ūi); we call δxi the principal
intermediate variation as it depends indirectly on basic δui via principal state; similarly, δxj,i

marginal variations from the point of Ai ; also xj (xi) depends on xi via weak-coupling x(N),
similar to x̄j (x̄i). Note that the subscripts of δxj,i means that xi is the principal state while
xj , j �= i, are marginal ones, from the viewpoint of Ai . Moreover, from the standpoint of Ai ,
the variational equations for the principal state xi , and marginal states {xj }j �=i satisfy

dδxi = [
A�i

δxi + Bδui + Fδx(N)]dt + [
Cδxi + D�i

δui + F̃ δx(N)]dWi,

δxi(0) = 0,
(6)

j �= i, dδxj,i = [
A�j

δxj,i + Fδx(N)]dt + [
Cδxj,i + F̃ δx(N)]dWj ,

δxj,i(0) = 0.
(7)

Denote δx−i =∑
j �=i δxj,i the aggregate variation of marginal agents (benchmark to Ai), so

applying linear state-aggregation,

(8)

dδx−i =
[∑
j �=i

A�j
δxj,i + (N − 1)F δx(N)

]
dt

+∑
j �=i

[
Cδxj,i + F̃ δx(N)]dWj , δx−i(0) = 0.

Similarly, we can obtain the variation of cost functionals as follows. For the principal cost of
Ai :

δJi (δui) = E

∫ T

0

[〈
Q
(
x̄i − Hx̄(N)), δxi − Hδx(N)〉+ 〈Rūi, δui〉]dt.

For marginal costs of Ai :

δJj,i(δui) = E

∫ T

0

〈
Q
(
x̄j − Hx̄(N)), δxj,i − Hδx(N)〉dt, j �= i.

Therefore, the total variation of the social cost, from person-by-person variation of Ai , be-
comes

δJ (N)
soc (δui)

= E

∫ T

0

[〈
Q
(
x̄i − Hx̄(N)), δxi − Hδx(N)〉+∑

j �=i

〈
Q
(
x̄j − Hx̄(N)), δxj,i − Hδx(N)〉

+ 〈Rūi, δui〉
]
dt
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= E

∫ T

0

[
〈Qx̄i, δxi〉 − 〈

QHx̄(N), δxi

〉− 〈
QNx̄(N),Hδx(N)〉

+ 〈
QHx̄(N),Hδx(N)〉+∑

j �=i

〈Qx̄j , δxj,i〉 −∑
j �=i

〈
QHx̄(N), δxj,i

〉(9)

+ (N − 1)
〈
QHx̄(N),Hδx(N)〉+ 〈Rūi, δui〉

]
dt

= E

∫ T

0

[
〈Qx̄i, δxi〉 + 〈

H(H,Q)x̄(N), δxi

〉+ 〈
H(H,Q)x̄(N),

∑
j �=i

δxj,i

〉

+∑
j �=i

〈Qx̄j , δxj,i〉 + 〈Rūi, δui〉
]
dt

=: I1 + I2 + I3 + I4 + I5,

where H(H,Q) := −QH − HQ + HQH . There arise five decomposition terms in (9).
Among them, I5 depends directly on the principal basic variation δui , whereas I1, I2 de-
pend on principal intermediate variation δxi that further depends on the basic δui . More-
over, I3, I4 depend on the marginal variations {δxj,i}j �=i that further depends on the princi-
pal ones δxi , δui . We denote ‖δxi‖L2 = (E

∫ T
0 |δxi |2 ds)1/2. By a standard SDE estimation,

‖δxi‖L2 ≤ (K +O(N− 1
2 ))‖δui‖L2 where K is independent on N , and only depends on coef-

ficients of (3). Moreover, ‖δxj,i‖L2 = O(N− 1
2 )‖δui‖L2 for j �= i. Also, note that in general,

it is not true that ‖δui‖L2 = O(‖δxi‖L2).
Noting in (9), only I1 and I5 directly depend on (basic) principal variations δui , δxi

whereas I2, I3, I4 are intermediate with indirect dependence (x̄(N), δxj,i ). Thus, the reformu-
lation below is invoked, in the spirit of mean-field approximation, to get rid of such implicit
dependence in I2, I3, I4 progressively.

3.1.2. Reformulation of I2, I3. For I2, I3, we need to approximate the empirical state-
average x̄(N) by its mean-field limit using heuristic reasoning. Therefore, replacing x̄(N) of
I2, I3 in (9) by state-average limit x̂ (to be determined later in Step 3) will yield

(10)

δJ (N)
soc (δui) = E

∫ T

0

[
〈Qx̄i, δxi〉 + 〈

H(H,Q)x̂, δxi

〉+ 〈
H(H,Q)x̂, δx−i

〉
+ 1

N

∑
j �=i

〈Qx̄j ,Nδxj,i〉 + 〈Rūi, δui〉
]
dt + ε1

=: I1 + Î2 + Î3 + I4 + I5 + ε1,

where

ε1 = −E

∫ T

0

〈
H(H,Q)

(
x̂ − x̄(N)),Nδx(N)〉dt.

Note that terms I1, Î2, I5 in (10) already depend on the principal variations δui or δxi . Thus,
we only need to analyze the limiting behavior for the remaining term Î3 and I4. It is remark-
able that Î3, I4 respectively involve components: δx−i and 1

N

∑
j �=i〈Qx̄j ,Nδxj,i〉 that both

depend on principal basic δui in a rather implicit manner.

3.1.3. Reformulation of Î3, I4. Note that for j �= i, ‖δxj,i‖L2 = O(N− 1
2 )‖δui‖L2 , so

limN→+∞ ‖δxj,i‖L2 = 0. Hence we need to introduce some limiting term x∗
j to replace the
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re-scaled Nδxj,i in rate ‖x∗
j −Nδxj,i‖ = O(N− 1

2 )‖δui‖L2 . This helps us deal with the varia-
tion of I4. In addition, we introduce limiting term x∗∗ = ∫

S x∗∗
θ d
(θ) to replace δx−i in rate

‖x∗∗ − δx−i‖ = O(N− 1
2 )‖δui‖L2 . This will help us deal with Î3. Moreover, by the indepen-

dence between {�j }, {Wj } and heuristic mean-field arguments, we construct the following
coupled system:

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx∗
j =

[
A�j

x∗
j + Fδxi + F

∫
S

x∗∗
θ d
(θ)

]
dt

+
[
Cx∗

j + F̃ δxi + F̃

∫
S

x∗∗
θ d
(θ)

]
dWj ,

dx∗∗
θ = [

Aθx
∗∗
θ + Fδxi + Fx∗∗

θ

]
dt, x∗∗

θ (0) = 0,

x∗
j (0) = 0, j �= i, θ ∈ S.

Therefore,

(12)

δJ (N)
soc (δui) = E

∫ T

0

[
〈Qx̄i, δxi〉 + 〈

H(H,Q)x̂, δxi

〉+ 〈
H(H,Q)x̂, x∗∗〉

+ 1

N

∑
j �=i

〈
Qx̄j , x

∗
j

〉+ 〈Rūi, δui〉
]
dt +

3∑
l=1

εl

=: I1 + Î2 + Ĩ3 + Ĩ4 + I5 +
3∑

l=1

εl,

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε2 = −E

∫ T

0

〈
H(H,Q)x̂, x∗∗ − δx−i

〉
dt,

ε3 = E

∫ T

0

1

N

∑
j �=i

〈
Qx̄j ,Nδxj,i − x∗

j

〉
dt.

Noting Ĩ4 of (12) connects to a sequence of exchangeable random variables {∫ T
0 〈Qx̄j ,

x∗
j 〉dt} ∈ L1

FT
(�;R). By de Finetti theorem, they are conditionally independent identically

distributed with respect to some tail sigma-algebra. Also, it is observable that such tail sigma-
algebra should depend on δxi in a rather implicit way. Then, we may apply the conditional
law of large numbers to identify the related average. We present some weak duality as an
approach to break away δJ (N)

soc (δui) from dependence on x∗
j and x∗∗.

3.2. Weak duality. Although (12) is free of the marginal {δxj,i}j �=i but a trade-off is the
raised limiting quantities x∗

j and x∗∗ that are still intermediate. For auxiliary construction, we
need to further eliminate them via some duality. Due to continuum heterogeneity and state-
coupling dynamics, pertinent duality will take a fairly complex argument, and heavily depend
on some weak equivalence in distributional rather than a (strong) pathwise sense. Thus, we
term it as a “weak” duality procedure, as detailed below. More specifically, in order to break
away δJ (N)

soc (δui) of (12) from direct dependence on x∗
j and x∗∗ (see Ĩ3, Ĩ4), we introduce

the following adjoint equations {yj
1 }j �=i and yθ

2 satisfying

(13)

⎧⎪⎪⎨⎪⎪⎩
dy

j
1 = α

j
1 dt + β

jj
1 dWj +

N∑
l=1,l �=j

β
jl
1 dWl, y

j
1 (T ) = 0, j �= i,

dyθ
2 = αθ

2 dt, yθ
2 (T ) = 0, θ ∈ S,

where {Wl}l �=i are some Brownian motion copies matching all marginal agents in a large-
scaled system, from the benchmark point of Ai . We remark that yθ

2 is parametrized by the
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diversity index in continuum support: θ ∈ S , while y
j
1 is parametrized by the marginal agent

index j ∈ I\{i}. Accordingly, the duality below should be in distributional and agentwise
sense, respectively indexed by θ ∈ S and j ∈ I . To start, first apply Itô’s formula to 〈yj

1 , x∗
j 〉

for each marginal agent index j �= i, and take expectation, by countable agentwise addition
for all j ∈ I\{i},

(14)

0 = E

∫ T

0

[
1

N

∑
j �=i

〈
α

j
1 + A�

�j
y

j
1 + C�β

jj
1 , x∗

j

〉+ 1

N

∑
j �=i

〈
F�y

j
1 + F̃�β

jj
1 , x∗∗〉

+ 1

N

∑
j �=i

〈
F�y

j
1 + F̃�β

jj
1 , δxi

〉]
dt.

Similarly, by distributed integral on all θ ∈ S ,

(15) 0 =
∫ T

0

[∫
S

〈
αθ

2 + A�
θ yθ

2 + F�yθ
2 , x∗∗

θ

〉
d
(θ) +

∫
S

〈
F�yθ

2 , δxi

〉
d
(θ)

]
dt.

Combing (14) and (15) with (12)

(16)

δJ (N)
soc (δui) = E

∫ T

0

[
〈Qx̄i, δxi〉 + 〈

H(H,Q)x̂, δxi

〉− 1

N

∑
j �=i

〈
F�y

j
1 + F̃�β

jj
1 , δxi

〉
−
∫
S

〈
F�yθ

2 , δxi

〉
d
(θ) + 〈Rūi, δui〉

]
dt

+E

∫ T

0

[
1

N

∑
j �=i

〈
Qx̄j − α

j
1 − A�

�j
y

j
1 − C�β

jj
1 , x∗

j

〉]
dt

−E

∫ T

0

∫
S

〈
−H(H,Q)x̂ + 1

N

∑
j �=i

(
F�y

j
1 + F̃�β

jj
1

)

+ αθ
2 + A�

θ yθ
2 + F�yθ

2 , x∗∗
θ

〉
d
(θ) dt +

3∑
l=1

εl.

Let ⎧⎨⎩α
j
1 = Qx̄j − A�

�j
y

j
1 − C�β

jj
1 ,

αθ
2 = H(H,Q)x̂ − F�

Ey
j
1 − F̃�

Eβ
jj
1 − A�

θ yθ
2 − F�yθ

2 ,

hence we reach the following weak duality adjoint process:

(17)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dy

j
1 = (

Qx̄j − A�
�j

y
j
1 − C�β

jj
1

)
dt + β

jj
1 dWj +

N∑
l=1,l �=j

β
jl
1 dWl,

dyθ
2 = −(−H(H,Q)x̂ − (

F�
Ey

j
1 + F̃�

Eβ
jj
1

)− A�
θ yθ

2 − F�yθ
2
)
dt,

y
j
1 (T ) = 0, j �= i, yθ

2 (T ) = 0, θ ∈ S.

We point out that the above system can be rewritten as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dy

j
1 = (

Qx̄j − A�
�j

y
j
1 − C�β

jj
1

)
dt + β

jj
1 dWj +

N∑
l=1,l �=j

β
jl
1 dWl,

dy�
2 = −(−H(H,Q)x̂ − (

F�
Ey

j
1 + F̃�

Eβ
jj
1

)− A�
�y�

2 − F�y�
2
)
dt,

y
j
1 (T ) = 0, j �= i, y�

2 (T ) = 0.

We remark that y�
2 is a degenerate BSDE by noting � ∈ F0. Also, it is not necessary to

specify any dependence assumption between �j and � since y
j
1 and y�

2 get coupled only



2798 X. FENG, Y. HU AND J. HUANG

through the expectation operator. In other words, the coupling and associated consistency
condition only concern their expectations. Still, we may term the resulting duality as weak
duality. Substituting (17) into (16), we have

δJ (N)
soc (δui) = E

∫ T

0

[
〈Qx̄i, δxi〉 + 〈

H(H,Q)x̂, δxi

〉− 1

N

∑
j �=i

〈
F�y

j
1 + F̃�β

jj
1 , δxi

〉

−
∫
S

〈
F�yθ

2 , δxi

〉
d
(θ) + 〈Rūi, δui〉

]
dt +

4∑
l=1

εl,

where

ε4 = E

∫ T

0

〈
F�

(
E
[
y

j
1

]− 1

N

∑
j �=i

y
j
1

)
+ F̃�

(
E
[
β

jj
1

]− 1

N

∑
j �=i

β
jj
1

)
, x∗∗

〉
dt.

We observe that the initial terms such as 〈Qx̄j , x
∗
j 〉 in (12), are now reformulated with some

inner product between principal intermediate variation δxi and some quantities in terms by
yθ

2 and y
j
1 in an agentwise (i.e., j �= i) manner. Then, we can identify the tail filtration for

exchangeable {∫ T
0 〈Qx̄j , x

∗
j 〉dt}j �=i based on δxi with a degenerated filtration. So, applying

the conditional law of large number, and noticing {yj
1 , j �= i} are identical distributed, we

reach the following representation with expectation operator:

(18)

δJ (N)
soc (δui) = E

∫ T

0

[
〈Qx̄i, δxi〉 −

〈
−H(H,Q)x̂ + F�

E[y1] + F̃�
E
[
β1

1
]

+ F�
∫
S

yθ
2 d
(θ), δxi

〉
+ 〈Rūi, δui〉

]
dt +

5∑
l=1

εl,

where y1 (depending on x̄1, that is, the optimized state for the generic agent) is some copy
with the same distribution for generic y

j
1 :

(19)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dy1 = [

Qx̄1 − A�
�y1 − C�β1

1
]
dt + β1

1 dW1 +
N∑

l=1,l �=1

βl
1 dWl,

dyθ
2 = [

H(H,Q)x̂ − (
F�

Ey1 + F̃�
Eβ1

1
)− A�

θ yθ
2 − F�yθ

2
]
dt,

y1(T ) = 0, yθ
2 (T ) = 0, θ ∈ S,

and

ε5 = E

∫ T

0

〈
F�

(
E[y1] − 1

N

∑
j �=i

y
j
1

)
+ F̃�

(
E
[
β1

1
]− 1

N

∑
j �=i

β
jj
1

)
, δxi

〉
dt.

We remark that y1 has the same distribution with generic y
j
1 . This again explains why we

term the above procedure as “weak” duality. We point out all variations terms in (18), are
now directly depending only on principal (basic, or intermediate) variations. Thus, we now
formulate a decentralized auxiliary cost differential δJi(δui):

(20)
δJi(δui) = E

∫ T

0

[
〈Qx̄i, δxi〉 −

〈
−H(H,Q)x̂ + F�ŷ1 + F̃�β̂1

+ F�
∫
S

yθ
2 d
(θ), δxi

〉
+ 〈Rūi, δui〉

]
dt.

REMARK 3.1. There are four undetermined terms in (20) respectively: x̂ by (10) is the
state-average limit; (ŷ1 = E[y1], β̂1 = E[β1

1 ], yθ
2 ) is from (19) because of the weak duality

procedure. All these terms, especially x̂, will be determined by CC in Section 4.
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REMARK 3.2. In (20), we introduce the first variation of auxiliary cost functional
δJi(δui) and ignore the error term εl , l = 1, . . . ,5. The convergence rate estimation of these
terms and the rigorous proofs will be given in Section 5.

4. Auxiliary control problem and consistency condition. This section aims to com-
plete Step 3 concerning the auxiliary problem, which has a double-fold role in its formula-
tion and solvability. By weakly coupling of MFT, the centralized strategy is infeasible due
to the curse of dimensionality. Alternatively, the decentralized one is more desirable that it
can be derived by formulating an auxiliary cost with a frozen state-average limit. Counterpart
formulation in MFG is quite straightforward because of the competitive feature. However,
for MFT, such auxiliary formulation becomes more complicated because each agent must
take into account social cost on others. Subsequently, formulation of the auxiliary problem,
together with an earlier variational decomposition and weak duality, will jointly complete the
above complex freezing procedure. Next, solvability of the auxiliary problem enables us to
design decentralized MFT strategies with asymptotic optimality. Now, we present more role
details.

4.1. Auxiliary control with double-projection. (20) contains only the principal terms δxi

and δui , thus it links to an optimal control problem using local information of Ai only. Now
we can introduce the following auxiliary control (AC) problem for a generic Ai :

(AC):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Minimize Ji

(
ui(·))= 1

2
E

∫ T

0

[〈Qxi, xi〉 − 2〈�,xi〉 + 〈Rui, ui〉]dt,

subject to dxi(t) = [A�i
xi + Bui + F x̂]dt + [Cxi + D�i

ui + F̃ x̂]dWi(t),

xi(0) = ξ,

with

(21) �
(
t; x̂, yθ

2 , ŷ1, β̂1
)= −H(H,Q)x̂ + F�ŷ1 + F̃�β̂1 + F�

∫
S

yθ
2 d
(θ),

where x̂ is the limiting state-average term introduced in (10); (yθ
2 , ŷ1, β̂1) depends on x̂ sat-

isfying dynamics (19). Also, we remark that ŷ1 depends on optimal state x̄j .
We will apply the stochastic maximum principle to study Problem (AC). To this end, we

introduce the following first-order adjoint equation:

dpi(t) = −[A�
�i

pi + Qxi − � + C�qi

]
dt + qi dWi(t), pi(T ) = 0.

Let u∗
i be the optimal control and (x∗

i , p∗
i , q

∗
i ) the corresponding state and adjoint state. For

any ui ∈ L2
Gi (0, T ;Rm) such that u∗

i +ui ∈ Ud,p
i,op, we have uε

i := u∗
i + εui ∈ Ud,p

i,op. The corre-
sponding state and adjoint state with respect to uε

i are denoted by (xε
i ,pε

i , q
ε
i ). Introduce the

following variational equation:

dyi(t) = [A�i
yi + Bui]dt + [Cyi + D�i

ui]dWi(t), yi(0) = 0.

Applying Itô’s formula to 〈pi, yi〉, by the optimality of u∗
i (i.e., Ji(u

ε
i ) − Ji(u

∗
i ) ≥ 0), we

have E
∫ T

0 〈Ru∗
i + B�pi + D�

�i
qi, ui〉ds ≥ 0. For any 0 ≤ t ≤ T and Gi

t -measurable random
variable ηi , let

u∗
i (s) + ui(s) =

{
u∗

i (s), s /∈ [t, t + ε];
ηi, s ∈ [t, t + ε].

Therefore, 1
ε
E
∫ t+ε
t 〈Ru∗

i + B�pi + D�
�i

qi, ηi − u∗
i 〉ds ≥ 0. Let ε → 0, we have E〈R(t) ×

u∗
i (t) + B�(t)p∗

i (t) + D�
�i

(t)q∗
i (t), ηi − u∗

i (t)〉 ≥ 0, t ∈ [0, T ]. For any v ∈ � and A ∈
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Gi
t , define ηi = vIA + u∗

i (t)IAc , we have E〈R(t)u∗
i (t) + B�(t)p∗

i (t) + D�
�i

(t)q∗
i (t), v −

u∗
i (t)〉IA ≥ 0, t ∈ [0, T ]. Since A ∈ Gi

t is arbitrary, we have E[〈R(t)u∗
i (t) + B�(t)p∗

i (t) +
D�

�i
(t)q∗

i (t), v − u∗
i (t)〉|Gi

t ] ≥ 0, t ∈ [0, T ], P-a.s., that is,

(22)

〈−R(t)u∗
i (t) +E

[−B�(t)p∗
i (t) − D�

�i
(t)q∗

i (t)|Gi
t

]
, v − u∗

i (t)
〉≤ 0,

t ∈ [0, T ],P-a.s.

Since v ∈ � is arbitrary and � is a closed convex set, it follows from the well-known results
of convex analysis that (22) is equivalent to

(23) u∗
i (t) = P�

[
R−1

E
[−B�p∗

i (t) − D�
�i

q∗
i (t)|Gi

t

]]
, a.e. t ∈ [0, T ],P-a.s.,

where P�[·] is the projection mapping from R
m to its closed convex subset � under the

norm ‖v‖2
R := 〈R 1

2 v,R
1
2 v〉. Note that there involves two projections in (23), because of the

input constraint and partial information constraint. This differs from [20, 21] which include
only input constraint. Furthermore, the two projections are noncommutative due to above
maximum principle arguments. In this case, the related Hamiltonian system for (AC) becomes

(24)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx∗

i = [
A�i

x∗
i + BP�

[
R−1

E
[−B�p∗

i (t) − D�
�i

q∗
i (t)|Gi

t

]]+ F x̂
]
dt

+ [
Cx∗

i + D�i
P�

[
R−1

E
[−B�p∗

i (t) − D�
�i

q∗
i (t)|Gi

t

]]+ F̃ x̂
]
dWi(t),

dp∗
i = −[A�

�i
p∗

i + Qx∗
i − � + C�q∗

i

]
dt + q∗

i dWi(t),

x∗
i (0) = ξ, p∗

i (T ) = 0,

which is a fully coupled FBSDEs with double-projection: the mapping on the input convex-
closed set, and the filtering for partial information (i.e., conditional expectation on subspace).

4.2. Consistency condition. Note that the optimal strategy for the auxiliary control prob-
lem involves some undetermined terms (x̂, ŷ1, β̂1). In this section, we will characterize the
undetermined processes, especially state-average limit x̂, in (21) via some consistency match-
ing scheme. Given the Hamiltonian system by (24), all agents should apply some exchange-
able team decisions {u∗

i }Ni=1 and the realized states should be as follows:⎧⎪⎪⎨⎪⎪⎩
dx∗

i = [
A�i

x∗
i + BP�

[
R−1

E
[−B�p∗

i (t) − D�
�i

q∗
i (t)|Gi

t

]]+ Fx∗,(N)]dt

+ [
Cx∗

i + D�i
P�

[
R−1

E
[−B�p∗

i (t) − D�
�i

q∗
i (t)|Gi

t

]]+ F̃ x∗,(N)]dWi(t),

x∗
i (0) = ξ,

where x∗,(N) = 1
N

∑N
i=1 x∗

i and (p∗
i , q

∗
i ) is the solution of (24). Making all such exchangeable

strategies aggregated, and applying the de Finetti theorem, we can obtain the limiting system
by identifying x̂ = Ex∗,

(25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̃ = [
A�x̃ + BP�

[
R−1

E
[−B�p̃(t) − D�

�q̃(t)|Gt

]]+ FEx̃
]
dt

+ [
Cx̃ + D�P�

[
R−1

E
[−B�p̃(t) − D�

�q̃(t)|Gt

]]+ F̃Ex̃
]
dW(t),

dp̃ = −
[
A�

�p̃ + Qx̃ +H(H,Q)Ex̃ − F�ŷ1 − F̃�β̂1 − F�
∫
S

yθ
2 d
(θ)

+ C�q̃

]
dt + q̃ dW(t),

x̃(0) = ξ, p̃(T ) = 0,

where � is a random variable with distribution defined in (A1), W(t) is a generic Brow-
nian motion independent of �, G is a subfiltration representing the partial information
and (ŷ1 = E[y1], β̂1 = E[β1

1 ], yθ
2 ) is from (19). Note that we suppress subscript i in (25)

as all agents are statistically identical in the distribution sense. Combining with (19), we
will obtain consistency condition (CC) of the Problem LQG-MFT. For simplicity, define
Et [−B�γ − D�

�ϑ] = E[−B�γ − D�
�ϑ |Gt ]. Hence we have the following result.
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PROPOSITION 4.1. The undetermined parameters of (21) can be determined by(
x̂, ŷ1, β̂1, y

θ
2
)= (

Eα,Ey̌1,Eβ̌1, y̌
θ
2
)
,

where (α, γ,ϑ, y̌1, β̌1, y̌
θ
2 ) is the solution of the consistency condition of Problem LQG-MFT:

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα = [
A�α + BP�

[
R−1Et

[−B�γ − D�
�ϑ

]]+ FEα
]
dt

+ [
Cα + D�P�

[
R−1Et

[−B�γ − D�
�ϑ

]]+ F̃Eα
]
dW,

dγ =
[
−Qα −H(H,Q)Eα − A�

�γ + F�
∫
S

y̌θ
2 d
(θ)

+ F�
Ey̌1 − C�ϑ + F̃�

Eβ̌1

]
dt + ϑ dW,

dy̌1 = [
Qα − A�

�y̌1 − C�β̌1
]
dt + β̌1 dW,

dy̌θ
2 = [

H(H,Q)Eα − F�
Ey̌1 − F̃�

Eβ̌1 − A�
θ y̌θ

2 − F�y̌θ
2
]
dt,

α(0) = ξ, γ (T ) = 0, y̌1(T ) = 0, y̌θ
2 (T ) = 0, θ ∈ S.

REMARK 4.2. (26) is a new type of fully coupled FBSDEs with double-projection (pro-
jection mapping on the convex-closed subset and partial-information subspace). Moreover,
both temporal variable t and spatial variable θ appear in (26). Considering this, we can rewrite
(26) in the following more compact form:

(27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα = [
A�α + BP�

[
R−1Et

[−B�γ − D�
�ϑ

]]+ FEα
]
dt

+ [
Cα + D�P�

[
R−1Et

[−B�γ − D�
�ϑ

]]+ F̃Eα
]
dW,

dγ = [−Qα −H(H,Q)Eα − A�
�γ + F�

Ey̌�
2

+ F�
Ey̌1 − C�ϑ + F̃�

Eβ̌1
]
dt + ϑ dW(t),

dy̌1 = [
Qα − A�

�y̌1 − C�β̌1
]
dt + β̌1 dW,

dy̌�
2 = [

H(H,Q)Eα − F�
Ey̌1 − F̃�

Eβ̌1 − A�
�y̌�

2 − F�y̌�
2
]
dt,

α(0) = ξ, γ (T ) = 0, y̌1(T ) = 0, y̌�
2 (T ) = 0.

Note that by the independence between � and W , (27) can be viewed as defined on the
product space �1 ×�2 → S×R

n. This is a general system which includes many frameworks
in current literature as special cases. For more information, please refer to Section 6.1.

4.3. Wellposedness of consistency condition. This subsection continues to complete
(Step 3) by establishing some well-posedness to CC derived in Section 4.2. Note that (26)
is fully coupled FBSDEs involved with double projections whose well-posedness cannot be
guaranteed by current literature. Moreover, as explained in Section 6.2, (26) is obtained by
converting the system with continuum heterogeneity to a homogenous one but with aug-
mented randomness ({�i,Wi}Ni=1) as a trade-off. Based on this, we will apply the discount-
ing method to study (26) which would provide some mild conditions to ensure the existence
and uniqueness of fully coupled FBSDEs as (26). Define X = α, Y = (γ �, y̌�

1 , (y̌θ
2 )�)�

and Z = (ϑ�, β̌�
1 ,0)�. For simplicity, let Et [Y ] = E[Y |Gt ] and Et [Z] = E[Z|Gt ], Ẽ[Y ] =

((
∫
S γ d
(θ))�, (

∫
S y̌1 d
(θ))�, (

∫
S y̌θ

2 d
(θ))�)�, then (26) takes the following form:

(28)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX = [

A�X + FE[X] +B1(Y,Z)
]
dt + [

CX + F̃E[X] +D�(Y,Z)
]
dW,

dY = [
A2X + Ā2E[X] +B2Y + B̄2E[Y ] + B̃2Ẽ[Y ] +C2Z + C̄2E[Z]]dt

+ Z dW,

X(0) = ξ, Y (T ) = (0, . . . ,0)�,
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1(Y,Z) = BP�

[
R−1Et

[−B�γ − D�
�ϑ

]]
= BP�

[
R−1((−B�,0, . . . ,0

)
Et [Y ] + (−D�

�,0, . . . ,0
)
Et [Z])],

D�(Y,Z) = D�P�

[
R−1Et

[−B�γ − D�
�ϑ

]]
= D�P�

[
R−1((−B�,0, . . . ,0

)
Et [Y ] + (−D�

�,0, . . . ,0
)
Et [Z])],

A2 =

⎛⎜⎜⎝
−Q

Q

0

⎞⎟⎟⎠ , Ā2 =

⎛⎜⎜⎝
−H(H,Q)

0

H(H,Q)

⎞⎟⎟⎠ ,

B2 =

⎛⎜⎜⎝
−A�

� 0 0

0 −A�
� 0

0 0 −A�
θ − F�

⎞⎟⎟⎠ ,

B̄2 =

⎛⎜⎜⎝
0 F� 0

0 0 0

0 −F� 0

⎞⎟⎟⎠ , B̃2 =

⎛⎜⎜⎝
0 0 F�

0 0 0

0 0 0

⎞⎟⎟⎠ ,

C2 =

⎛⎜⎜⎝
−C� 0 0

0 −C� 0

0 0 0

⎞⎟⎟⎠ , C̄2 =

⎛⎜⎜⎝
0 F̃� 0

0 0 0

0 −F̃� 0

⎞⎟⎟⎠ ,

and 0 denotes the zero vector or zero matrix with suitable dimensions. Note that in (28),
B̃2Ẽ[Y ] = Ẽ[B̃2Y ] = E[B̃2Y ]. To start, we first give some results for the general nonlinear
mean-field forward-backward system with double projections:

(29)

⎧⎪⎪⎨⎪⎪⎩
dX = b

(
t,X,E[X],Et [Y ],Et [Z])dt

+ σ
(
t,X,E[X],Et [Y ],Et [Z])dW, X(0) = x,

dY (t) = −f
(
t,X,E[X], Y,E[Y ], Ẽ[Y ],Z,E[Z])dt + Z dW, Y (T ) = 0,

where E[Ẽ[Y ]] = E[Y ] and the coefficients satisfy the following conditions:

(H1) There exist ρ1, ρ2 ∈ R and positive constants ki, i = 1, . . . ,8 such that for all t ∈
[0, T ], x, x1, x2, x̄, x̄1, x̄2 ∈ R

n, y, y1, y2, ȳ, ȳ1, ȳ2, ŷ, ŷ1, ŷ2, ỹ, ỹ1, ỹ2 ∈ R
m, z, z1, z2, z̄, z̄1,

z̄2, z̃, z̃1, z̃2 ∈R
m, a.s.,〈

b(t, x1, x̄, y, ŷ, z, ẑ) − b(t, x2, x̄, y, ŷ, z, ẑ), x1 − x2
〉≤ ρ1|x1 − x2|2,∣∣b(t, x, x̄1, y1, ŷ1, z1, ẑ1) − b(t, x, x̄2, y2, ŷ2, z1, ẑ2)
∣∣

≤ k1|x̄1 − x̄2| + k2|y1 − y2| + k2|ŷ1 − ŷ2| + k2|z1 − z2| + k2|ẑ1 − ẑ2|,〈
f (t, x, x̄, y1, ȳ, ỹ, z, z̄) − f (t, x, x̄, y2, ȳ, ỹ, z, z̄), y1 − y2

〉≤ ρ2|y1 − y2|2,∣∣f (t, x1, x̄1, y, ȳ1, ỹ1, z1, z̄1) − f (t, x2, x̄2, y, ȳ2, ỹ2, z2, z̄2)
∣∣

≤ k2|x1 − x2| + k2|x̄1 − x̄2| + k3|ȳ1 − ȳ2| + k4|ỹ1 − ỹ2|
+ k5|z1 − z2| + k6|z̄1 − z̄2|,∣∣σ(t, x1, x̄1, y1, ŷ1, z1, ẑ1) − σ(t, x2, x̄2, y2, ŷ2, z2, ẑ2)

∣∣2
≤ k2

7 |x1 − x2|2 + k2
8 |x̄1 − x̄2|2 + k2

2|ŷ1 − ŷ2|2 + k2
2 |ẑ1 − ẑ2|2.

(H2)

E

∫ T

0

[∣∣b(t,0,0,0,0)
∣∣2 + ∣∣σ(t,0,0,0,0)

∣∣2 + ∣∣f (t,0,0,0,0,0,0,0)
∣∣2]dt < ∞.
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Similar to [21] and [37], we have the following result of the solvability of (29). For the
readers’ convenience, we give the proof in the Appendix.

THEOREM 4.3. Suppose (H1) and (H2) hold. There exists a constant δ1 > 0 depending
on ρ1, ρ2, T , ki , i = 1,3,4,5,6,7,8 such that if k2 ∈ [0, δ1), FBSDEs (29) admits a unique
adapted solution (X,Y,Z) ∈ L2

F (0, T ;Rn)×L2
F (0, T ;Rm)×L2

F (0, T ;Rm). Furthermore, if
2ρ1 + 2ρ2 < −2k1 − 2k3 − 2k4 − k2

5 − k2
6 − k2

7 − k2
8 , there exists a constant δ2 > 0 depending

on ρ1, ρ2, ki , i = 1,3,4,5,6,7,8 such that if k2 ∈ [0, δ2), FBSDEs (29) admits a unique
adapted solution (X,Y,Z) ∈ L2

F (0, T ;Rn) × L2
F (0, T ;Rm) × L2

F (0, T ;Rm).

Let ρ∗
1 = ess sup0≤s≤T ess supθ∈S �max(−1

2(Aθ(s) + Aθ(s)
�)) and ρ∗

2 =
ess sup0≤s≤T �max(−1

2(B(s) + B(s)�)), where �max(M) is the largest eigenvalue of the
matrix M . For M(·) ∈ L∞

F
(0, T ;Rn×n), ‖M(·)‖ � ess sup0≤s≤T ess supω∈� ‖M(s)‖. Com-

paring (29) with (28), we can check that the parameters of (H1) and (H2) can be chosen as
follows:

k1 = ‖F‖, k3 = ‖B̄2‖, k4 = ‖B̃2‖, k5 = ‖C2‖,
k6 = ‖C̄2‖, k7 = √

3‖C‖, k8 = √
3‖F̃‖,

k2 = max
{‖B‖2∥∥R−1∥∥,‖B‖∥∥R−1∥∥‖D�‖,‖A2‖,‖Ā2‖,

√
6‖D�‖∥∥R−1∥∥‖B‖,√6‖D�‖∥∥R−1∥∥‖D�‖}.

Now we introduce the following assumption:

(A4) 2ρ∗
1 + 2ρ∗

2 < −2k1 − 2k3 − 2k4 − k2
5 − k2

6 − k2
7 − k2

8 .

It follows from Theorem 4.3 that:

PROPOSITION 4.4. Under (A4), there exists a constant δ3 > 0 depending on ρ∗
1 , ρ∗

2 , ki ,
i = 1,3,4,5,6,7,8 such that if k2 ∈ [0, δ3), FBSDEs (28) admits a unique adapted solution
(X,Y,Z) ∈ L2

F (0, T ;Rn) × L2
F (0, T ;R3n) × L2

F (0, T ;R3n).

5. Asymptotic ε-optimality. This section aims to complete (Step 4) so as to verify the
asymptotic optimality of the mean-field team strategy derived in Section 4. Here we proceed
with our verification based on the assumption in Section 4.3, that is, (A4). Contrary to MFG
entailing only one-side perturbation for a single agent to the asymptotic Nash equilibrium,
MFT must take into account team (integrated) perturbations upon all agents. Meanwhile,
(cooperative) social cost is more intertwined than the individual one of single agent, so a
quadratic functional representation, as formalized below, will greatly facilitate our targeted
analysis. For the sake of clear presentation, we divide the related analysis into four substeps
in separated subsections.

5.1. Quadratic representation of social cost. We first give a quadratic representation of
the team functional that gives a tractable fortiori formulation of Fréchet differentials of social
cost. Rewrite the large-population system (3) as follows:

(30) dx = (Ax + Bu)dt +
N∑

i=1

(Cix + Diu) dWi, x(0) = ξ̃ ,
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where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A�1 + F

N

F

N
· · · F

N
F

N
A�2 + F

N
· · · F

N
...

...
. . .

...
F

N

F

N
· · · A�N

+ F

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x =

⎛⎜⎝x1
...

xN

⎞⎟⎠ ,

B =

⎛⎜⎜⎜⎝
B 0 · · · 0
0 B · · · 0
...

...
. . .

...

0 0 · · · B

⎞⎟⎟⎟⎠ , u =
⎛⎜⎝u1

...

uN

⎞⎟⎠ ,

Ci =

1
...

i
...

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

F̃

N
· · · F̃

N

F̃

N
+ C

F̃

N
· · · F̃

N
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Di =

1
...

i
...

N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 D�i
0 · · · 0

...
...

...
...

...
...

...

0 · · · 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ξ̃ =

⎛⎜⎝ξ
...

ξ

⎞⎟⎠ .

Similarly, the social cost takes the following form:

J (N)
soc (u) = 1

2
E

∫ T

0

[〈Qx,x〉 + 〈Ru,u〉]dt,

where

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q + 1

N
H(H,Q)

1

N
H(H,Q) · · · 1

N
H(H,Q)

1

N
H(H,Q) Q + 1

N
H(H,Q) · · · 1

N
H(H,Q)

...
...

. . .
...

1

N
H(H,Q)

1

N
H(H,Q) · · · Q + 1

N
H(H,Q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

R =

⎛⎜⎜⎜⎝
R 0 · · · 0
0 R · · · 0
...

...
. . .

...

0 0 · · · R

⎞⎟⎟⎟⎠ .
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Next, by the variation of the constant formula, the strong solution of (30) becomes

x(t) = 
(t)̃ξ + 
(t)

∫ t

0

(s)−1

[(
B −

N∑
i=1

CiDi

)
u(s)

]
ds

+
N∑

i=1


(t)

∫ t

0

(s)−1Diu(s) dWi(s),

where d
(t) = A
(t) dt +∑N
i=1 Ci
(t) dWi(t), 
(0) = I . Define the following operators:⎧⎪⎪⎨⎪⎪⎩

φ(u)(·) := 
(·)
{∫ ·

0

(s)−1

[(
B −

N∑
i=1

CiDi

)
u(s)

]
ds +

N∑
i=1

∫ ·
0


(s)−1Diu dWi(s)

}
,

φ̃(u) := φ(u)(T ), S(y)(·) := 
(·)
−1(0)̃ξ , S̃(y) := S(y)(T ),

then for any admissible control u, we have x(·) = φ(u)(·) + S(y)(·), x(T ) = φ̃(u) + S̃(y).
Note that φ(·) : (L2

F (0, T ;�), . . . ,L2
F (0, T ;�)) → (L2

F (0, T ;Rn), . . . ,L2
F (0, T ;Rn)) is

a bounded linear operator, thus there exists a unique bounded linear operator φ∗(·) :
(L2

F (0, T ;Rn), . . . ,L2
F (0, T ;Rn)) → (L2

F (0, T ;�), . . . ,L2
F (0, T ;�)) such that for any

u(·) ∈ (L2
F (0, T ;�), . . . ,L2

F (0, T ;�)) and x(·) ∈ (L2
F (0, T ;Rn), . . . ,L2

F (0, T ;Rn)),
E
∫ T

0 〈φ(u)(t),x(t)〉dt = E
∫ T

0 〈u(t), φ∗(x)(t)〉dt . Hence, we can rewrite the cost func-
tional as follows:

2J (N)
soc (u) = E

∫ T

0

[〈(
φ∗Qφ + R

)
u,u

〉+ 2
〈
φ∗QS(y), u

〉+ 〈
QS(y),S(y)

〉]
dt

:= 〈
M2(u)(·), u(·)〉+ 2

〈
M1, u(·)〉+ M0,

where we have used 〈·, ·〉 as inner products in different Hilbert spaces. Note that, M2(·) is a
bounded self-adjoint positive semidefinite linear operator.

5.2. Agent Ai perturbation. This subsection gives a perturbation for the single agent Ai

that further triggers a team perturbation across the population, (see Section 5.4). Let ũ =
(ũ1, . . . , ũN) be the decentralized strategy given by

(31) ũi(t) = ϕ�i

(
pi(t), qi(t)

) := P�

[
R(t)−1

E
[
B(t)�pi(t) + D�i

(t)�qi(t)|Gi
t

]]
,

where (pi, qi) is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxi = [
A�i

xi + Bϕ�i
(pi, qi) + FEα

]
dt + [

Cxi + D�i
ϕ�i

(pi, qi) + F̃Eα
]
dWi(t),

dpi =
[
−Qxi −H(H,Q)Eα − A�

�i
pi + F�

∫
S

y̌θ
2 d
(θ) + F�

Ey̌1

− C�qi + F̃�
Eβ̌1

]
dt + qi dWi(t),

xi(0) = ξ, pi(T ) = 0, i = 1, . . . ,N.

Here, (α, y̌1, β̌1, y̌
θ
2 ) is the solution of (26). Correspondingly, the realized decentralized states

(x̃1, . . . , x̃N) satisfy

(32)

⎧⎪⎪⎨⎪⎪⎩
dx̃i = [

A�i
x̃i + Bϕ�i

(pi, qi) + F x̃(N)]dt

+ [
Cx̃i + D�i

ϕ�i
(pi, qi) + F̃ x̃(N)]dWi,

x̃i(0) = ξ,
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and x̃(N) = 1
N

∑N
i=1 x̃i . Let us consider the case that the agent Ai (without loss of generality,

assume i > 1) uses an alternative strategy ui ∈ Uc,f
i while the other agents Aj , j �= i use the

strategy ũ−i . The realized state with the ith agent’s perturbation is⎧⎪⎪⎨⎪⎪⎩
dx́i = [

A�i
x́i + Bui + F x́(N)]dt + [

Cx́i + D�i
ui + F̃ x́(N)]dWi,

dx́j = [
A�j

x́j + Bϕ�j
(pj , qj ) + F x́(N)]dt + [

Cx́j + D�j
ϕj (pj , qj ) + F̃ x́(N)]dWj ,

x́i(0) = ξ, x́j (0) = ξ, 1 ≤ j ≤ N,j �= i,

where x́(N) = 1
N

∑N
i=1 x́i . For j = 1, . . . ,N , denote the perturbation δui = ui − ũi , δxj,i =

x́j − x̃j , δJj,i = Jj (ui, ũ−i) −Jj (ũi, ũ−i). Introducing the following frozen states:

(33)

⎧⎪⎪⎨⎪⎪⎩
dl̃j = [

A�j
l̃j + Bϕ�j

(pj , qj ) + FEα
]
dt

+ [
Cl̃j + D�j

ϕ�j
(pj , qj ) + F̃Eα

]
dWj ,

l̃j (0) = ξ, j = 1, . . . ,N,

and⎧⎪⎪⎨⎪⎪⎩
dĺi = [A�i

ĺi + Bui + FEα]dt + [Cĺi + D�i
ui + F̃Eα]dWi,

dĺj = [
A�j

ĺj + Bϕ�j
(pj , qj ) + FEα

]
dt + [

Cĺj + D�j
ϕj (pj , qj ) + F̃Eα

]
dWj ,

ĺi(0) = ξ, ĺj (0) = ξ, 1 ≤ j ≤ N,j �= i.

Similar to the computations in Section 3.1, we have

(34) δJ (N)
soc = E

∫ T

0

[〈Ql̃i, δli〉 − 〈�,δli〉 + 〈Rũi, δui〉]dt +
7∑

l=1

εl,

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 = −E

∫ T

0

〈
H(H,Q)

(
Eα − x̃(N)),Nδx(N)〉dt,

ε2 = −E

∫ T

0

〈
H(H,Q)Eα,x∗∗ − δx−i

〉
dt,

ε3 = E

∫ T

0

1

N

∑
j �=i

〈
Qx̃j ,Nδxj,i − x∗

j

〉
dt,

ε4 = E

∫ T

0

〈
F�

(
E
[
y1

1
]− 1

N

∑
j �=i

y
j
1

)
+ F̃�

(
E
[
β11

1
]− 1

N

∑
j �=i

β
jj
1

)
, δxi

〉
dt,

ε5 = E

∫ T

0

〈
F�

(
E
[
y1

1
]− 1

N

∑
j �=i

y
j
1

)
+ F̃�

(
E
[
β11

1
]− 1

N

∑
j �=i

β
jj
1

)
, x∗∗

〉
dt,

ε6 = E

∫ T

0

[〈ĺi − x́i ,�〉 + 〈̃li − x̃i ,�〉]dt,

ε7 = E

∫ T

0

[〈
Q(x̃i − l̃i ), δxi

〉+ 〈Ql̃i, x́i − ĺi〉 + 〈Ql̃i, x̃i − l̃i〉]dt.

5.3. Preliminary estimations. By (34), in order to establish asymptotic optimality of de-
centralized strategies, we need to rely on some estimates on ε1, . . . , ε7, based on structural es-
timations of variational equations (6), (7), (8) and mean-field approximations in Section 3.1.
More elaborate estimates are thereby needed considering continuum heterogeneity. So this
subsection will first study the properties of involved variational equations and mean-field ap-
proximations. Below, L denotes a generic constant whose value may change from line to line.
Applying the same technique as in [21], Lemma 5.1, we have:
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LEMMA 5.1. There exists a constant L independent of N such that

E sup
0≤t≤T

[|α|2 + |γ |2 + |y̌1|2 + ∣∣y̌θ
2

∣∣2]+ N∑
j=1

E sup
0≤t≤T

[|xj |2 + |pj |2]

+E

∫ T

0

[|ϑ |2 + |β̌1|2]dt +
N∑

j=1

E

∫ T

0

[|qj |2 + ∣∣ϕ�j
(pj , qj )

∣∣2]dt ≤ L,

and

sup
1≤j≤N

E sup
0≤t≤T

∣∣x̃j (t)
∣∣2 + sup

1≤j≤N

E sup
0≤t≤T

∣∣̃lj (t)∣∣2 ≤ L.

Next we give some estimations on variational equations (6), (7) and (8).

LEMMA 5.2. There exists a constant L independent of N such that

E sup
0≤s≤t

∣∣δx(N)
∣∣2 + sup

1≤j≤N,j �=i

E sup
0≤t≤T

|δxj,i |2 ≤ L

N2 .

PROOF. Recall the equations (6), (7) and (8), we have

E sup
0≤s≤t

|δxi |2 ≤ L + LE

∫ t

0
|δxi |2 ds + LE

∫ t

0

∣∣δx(N)
∣∣2 ds,

E sup
0≤s≤t

|δxj,i |2 ≤ LE

∫ t

0
|δxj,i |2 ds + LE

∫ t

0

∣∣δx(N)
∣∣2 ds,

E sup
0≤s≤t

|δx−i |2 ≤ LE

∫ t

0
|δx−i |2 ds + LN2

E

∫ t

0

∣∣δx(N)
∣∣2 ds.

Note that δx(N) = 1
N

δxi + 1
N

δx−i , we have

E sup
0≤s≤t

|δxi |2 ≤ L + LE

∫ t

0
|δxi |2 ds + L

N2E

∫ t

0
|δx−i |2 ds,

E sup
0≤s≤t

|δx−i |2 ≤ LE

∫ t

0
|δx−i |2 ds + LE

∫ t

0
|δxi |2 ds.

Therefore, it follows from the Gronwall inequality that we have

sup
1≤j≤N,j �=i

E sup
0≤s≤t

|δxj,i |2 ≤ L

N2 . �

Now we study mean-field approximations: due to the continuum heterogeneous setting,
some new estimates are thus required with their own interests. Specifically, Lemma 5.3 is not
a standard SDE estimate, thus some specific techniques are invoked in its proof.

LEMMA 5.3. There exists a constant L independent of N such that

sup
0≤t≤T

E
∣∣x̃(N)(t) −Eα

∣∣2 ≤ L

N
.
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PROOF. First, for any θ ∈ S , let⎧⎪⎪⎨⎪⎪⎩
dx̃θ,j = [

Aθ x̃θ,j + Bϕθ(pj , qj ) + F x̃
(N)
θ

]
dt

+ [
Cx̃θ,j + Dθϕθ(pj , qj ) + F̃ x̃

(N)
θ

]
dWj(t),

x̃θ,j (0) = ξ,⎧⎪⎪⎨⎪⎪⎩
dl̃θ,j = [

Aθ l̃θ,j + Bϕθ(pj , qj ) + FEαθ

]
dt

+ [
Cl̃θ,j + Dθϕθ(pj , qj ) + F̃Eαθ

]
dWj(t),

l̃θ,j (0) = ξ,

where x̃
(N)
θ = 1

N

∑N
j=1 x̃θ,j and αθ is the solution of (26) corresponding to � ≡ θ . By the

Cauchy–Schwarz inequality and the Burkholder–Davis–Gundy inequality, we have

E sup
0≤s≤t

∣∣x̃θ,j (s) − l̃θ,j (s)
∣∣2 ≤ LE

∫ t

0

[∣∣x̃θ,j (s) − l̃θ,j (s)
∣∣2 + ∣∣x̃(N)

θ (s) −Eαθ(s)
∣∣2]ds.

By the Gronwall inequality, we have

(35) E sup
0≤s≤t

∣∣x̃θ,j (s) − l̃θ,j (s)
∣∣2 ≤ LE

∫ t

0

∣∣x̃(N)
θ (s) −Eαθ(s)

∣∣2 ds.

Next, recalling the state equations (32) and (33), similarly we have

(36) E sup
0≤s≤t

∣∣x̃j (s) − l̃j (s)
∣∣2 ≤ LE

∫ t

0

∣∣x̃(N)(s) −Eα(s)
∣∣2 ds.

Note that for any t ∈ [0, T ],

(37)

E
∣∣x̃(N)(t) −Eα(t)

∣∣2
≤ 2E

∣∣∣∣∣ 1

N

N∑
j=1

x̃j (t) − 1

N

N∑
j=1

∫
S

x̃θ,j (t) d
(θ)

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣ 1

N

N∑
j=1

∫
S

x̃θ,j (t) d
(θ) −
∫
S
E
[
α(t)|� = θ

]
d
(θ)

∣∣∣∣∣
2

≤ 6

N

N∑
j=1

E
∣∣x̃j (t) − l̃j (t)

∣∣2 + 6

N2

N∑
j=1

E

∣∣∣∣̃lj (t) −
∫
S

l̃θ,j (t) d
(θ)

∣∣∣∣2

+ 12

N2

∑
1≤j �=k≤N

〈
E

(̃
lj (t) −

∫
S

l̃θ,j (t) d
(θ)

)
,E

(̃
lk(t) −

∫
S

l̃θ,k(t) d
(θ)

)〉

+ 6E

∣∣∣∣∣ 1

N

N∑
j=1

∫
S

l̃θ,j (t) d
(θ) − 1

N

N∑
j=1

∫
S

x̃θ,j (t) d
(θ)

∣∣∣∣∣
2

+ 2
∫
S
E

∣∣∣∣∣ 1

N

N∑
j=1

x̃θ,j (t) d
(θ) −E
[
α(t)|� = θ

]∣∣∣∣∣
2

d
(θ).

Similar to Lemma 5.1, there exists a constant L such that supθ∈S sup1≤j≤N

E sup0≤t≤T |x̃θ,j (t)|2 ≤ L. Consequently,

(38)
6

N2

N∑
j=1

E

∣∣∣∣̃lj (t) −
∫
S

l̃θ,j (t) d
(θ)

∣∣∣∣2 ≤ L

N
.
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From Eα = ∫
S Eαθ d
(θ) and E(A�j

l̃j ) = ∫
S E(Aθ l̃θ,j ) d
(θ), we have

(39) E

(̃
lj (t) −

∫
S

l̃θ,j (t) d
(θ)

)
= 0.

It is easy to see that

(40)

E

∣∣∣∣∣ 1

N

N∑
j=1

∫
S

l̃θ,j (t) d
(θ) − 1

N

N∑
j=1

∫
S

x̃θ,j (t) d
(θ)

∣∣∣∣∣
2

= E

∣∣∣∣∣ 1

N

N∑
j=1

∫
S

(̃
lθ,j (t) − x̃θ,j (t)

)
d
(θ)

∣∣∣∣∣
2

≤ 1

N

N∑
j=1

∫
S
E
∣∣̃lθ,j (t) − x̃θ,j (t)

∣∣2 d
(θ).

Substituting (35), (36), (38), (39), and (40) into (37), we have

E
∣∣x̃(N)(t) −Eα(t)

∣∣2 ≤ LE

∫ t

0

∣∣x̃(N)(s) −Eα(s)
∣∣2 ds + L

N

+ L

N

N∑
j=1

∫
S
E

∫ t

0

∣∣x̃(N)
θ (s) −Eαθ(s)

∣∣2 ds d
(θ)

+ 2
∫
S
E

∣∣∣∣∣ 1

N

N∑
j=1

x̃θ,j (t) −E
[
α(t)|� = θ

]∣∣∣∣∣
2

d
(θ).

Applying similar method as the homogeneous case (e.g., [38], Lemma 6.3), we have
E| 1

N

∑N
j=1 x̃θ,j (t) −E[α(t)|� = θ ]|2 ≤ L

N
, and E

∫ t
0 |x̃(N)

θ (s) −Eαθ(s)|2 ds ≤ L
N

. Therefore,

there exists a constant L independent of t such that E|x̃(N)(t) − Eα|2 ≤ LE
∫ t

0 |x̃(N)(s) −
Eα(s)|2 ds + L

N
. By the Gronwall inequality, we have

E
∣∣x̃(N)(t) −Eα

∣∣2 ≤ L

N
eLt . �

LEMMA 5.4. There exists some constant L independent of N such that

sup
0≤t≤T

E
∣∣x∗∗ − δx−i

∣∣2 ≤ L

N
,(41)

E sup
0≤t≤T

∣∣Nδxj,i − x∗
j

∣∣2 ≤ L

N
, j �= i.(42)

PROOF. Introduce the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dδx̌i =
[
A�i

δx̌i + Bδui + F

N
δxi + F

N
x∗∗

]
dt

+
[
Cδx̌i + D�i

δui + F̃

N
δxi + F̃

N
x∗∗

]
dWi,

dδx̌j =
[
A�j

δx̌j + F

N
δxi + F

N
x∗∗

]
dt +

[
Cδx̌j + F̃

N
δxi + F̃

N
x∗∗

]
dWj , j �= i,

δx̌i(0) = 0, δx̌j (0) = 0.



2810 X. FENG, Y. HU AND J. HUANG

Recalling (7), by the Cauchy–Schwarz inequality, the Burkholder–Davis–Gundy inequality,
and the Gronwall inequality, we have

(43) E sup
0≤s≤t

∣∣δxj,i(s) − δx̌j (s)
∣∣2 ≤ L

N2E

∫ t

0

∣∣δx−i (s) − x∗∗(s)
∣∣2 ds.

For any θ ∈ S , let⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dδxθ,i = [

Aθδxθ,i + Bδui + Fδx
(N)
θ

]
dt + [

Cδxθ,i + Dθδui + F̃ δx
(N)
θ

]
dWi,

δxθ,i(0) = 0,

j �= i, dδxθ,j = [
Aθδxθ,j + Fδx

(N)
θ

]
dt + [

Cδxθ,j + F̃ δx
(N)
θ

]
dWj ,

δxθ,j (0) = 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dδx̌θ,i =
[
Aθδx̌θ,i + Bδui + F

N
δxθ,i + F

N
x∗∗
θ

]
dt

+
[
Cδxθ,i + Dθδui + F̃

N
δxθ,i + F̃

N
x∗∗
θ

]
dWi,

dδx̌θ,j =
[
Aθδx̌θ,j + F

N
δxθ,i + F

N
x∗∗
θ

]
dt +

[
Cδx̌θ,j + F̃

N
δxθ,i + F̃

N
x∗∗
θ

]
dWj ,

δx̌θ,i(0) = 0, δx̌θ,j (0) = 0, j �= i,

where δx
(N)
θ = 1

N

∑N
j=1 δxθ,j . Similarly,

(44) E sup
0≤s≤t

∣∣δxθ,j (s) − δx̌θ,j (s)
∣∣2 ≤ L

N2E

∫ t

0

∣∣∣∣∑
j �=i

δxθ,j (s) − x∗∗
θ (s)

∣∣∣∣2 ds.

For any t ∈ [0, T ],

(45)

E
∣∣x∗∗(t) − δx−i (t)

∣∣2
≤ 6(N − 1)

∑
j �=i

E|δxj − δx̌j |2 + 6
∑
j �=i

E

∣∣∣∣δx̌j −
∫
S

δx̌θ,j d
(θ)

∣∣∣∣2

+ 12
∑

1≤j �=k≤N,j,k �=i

E

〈
δx̌j −

∫
S

δx̌θ,j d
(θ), δx̌k −
∫
S

δx̌θ,k d
(θ)

〉

+ 6(N − 1)
∑
j �=i

∫
S
E|δx̌θ,j − δxθ,j |2 d
(θ) + 2

∫
S
E

∣∣∣∣∑
j �=i

δxθ,j − x∗∗
θ

∣∣∣∣2 d
(θ).

Similar to Lemma 5.3, we have

E
∣∣x∗∗(t) − δx−i (t)

∣∣2
≤ LE

∫ t

0

∣∣δx−i (s) − x∗∗(s)
∣∣2 ds + L

N
+ L

∫
S
E

∫ t

0

∣∣∣∣∑
j �=i

δxθ,j (s) − x∗∗
θ (s)

∣∣∣∣2 ds d
(θ)

+ 2
∫
S
E

∣∣∣∣∑
j �=i

δxθ,j − x∗∗
θ

∣∣∣∣2 d
(θ).

Applying a similar technique as in the homogeneous case (e.g., page 29 in [38]), we have
E sup0≤s≤t |

∑
j �=i δxθ,j (s) − x∗∗

θ |2(s) ≤ L
N

. Therefore, there exists a constant L independent

of t such that E|x∗∗(t) − δx−i (t)|2 ≤ LE
∫ t

0 |δx−i (s) − x∗∗(s)|2 ds + L
N

. By the Gronwall
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inequality, we have E|x∗∗(t) − δx−i (t)|2 ≤ L
N

eLt . Hence (41) follows. Note that⎧⎪⎪⎨⎪⎪⎩
d
(
x∗
j − Nδxj,i

)= [
A�j

(
x∗
j − Nδxj,i

)+ F
(
x∗∗ − δx−i

)]
dt

+ [
C
(
x∗
j − Nδxj,i

)+ F̃
(
x∗∗ − δx−i

)]
dWj ,(

x∗
j − δxj,i

)
(0) = 0.

By (41), we have (42). �

The following result follows directly by Lemma 5.3 together with the common Cauchy–
Schwarz inequality, the Burkholder–Davis–Gundy inequality and the Gronwall inequality.

LEMMA 5.5. There exists a constant L independent of N such that

(46) sup
1≤j≤N

E sup
0≤t≤T

|̃lj − x̃j |2 ≤ L

N
.

5.4. Asymptotic optimality. In view of Section 5.1–5.3, we are now ready to com-
plete Step 4, that is, to establish the asymptotic optimality of ũ = (ũ1, . . . , ũN). In order
to prove asymptotic optimality, it suffices to consider the perturbations ui ∈ Uc

i such that

J (N)
soc (u1, . . . , uN) ≤ J (N)

soc (ũ1, . . . , ũN). It is easy to check that J (N)
soc (ũ1, . . . , ũN) ≤ LN ,

where L is a constant independent of N . Therefore, in the following we only consider per-
turbations ui ∈ Uc

i satisfying
∑N

i=1 E
∫ T

0 |ui |2 dt ≤ LN . Therefore, similar to Lemma 5.3 and
Lemma 5.5, we have the following lemma.

LEMMA 5.6. There exist a constant L independent of N such that

E sup
0≤t≤T

∣∣x́(N)(t) −Eα
∣∣2 ≤ L

N
, sup

1≤j≤N

E sup
0≤t≤T

|ĺj − x́j |2 ≤ L

N
.

Let δui = ui − ũi , and consider a perturbation u = ũ + (δu1, . . . , δuN) := ũ + δu. Then
by Section 5.1, we have

2J (N)
soc (ũ + δu) = 〈

M2(ũ + δu), ũ + δu
〉+ 2〈M1, ũ + δu〉 + M0

= 2J (N)
soc (ũ) + 2

N∑
i=1

〈
M2(ũ) + M1, δui

〉+ 〈
M2(δu), δu

〉
,

where M2(ũ) + M1 is the Fréchet differential of J (N)
soc on ũ.

THEOREM 5.7. Under the assumptions (A1)–(A5), ũ = (ũ1, . . . , ũN) defined in (31) is
a ( 1√

N
)-social optimal strategy for the agents.

PROOF. From Section 5.2, we have

〈
M2(ũ) + M1, δui

〉= E

∫ T

0

[〈Ql̃i, δli〉 − 〈�,δli〉 + 〈Rũi, δui〉]dt +
7∑

l=1

εl.

From the optimality of ũ, we have E
∫ T

0 [〈Ql̃i, δli〉 − 〈�,δli〉 + 〈Rũi, δui〉]dt ≥ 0. Suppose

this is not true, then for ui such that ũi +ui ∈ Ud,p
i , we have ũi +ρui ∈ Ud,p

i , 0 < ρ < 1, and

limρ→0
Ji(ũi+ρui,ũ−i )−Ji(ũi ,ũ−i )

ρ
< 0. Thus, Ji(ũi + ρui, ũ−i) < Ji(ũi, ũ−i) for sufficiently
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small ρ, which is a contradiction with the optimality of ũi . Moreover, combing Lemmas
5.3–5.6 with iteration analysis (e.g., [23]), we have

∑7
l=1 εl = O( 1√

N
). Therefore,

J (N)
soc (ũ + δu)

= J (N)
soc (ũ) +

N∑
i=1

E

∫ T

0

[〈Ql̃i, δli〉 − 〈�,δli〉 + 〈Rũi, δui〉]dt

+
N∑

i=1

5∑
l=1

εl + 1

2

〈
M2(δu), δu

〉
.

Note that
∑N

i=1 E
∫ T

0 [〈Ql̃i, δli〉 − 〈�,δli〉 + 〈Rũi, δui〉]dt + 1
2〈M2(δu), δu〉 ≥ 0, and∑N

i=1
∑7

l=1 εl = O(
√

N), there exists a constant L independent of N such that

1

N

(
J (N)

soc (ũ) − inf
u∈Uc

i

J (N)
soc (u)

)
≤ L√

N
. �

6. Synthetic analysis on homogeneity and heterogeneity.

6.1. Literature comparison. We now present comparisons to some relevant mean-field
literature.

6.1.1. Homogeneous case without diversity. For the homogeneous case with S = {s1}
being a singleton set, we have A�i

= As1 := A and D�i
= Ds1 := D for i = 1, . . . ,N . In this

case, we do not need to introduce x∗∗
θ as in (11) when applying variational decomposition.

We only need to introduce x∗∗ to replace δx−i . In fact, in the current case, x∗∗ satisfies

dx∗∗ = [
(A + F)x∗∗ + Fδxi

]
dt, x∗∗(0) = 0.

Moreover, CC in the homogeneous case becomes

(47)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα = [
Aα + BP�

[
R−1Et

[−B�γ − D�ϑ
]]+ FEα

]
dt

+ [
Cα + DP�

[
R−1Et

[−B�γ − D�ϑ
]]+ F̃Eα

]
dW,

dγ = [−Qα −H(H,Q)Eα − A�γ + F�y̌2 + F�
Ey̌1 − C�ϑ + F̃�

Eβ̌1
]
dt

+ ϑ dW(t),

dy̌1 = [
Qα − A�y̌1 − C�β̌1

]
dt + β̌1 dW,

dy̌2 = [
H(H,Q)Eα − F�

Ey̌1 − F̃�
Eβ̌1 − A�y̌2 − F�y̌2

]
dt,

α(0) = ξ, γ (T ) = 0, y̌1(T ) = 0, y̌2(T ) = 0.

This is the special case of (26) with 
(θ) being a Dirac distribution. Subsequently, our frame-
work covers the homogeneous case as its special case. Furthermore, in the case C = D = F =
F̃ = 0, � =R

m and G
i = F

i , by taking expectation, ᾱ = Eα and γ̄ = Eγ satisfy

(48)

{
dᾱ = [

Aᾱ − BR−1B�γ̄
]
dt, ᾱ(0) = ξ,

dγ̄ = [(−Q −H(H,Q)
)
ᾱ − A�γ̄

]
dt, γ̄ (T ) = 0.

This is just the special case discussed in page 1742 of [27] (see (42),(43) therein). The only
difference is that (48) is open-loop (γ̄ is the adjoint process) while (42) and (43) in [27] are
closed-loop (�x̄ + s is of feedback form).
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6.1.2. Heterogeneous case with finite diversities. Specifically, we assume that �i is de-
terministic (post-sampling) and assumes values in a finite discrete set S = {1,2, . . . ,K}. For
1 ≤ k ≤ K , introduce Ik = {i|�i = k,1 ≤ i ≤ N}, Nk = |Ik|, where Nk is the cardinality
of index set Ik (i.e., cardinality of set of k-type agents). For 1 ≤ k ≤ K , let π

(N)
k = Nk

N
,

then π(N) = (π
(N)
1 , . . . , π

(N)
K ) is a probability vector representing the empirical distribution

of �1, . . . ,�N . Suppose there exists a probability mass vector π = (π1, . . . , πK) such that
limN→+∞π(N) = π and min1≤k≤Kπk > 0. Under these assumptions, the variational decom-
position procedure still proceeds as in Section 3.1. Let δx(k) =∑

j∈Ik,j �=i δxj,i . By exchange-
ability of agents within the same type, we only need to consider a representative agent in each
type when using a limit to approximate δx(k). Therefore, for k = 1, . . . ,K , we should intro-
duce the term x∗∗

k to replace δx(k), where x∗∗
k satisfies the following dynamics:

dx∗∗
k =

[
Akx

∗∗
k + Fπkδxi + Fπk

K∑
l=1

x∗∗
l

]
dt, x∗∗

k (0) = 0, k = 1, . . . ,K.

Furthermore, if Gi = F
i , CC of the heterogeneous case with finite diversities becomes:

(49)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dαk =
[
Akαk + BP�

[
R−1

k

(
B�γk + D�

k ϑk

)]+ F

K∑
l=1

πlEαl

]
dt

+
[
Cαk + DkP�

[
R−1

k

(
B�γk + D�

k ϑk

)]+ F̃

K∑
l=1

πlEαl

]
dWk(t),

dγk =
[
−Qαk −H(H,Q)

K∑
l=1

πlEαl − A�
k γk + F�

K∑
l=1

πly̌
l
2 + F�

K∑
l=1

πlEy̌l
1

− C�ϑk + F̃�
K∑

l=1

πlEβ̌l
1

]
dt + ϑk dWk(t),

dy̌k
1 = [

Qαk − A�
k y̌k

1 − C�β̌k
1
]
dt + β̌k

1 dWk,

dy̌k
2 =

[
H(H,Q)

K∑
l=1

πlEαl −
K∑

l=1

πl

(
F�

Ey̌l
1 + F̃�

Eβ̌l
1
)− A�

k y̌k
2 − F�

K∑
l=1

πly̌
l
2

]
dt,

αk(0) = ξ, γk(T ) = 0, y̌k
1(T ) = 0, y̌k

2(T ) = 0, k = 1, . . . ,K.

(49) is similar to the CC in [21] (see (2.15) therein). [21] deals with MFG with the heteroge-
neous case with finite diversities, hence the CC only involves the Hamiltonian system of the
auxiliary control problem. While for LQG-MFT, besides the Hamilton system (25), CC also
includes (19) by the weak duality procedure.

6.1.3. Heterogeneous case with continuum diversities but without state-coupling. When
F = F̃ = 0, that is, there is no weakly coupling in state, by (7) we have δxj,i ≡ 0, j �= i, thus
x∗
j , x∗∗

θ both vanish in (11). The resulting (12) takes a rather simpler form than (9),

(50) δJ (N)
soc = E

∫ T

0

[〈Qx̄i, δxi〉 + 〈
H(H,Q)x̂, δxi

〉+ 〈Rūi, δui〉]dt + ε1,

where

ε1 = −E

∫ T

0

〈
H(H,Q)

(
x̂ − x̄(N)),Nδx(N)〉dt.

From (50) we can obtain the auxiliary control problem directly, that is, it becomes unneces-
sary to introduce the limit terms (11) and adjoint processes (13). This is similar to the case in
Section IV.A of [27]. Note that in [27], there is no pointwise constraint or partial information
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constraint on the admissible control, hence the main focus is to find the optimal closed-loop
control for the auxiliary control problem (see (32) therein). While with the above two con-
straints, we will obtain the optimal open-loop control for the auxiliary control problem (see
(23)). In this case, (26) reduces to

(51)

⎧⎪⎪⎨⎪⎪⎩
dα = [

A�α + BP�

[
R−1Et

[−B�γ − D�
�ϑ

]]]
dt

+ [
Cα + D�P�

[
R−1Et

[−B�γ − D�
�ϑ

]]]
dW, α(0) = ξ,

dγ = [−Qα −H(H,Q)Eα − A�
�γ − C�ϑ

]
dt + ϑ dW(t), γ (T ) = 0,

for which the well-posedness is much easier to establish. Furthermore, if C = D� = 0, � =
R

m and G
i = F

i , by taking expectation to (51), the derived FBSDEs reduces to the case on
page 1740 of [27].

By contrast, when F, F̃ �= 0, the variation functional δJ (N)
soc (δui) of (12) becomes rather

involved depending both on x∗
j and x∗∗. Those two terms are some intermediate variation

limits related to basic variation term δxi in an indirect manner. Thus, the current representa-
tion (12) cannot lead a direct construction to an auxiliary control. Some duality method are
required to remove dependence on these intermediate variations.

6.1.4. Other cases. For the homogeneous case, [20] studies linear-quadratic mean-field
games with control process constrained in a closed convex subset of full space R

m; [24]
studies backward mean-filed linear-quadratic games with partial information. When there
involves only constraints on the control or only partial information, our framework is the
extension of [20] and [24] for mean-field team case.

6.2. Homogeneity and heterogeneity: A unified quasi-exchangeable approach. Recall
that the mean-field theory has been extensively applied to study the large-scale weakly cou-
pled system along both (competitive) game and (cooperative) team directions see, for exam-
ple, [5, 11, 12, 21, 25, 26, 31] for recent relevant studies for game; and [38, 40] for team.
Essentially, such mean-field analysis is build on some exchangeability among all individual
weakly coupled agents. It can be proved that any exchangeable sequences should be con-
ditional independent with respect to some tail-sigma algebra. Thus, applying the de Finetti
theorem, the original complex weakly coupling structure can be replaced by a deterministic-
or common-noise-driven process as agent number N tends to infinity. By this, all agents
thus become asymptotically decoupled along with chaos propagation. Subsequently, original
game or team can be reduced to low-dimensional single agent optimization problems with
some off-line quantities via a consistency condition that matches the above exchangeable
reasoning. In this sense, mean-field analysis connects closely to exchangeable game/team in
random context, and further to symmetric game/team [15] in deterministic context. We re-
mark that all agents in the symmetric game are endowed with same underlying parameters
and so become identical in analysis. So, the primal high-dimensional computation can be
greatly reduced using “mirror” argument among all symmetric agents.

Regarding large-scale system, there exist three progressive levels of diversity relevant to
the aforementioned exchangeability: homogeneous, heterogenous with finite/discrete diver-
sity, and heterogenous with continuum diversity. Among them, the homogenous case is the
most special but tractable one because all agents are statistically identical and the designed
optimal team strategies should also be exchangeable. Consequently, the resulting optimized
states are thus exchangeable. We refer to [38] for recent studies in such cases for team, and
[20] for game.

Compared with the homogenous case, the heterogenous case with finite/discrete diversity
is more realistic. Virtually, most systems in reality demonstrate some diversities in their ran-
dom behaviors. In this case, all agents, from the whole system scale, are no longer identical
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because they are endowed with diversified parameters. However, all agents inside a subsys-
tem with the same diversity index, are still exchangeable in small scale. Thus, we can treat the
large-scale system as some mixed combination of finite exchangeable subsystems. The pre-
vious mean-field analysis to the homogenous can be suitably modified to tackle such cases,
with some technical but straightforward arguments. We refer to [1, 2] for recent studies in
such cases for team in discrete time setup, and [21, 25] for game, where a similar partial
exchangeability is introduced.

The heterogenous case with continuum diversity, as discussed in [27, 33], should be the
most realistic setup for a practical large-scale system. Indeed, it is less possible that the di-
versity of a real system can only be limited on a finite or discrete support set. Instead, consid-
erable statistical diversity demonstrates its support on a continuum set such as the compact
closed interval. On the other hand, such heterogenous cases should be most difficult to handle.
One reason for the continuum heterogeneity to be analytically intractable, is that the subclass
exchangeability featured in the finite heterogeneity case will shrink to zero mass along with
the continuum diversity support. For this reason, the relevant results for continuum hetero-
geneity seem few compared with homogeneous- or finite-heterogenous-case.

We remark that [33] discussed mean-field analysis with continuum diversity in the game
setup, and [27] in the team setup, using a direct state-aggregating method. However, the set-
tings in both works are relatively simple, in particular, its weakly coupled dynamics is only
drift-controlled. This corresponds to our model with C = D = F̃ = 0, and cannot cover vari-
ous applications such as portfolio selection with relative performance. Our setup is more gen-
eral (diffusion-controlled and -coupled) and the above aggregation method no longer works.
Meanwhile, due to continuum diversity, we cannot apply the weak embedding representation
method used in [20, 21, 38] when tackling diffusion controlled systems but of finite diver-
sities only. Indeed, the analysis of [21] relies on a construction of K independent copies
of optimized states with individual BMs, where K is the finite cardinality of diversity. This
becomes impossible for the current case in the presence of continuum diversities.

As a resolution, this paper proposes some unified approaches to homogenous-, and
heterogenous-cases using a quasi-exchangeable method. The main idea is as follows: first,
note that {

dxi = [
A�i

xi + Bui + Fx(N)]dt + [
Cxi + D�i

ui + F̃ x(N)]dWi,

xi(0) = ξ ∈ R
n, 1 ≤ i ≤ N,

can be reformulated as follows:⎧⎪⎪⎨⎪⎪⎩
dxi = [

A
(
zi(t), t

)
xi + Bui + Fx(N)]dt + [

Cxi + D
(
zi(t), t

)
ui + F̃ x(N)]dWi,

dzi(t) ≡ 0,

xi(0) = ξ ∈ R
n; zi(0) = �, 1 ≤ i ≤ N,

that can be further written with some augmented state as

dxi = [
A(xi )xi + Bui + Fx(N)]dt + [

Cxi + D(xi )ui + F̃x(N)]dWi, xi (0) = (
ξ�
i ,��)�.

In other words, initial weakly coupled systems with continuum diversity can be viewed as
some quasi-linear SDE with augmented state xi = (x�

i , z�
i )� and random initial conditions

xi (0) (noting � ∈ F0, although ξ might be deterministic).
To proceed, we introduce the following three systems. To ease notation, we are inclined

to adopt symbols like A(x) instead of A(x) when no confusion occurs. The first system is a
McKean–Vlasov SDE with random initials:

P1 : dx = [
A(x)x + Bu + FEx

]
dt + [

Cx + D(x)u + F̃Ex
]
dW, x(0) = (

ξ�,��)�.
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For the sake of illustration, we set � ∈ � = {θ1, θ2, . . . , θK} with the mass m1, . . . ,mK to
admit finite K diversity classes. Later, we will illustrate its possible extension to infinite
continuum diversities. The second system is a stochastic mixture: x̃ =∑K

j=1 mj x̃j but driven
by identical noise W :

P2 : d x̃j = [Aθj
x̃j + Bu + FEx̃]dt + [Cx̃j + Dθj

u + F̃Ex̃]dW, x̃j (0) = (
ξ�, θ�

j

)�
.

By contrast, the third system is also a stochastic mixture x̂ = ∑K
j=1 mj x̂j but driven by K

i.i.d noises {Wj }Kj=1:

P3 : dx̂j = [Aθj
x̂j + Bu + FEx̂]dt + [Cx̂j + Dθj

u + F̂Ex̂]dWj , x̂j (0) = (
ξ�, θ�

j

)�
.

It is obvious that above three systems: x, x̃ and x̂ are not of the same distributions. Actually, x
has different initial distribution at t = 0 with x̃, x̂, whereas x̂ is driven by different noise with
x, x̃. However, they have same expectation dynamics, as verified using the tower property of
conditional expectation, ∀t ∈ [0, T ] : Ex(t) = E(E(x(t)|�)) = ∑K

j=1 mjEx̃j (t) = Ex̃(t) =∑K
j=1 mjEx̂j (t) = Ex̂(t). Besides, all three systems have different second-moment function,

and other finite-dimensional distributions. For example,

E
∣∣x(t)

∣∣2 = E
(
E
(∣∣x(t)

∣∣2|�))=
K∑

j=1

mjE
∣∣̃xj (t)

∣∣2,
E
∣∣̃x(t)

∣∣2 =
K∑

j=1

m2
jE
∣∣̃xj (t)

∣∣2 + ∑
1≤j<l≤K

mjmlE
[̃
xj (t )̃xl(t)

]
,

E
∣∣̂x(t)

∣∣2 =
K∑

j=1

m2
jE
∣∣̂xj (t)

∣∣2 + ∑
1≤j<l≤K

mjmlE
[̂
xj (t )̂xl(t)

]= K∑
j=1

m2
jE
∣∣̃xj (t)

∣∣2.
Noticing the above expectation equivalence is a special degenerated version of the Jensen
inequality, thanks to the underlying LQG context. Such a property cannot be extended to
nonlinear moments hence x, x̃ and x̂ are with the same expectation but different distributions.

Corresponding to P1, P2, P3, we may construct three weakly coupled systems M1, M2,
M3:

M1 : dxi = [
A(xi )xi + Bui + Fx(N)]dt + [

Cxi + D(xi )ui + F̃x(N)]dWi,

xi (0) = (
ξ�,�

)�
,

where x(N) = 1
N

∑N
i=1 xi . Another is system M2 : {̃xi}Ni=1 with x̃i =∑K

j=1 mj x̃i,j ,

M2 : dx̃i,j = [
Aθj

x̃i,j + Bui + F x̃(N)]dt + [
Cx̃i,j + Dθj

ui + F̃ x̃(N)]dWi,

x̃i,j (0) = (
ξ�, θ�

j

)�
,

where x̃(N) = 1
N

∑N
i=1 x̃i . For 1 ≤ j ≤ K , we can introduce M̂j

2 : {̃xi,j }Ni=1 that is a homo-
geneous weakly coupled system indexed by θj . Abusing notation, we may write informally

that M2 = ∑K
j=1 mjM̂j

2, in other words, M2 is a finite mixture of homogeneous systems

{M̂j
2}Kj=1. Noticing for M̂j

2, the driving BMs become {Wi}Ni=1 which are the same as that

of M̂j ′
2 for j �= j ′. Thus, totally there involve N independent BMs for M2. Moreover,

if we introduce a sampling sequence from {1, . . . ,K} with Ij = {θi = j,1 ≤ i ≤ N} and

limN→+∞ CardIj

N
= mj , 1 ≤ j ≤ K . Then, M2 is equivalent in a weak sense to the stochastic

K-heterogenous weakly coupled system introduced in [21, 25].
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The third system is M3 : {̂xi}Ni=1 with x̂i =∑K
j=1 mj x̂i,j ,

M3 : dx̂i,j = [
Aθj

x̂i,j + Bui + F x̂(N)]dt + [
Cx̂i,j + Dθj

ui + F̂ x̂(N)]dWi,j ,

x̂i,j (0) = (
ξ�, θ�

j

)�
,

where x̂(N) = 1
N

∑N
i=1 x̂i . For 1 ≤ j ≤ K , we can introduce M̂j

3 : {̂xi,j }Ni=1 that is, a homo-

geneous weakly coupled system indexed by θj . Noticing for M̂j
3, the driving BMs become

{Wi,j }Ni=1. So, totally there arise N × K independent BMs for M3, or re-scale to N BMs for

each subsystem M̂j
3,1 ≤ j ≤ K . This is not problematic when K is finite. Again, M3 is a

finite mixture of homogeneous system {M̂j
3}Kj=1. We remark that M̂j

3 and M̂j
2 are driven by

different BMs, but they are equivalently weak-coupled homogenous systems in weak sense.
This is because they share the same state-average limit by law of large numbers, although
they are driven by different BMs systems.

Moreover, we can introduce an augmented state yi = (̂x�
i,1, . . . , x̂�

i,K)� and x̂(N) =
1
N

∑N
i=1 x̂i , it follows that

dyi = [
Âyi + B̂ûi + Fy(N)]dt +

K∑
j=1

[
Ĉj yi + D̂jui + F̂j y(N)]dWi,j ,

yi (0) = (
ξ�, θ�

1 · · · , ξ�, θ�
K

)�
,

where

Â =
⎛⎜⎝Aθ1 · · · 0

...
. . .

...

0 · · · AθK

⎞⎟⎠
(nK×nK)

, B̂ =
⎛⎜⎝B · · · 0

...
. . .

...

0 · · · B

⎞⎟⎠
(nK×mK)

,

ûi =
⎛⎜⎝ui

...

ui

⎞⎟⎠
(mK×1)

, F =
⎛⎜⎝Fm1 · · · FmK

...
...

...

Fm1 · · · FmK

⎞⎟⎠
(nK×nK)

,

Ĉj =

1
...

j
...

K

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0
...

...
...

...
...

0 · · · C · · · 0
...

...
...

...
...

0 · · · 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(nK×nK)

,

D̂j =

1
...

j
...

K

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0
...

...
...

...
...

0 · · · Dθj
· · · 0

...
...

...
...

...

0 · · · 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(nK×mK)

, F̂j =

1
...

j
...

K

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

...
...

F̂m1 · · · F̂mK

...
...

...

0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(nK×nK)

.

It follows that M3 : {̂xi}Ni=1 satisfying x̂i = m · yi with m = (m1, . . . ,mK). Noticing that
{yi}Ni=1 is homogenous for 1 ≤ i ≤ N and so is the case for {̂xi}Ni=1, thus M3 can be viewed
as a homogenous system but with augmented state yi . Hence, M3 can be formulated either
as a finite mixture of K-homogeneous system {M̂j

3}Kj=1, or a single homogenous system but
with augmented (mixed) state yi . Note that the later formulation on augmented yi actually
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connects to the so-called direct method ([40]). In fact, by formulation on yi , we can apply
the direct method proposed in ([40]) for the homogenous system only but now on a more in-
tractable (finite) heterogenous system. As the trade-off, the associated Riccati or Hamiltonian
system become augmented accordingly with coupled block structure due to K diversity.

The above three weakly coupled systems M1, M2, M3 have different distributions but
always with the same asymptotic empirical state-average as N → +∞. In fact, they are gen-
erated from same underlying weakly coupled stochastic systems but differ in filtration on
given timing point. To be precise, all agents in M1 are exchangeable in the quasi-sense
(at filtration point F0) before the diversity sampling. In this case, xi (t) = E(xi (t)|Ft ) =
E(xi (t)|�,Wi(s),0 ≤ s ≤ t,1 ≤ i ≤ N). On the other hand, M2 is the same system but con-
ditional on the pre-sampled diversity index �i . In this case, x̃i (t) = E(E(xi (t)|�)|Wi(s),0 ≤
s ≤ t,1 ≤ i ≤ N). Last, M3 is the same weak-coupled system but after the sampling of di-
versity � and M̂j

3 is just the re-labeled system with the realization � = θj . In this sense,
all three systems M1, M2, M3 characterize the same underlying dynamics but from a dif-
ferent temporal section. Thus, they are equivalent for mean-field analysis because they share
the same state-average limit (in formulation, and Step 1 for decomposition) and expectation
operator (in Step 3 for CC).

To recap, we present the following diagram where “⇐⇒” represents the equivalent expec-
tation operator in the first line, while the asymptotic state-average operator is in the second
line:

(52)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

single-agent: P1 ⇐⇒P2 ⇐⇒P3,

weakly coupled agents: M1 ⇐⇒M2 ⇐⇒M3 ⇐⇒M
(stochastic K-heterogenous system),

M1 : homogenous but with random diversity index �,

augmented randomness, pre-sampling

M2 : mixture of K homogenous system, pre-sampling

M3 : homogenous system with (augmented) mixture

of states, post-sampling

M : K heterogenous system defined by relative frequency

of diversity sequence, post-sampling.

The above arguments in (52) are on the basis that � is finite-valued only. Now we present its
generalization to the case when � has continuum diversity support. In this case, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mc
1 : homogenous but with random diversity index �, augmented randomness,

pre-sampling

Mc
2 : mixture of continuum homogenous system, pre-sampling

Mc
3 : homogenous system with (augmented) mixture of states, post-sampling

Mc : continuum heterogenous system defined by empirical distribution of diversity

sequence, post-sampling.

Mc
1 is still well defined and we have already proceeded with the analysis as in Section 3. On

the other hand, Mc
3 is no longer well defined since now we have to introduce continuum-

valued BMs for M̂θ,c
3 to model the diversity. By contrast, Mc

2 is still well defined since we
still need only to formulate countable BMs for each M̂θ,c

2 , θ ∈ S , and in total, only count-
able BMs are still invoked. In this case, we may further set x̃i = ∫

S x̃i,θ d
(θ) and proceed
with the classical mean-field analysis as in [27]. However, classical mean-field analysis only
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works on Mc
2 with C = D = F = F̃ = 0. In the general case with F, F̃ �= 0, such classi-

cal analysis fails because its CC system should invoke an embedding representation (see,
e.g., [23]), and a continuum-valued BMs system will be required to replicate the distribu-
tion for a generic agent who is still continuum-heterogenous (diversified). Moreover, in [26],
the continuum heterogeneity is defined through some limiting empirical distribution by the
Glivenko–Cantelli lemma. Note that the continuum set therein is required to be compact when
using Glivenko–Cantelli arguments, while in our framework of Mc

1, such compactness is not
required. Consequently, this paper can deal with general continuum diversity based on Mc

1,
as summarized as follows.

First, we can verify that Mc
1, Mc

2 as well as Mc (note that Mc
3 becomes infeasible to

be defined) are still of the same asymptotic state-average limit. In this sense, the generic
agents in Mc are quasi-exchangeable because although they are not exchangeable after di-
versity sapling, Mc shares the same expectation and asymptotic state-average limit with Mc

1,
Mc

2, and all agents of Mc
1 are exchangeable before the sampling. Second, given such quasi-

exchangeable property, the original Mc or Mc
2 system with continuum heterogeneity can be

converted to Mc
1 that is, a homogenous one but with augmented randomness ({�i,Wi}Ni=1)

as a trade-off. Third, as discussed in Section 3, some new type of variation-decomposition
and auxiliary control problem can thus be constructed, and CC can be represented via the
construction on continuum diversity support as in Proposition 4.1.

APPENDIX

First, for any given (Y,Z) ∈ L2
F
(0, T ;Rm) × L2

F
(0, T ;Rm) and 0 ≤ t ≤ T , the following

SDE has a unique solution:

(53)
X(t) = x +

∫ t

0
b
(
s,X,E[X],Et [Y ],Et [Z])ds

+
∫ t

0
σ
(
s,X,E[X],Et [Y ],Et [Z])dW(s).

Therefore, we can introduce a map M1 : L2
F
(0, T ;Rm) × L2

F
(0, T ;Rm) → L2

F
(0, T ;Rn).

Moreover, by the standard estimations of SDE, we have the following result:

LEMMA A.1. Let Xi be the solution of (53) corresponding to (Yi,Zi), i = 1,2 respec-
tively. Then for all ρ ∈R and some constants l1 > 0, we have

Ee−ρt
∣∣X̂(t)

∣∣2 + ρ̄1E

∫ t

0
e−ρs

∣∣X̂(s)
∣∣2 ds

≤ (
k2l1 + k2

2
)
E

∫ t

0
e−ρs

∣∣Ŷ (s)
∣∣2 ds + (

k2l1 + k2
2
)
E

∫ t

0
e−ρs

∣∣Ẑ(s)
∣∣2 ds,

Ee−ρt
∣∣X̂(t)

∣∣2 ≤ (
k2l1 + k2

2
)
E

∫ t

0
e−ρ̄1(t−s)−ρs[∣∣Ŷ (s)

∣∣2 + ∣∣Ẑ(s)
∣∣2]ds,

where ρ̄1 = ρ − 2ρ1 − 2k1 − 2k2l
−1
1 − k2

7 − k2
8 and 
̂ := 
1 − 
2, 
 = X,Y,Z. Moreover,

E

∫ T

0
e−ρt

∣∣X̂(t)
∣∣2 dt ≤ (

k2l1 + k2
2
)1 − e−ρ̄1T

ρ̄1
E

∫ T

0
e−ρs[∣∣Ŷ (s)

∣∣2 + ∣∣Ẑ(s)
∣∣2]ds,

e−ρT
E
∣∣X̂(T )

∣∣2 ≤ (
1 ∨ e−ρ̄1T

){(
k2l1 + k2

2
)
E

∫ T

0
e−ρt [∣∣Ŷ (t)

∣∣2 + ∣∣Ẑ(t)
∣∣2]dt

}
.

Specially, if ρ̄1 > 0,

e−ρT
E
∣∣X̂(T )

∣∣2 ≤ (
k2l1 + k2

2
)
E

∫ T

0
e−ρt

∣∣Ŷ (t)
∣∣2 dt + (

k2l1 + k2
2
)
E

∫ T

0
e−ρt

∣∣Ẑ(t)
∣∣2 dt.
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Next, for any given X ∈ L2
F
(0, T ;Rn), consider the following BSDE:

(54) Y(t) =
∫ T

t
f
(
s,X,E[X], Y,E[Y ], Ẽ[Y ],Z,E[Z])ds −

∫ T

t
Z(s) dW(s).

PROPOSITION A.2. (54) admits a unique solution (Y,Z) ∈ L2
F
(0, T ;Rm) × L2

F
(0, T ;

R
m).

PROOF. For any fixed (y, z) ∈ L2
F
(0, T ;Rm) × L2

F
(0, T ;Rm),

Y(t) =
∫ T

t
f
(
s,X,E[X], Y,E[y], Ẽ[y], z,E[z])ds −

∫ T

t
Z(s) dW(s)

admits a unique solution (Y,Z) ∈ L2
F
(0, T ;Rm)×L2

F
(0, T ;Rm). Hence we can introduce the

mapping N : (y, z) → (Y,Z). For any (y, z), (y′, z′) ∈ L2
F
(0, T ;Rm)×L2

F
(0, T ;Rm), denote

(Y,Z) = N (y, z) and (Y ′,Z′) = N (y′, z′). Let (ŷ, ẑ, Ŷ , Ẑ) = (y −y′, z−z′, Y −Y ′,Z−Z′).
Applying Itô’s formula to eδx |Ŷ (s)|2, we have

eδt
∣∣Ŷ (t)

∣∣2 +
∫ T

t
eδs
∣∣Ẑ(s)

∣∣ds +
∫ T

t
δeδs

∣∣Ŷ (s)
∣∣ds

≤
∫ T

t
eδs(2ρ2 + 4k2

3 + 4k2
4 + 4k2

5 + 4k2
6
)∣∣Ŷ (s)

∣∣2 ds

+ 1

4

∫ T

t
eδs(

E
[|ŷ|2]+ Ẽ

[∣∣ŷ2∣∣]+ |ẑ|2 +E
[|ẑ|2])ds + 2

∫ T

t
eδs 〈Ŷ (s), Ẑ(s) dW(s)

〉
.

Note that E[Ẽ[|ŷ2|]] = E[|ŷ2|], letting δ = 2ρ2 + 4k2
3 + 4k2

4 + 4k2
5 + 4k2

6 and taking ex-
pectation, we have E

∫ T
t eδs(|Ŷ (s)|2 + |Ẑ(s)|2) ds ≤ 1

2E
∫ T
t eδs(|ŷ(s)|2 + |ẑ(s)|2) ds, that is,

N is a contraction mapping. Hence (54) admits a unique solution (Y,Z) ∈ L2
F
(0, T ;Rm) ×

L2
F
(0, T ;Rm). �

Thus, we can introduce another map M2 : L2
F
(0, T ;Rn) → L2

F
(0, T ;Rm)×L2

F
(0, T ;Rm).

By the standard estimation of BSDE, we have the following result:

LEMMA A.3. Let (Yi,Zi) be the solution of (54) corresponding to Xi, i = 1,2, respec-
tively. Then for all ρ ∈R and some constants l1, l2, l3 > 0, we have

Ee−ρt
∣∣Ŷ (t)

∣∣2 + ρ̄2E

∫ T

t
e−ρs

∣∣Ŷ (s)
∣∣2 ds + (1 − k5l2 − k6l3)E

∫ T

t
e−ρs

∣∣Ẑ(s)
∣∣2 ds

≤ 2k2l1E

∫ T

t
e−ρs

∣∣X̂(s)
∣∣2 ds,

Ee−ρt
∣∣Ŷ (t)

∣∣2 + (1 − k2l1 − k3l1)E

∫ T

t
e−ρs

∣∣Ẑ(s)
∣∣2 ds

≤ k2l1E

∫ T

t
e−ρ̄2(s−t)−ρs

∣∣X̂(s)
∣∣2 ds,

where ρ̄2 = −ρ−2ρ2 −2k3 −2k4 −2k2l
−1
1 −k5l

−1
2 −k6l

−1
3 , and 
̂ := 
1 −
2, 
 = X,Y,Z.

Moreover,

E

∫ T

0
e−ρt

∣∣Ŷ (t)
∣∣2 dt ≤ 1 − e−ρ̄2T

ρ̄2
2k2l1E

∫ T

0
e−ρs

∣∣X̂(s)
∣∣2 ds,

E

∫ T

0
e−ρt

∣∣Ẑ(t)
∣∣2 dt ≤ 2k2l1(1 ∨ e−ρ̄2T )

(1 − k5l2 − k6l3)(1 ∧ e−ρ̄2T )
E

∫ T

0
e−ρs

∣∣X̂(s)
∣∣2 ds.
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Specially, if ρ̄2 > 0,

E

∫ T

0
e−ρt

∣∣Ẑ(t)
∣∣2 dt ≤ 2k2l1

1 − k5l2 − k6l3
E

∫ T

0
e−ρs

∣∣X̂(s)
∣∣2 ds.

PROOF OF THEOREM 4.3. Define M := M2 ◦ M1, where M1 is defined by (53) and
M2 is defined by (54). Thus M is a mapping from L2

F
(0, T ;Rm) × L2

F
(0, T ;Rm) into it-

self. For (Ui,Vi) ∈ L2
F
(0, T ;Rm) × L2

F
(0, T ;Rm), let Xi := M1(Ui,Vi) and (Yi,Zi) :=

M(Ui,Vi). Therefore,

E

∫ T

0
e−ρt

∣∣Y1(t) − Y2(t)
∣∣2 dt +E

∫ T

0
e−ρt

∣∣Z1(t) − Z2(t)
∣∣2 dt

≤
[

1 − e−ρ̄2T

ρ̄2
+ 1 ∨ e−ρ̄2T

(1 − k5l2 − k6l3)(1 ∧ e−ρ̄2T )

]
2k2l1

1 − e−ρ̄1T

ρ̄1

×
{(

k2l1 + k2
2
)
E

∫ T

0
e−ρt

∣∣U1(t) − U2(t)
∣∣2 dt

+ (
k2l1 + k2

2
)
E

∫ T

0
e−ρt

∣∣V1(t) − V2(t)
∣∣2 dt

}
.

Choosing suitable ρ, we get that M is a contraction mapping.
Furthermore, if 2ρ1 + 2ρ2 < −2k1 − 2k3 − 2k4 − k2

5 − k2
6 − k2

7 − k2
8 , we can choose ρ ∈ R,

0 < k5l2 < 1
2 and 0 < k6l3 < 1

2 and sufficient large l1 such that ρ̄1 > 0, ρ̄2 > 0, 1 − k5l2 −
k6l3 > 0. Therefore,

E

∫ T

0
e−ρt

∣∣Y1(t) − Y2(t)
∣∣2 dt +E

∫ T

0
e−ρt

∣∣Z1(t) − Z2(t)
∣∣2 dt

≤
[

1

ρ̄2
+ 1

1 − k5l2 − k6l3

]
1

ρ̄1
2k2l1

(
k2l1 + k2

2
)

×E

∫ T

0
e−ρt [∣∣U1(t) − U2(t)

∣∣2 + ∣∣V1(t) − V2(t)
∣∣2]dt.

Thus, the proof is complete. �
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