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This paper aims to systematically solve stochastic team optimization of
a large-scale system, in a linear-quadratic-Gaussian framework. Concretely,
the underlying large-scale system involves considerable weakly coupled co-
operative agents for which the individual admissible controls: (i) enter the
diffusion terms, (ii) are constrained in some closed-convex subsets and (iii)
subject to a general partial decentralized information structure. A more im-
portant but serious feature: (iv) all agents are heterogenous with continuum
instead of finite diversity. Combination of (i)—(iv) yields a quite general mod-
eling of stochastic team-optimization, but on the other hand, also fails current
existing techniques of team analysis. In particular, classical team consistency
with continuum heterogeneity collapses because of (i). As the resolution, a
novel unified approach is proposed under which the intractable continuum
heterogeneity can be converted to a more tractable homogeneity. As a trade-
off, the underlying randomness is augmented, and all agents become (quasi)
weakly exchangeable. Such an approach essentially involves a subtle bal-
ance between homogeneity v.s. heterogeneity, and left (prior-sampling)- v.s.
right (posterior-sampling) information filtration. Subsequently, the consis-
tency condition (CC) system takes a new type of forward-backward stochastic
system with double-projections (due to (ii), (iii)), along with spatial mean on
continuum heterogenous index (due to (iv)). Such a system is new in team
literature and its well-posedness is also challenging. We address this issue
under mild conditions. Related asymptotic optimality is also established.

1. Introduction. The starting point of the present work is the well-studied mean-field
team (MFT). In its standard form, a MFT involves a large-scale system with considerable
weakly interactive but cooperative agents {A; }lN: |- All agents are endowed with an individual
(principal) state, cost functional and admissible decision set respectively in the following
manner. The individual state dynamic of 4; is formulated by a controlled Ito-type linear
stochastic differential equation (LSDE):

a dxi (1) = [A@x; (0) + B@u; (1) + FO)x™ (1) + f]dt + 01 d Wi (1),
xi(0)=&eR", 1<i<N,

where x(M) = % Zf\’: 1 Xi 18 the weakly coupled state-average across all agents, W; is a Brow-

nian motion (BM) that might be vector-valued (e.g., with a common noise). For each A4;, its

principal cost J; (while we may call {J;};+; the marginal costs for A;) is measured by the
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following quadratic functional:

1 T
Ji(u()) = 3E fo [(Q() (xi(t) — H(®)x™M (1)), x:(t) — H()x™ (1))

2)

+ (R(u; (1), u;i(1))]dt,
with admissible team strategy u(-) = (ulT(-), e u;(-))T. Note individual admissible u; (-) €
Z/lf (’)ﬁ = LIZFi (0, T; R™) with filtration ! defined later, representing the decentralized open-

loop information of A;.

A subtle point here is the distinction between centralized (Z/{l-c’f ), and decentralized (Z/{id (’){),

L{f le ) but of full information. This makes team-optimization differing from classical vector
optimization/control. Superscripts “cl”, “ol” denote the closed-loop and open-loop and “f”
the full-information. We will address this point in more detail in Section 2. Hereafter, we
may exchange the usage of u = (uy,...,uy) €e RN u= (ulT, ey u;)T eR"™ andu =
(i, u_;) € RN with u_; = (uy, ..., ui_1, Uit1,UN) € Rm>x(N=1) by noting all of them
represent the team profile among all agents, but only differ in formations. For simplicity, we
focus on Lagrange problem only, and no essential difficulty to the Bolza problem extension.

By mean-field “team” (MFT), we refer all weakly coupled agents {.4;};__, are cooperative,
aiming to optimize the following social (or, team) cost functional (the related optimal func-
tional is called mean-field team): js(olg) (u()) = ZlNzl Ji(u(-)). Due to the new framework,
MEFT is different from mean-field control (MFC) problem and mean-field games (MFG).

MFT v.s. MFC. (i) MFT aims to analyze a complex large-scale system including many
cooperative coupled agents, while MFC (e.g. [43]) only concerns a single agent with state
distribution (or, mean) entering dynamics or cost. So, essentially, MFT is for multi-agent
systems with decentralized information but MFC only for a single-agent with (of course)
centralized information. Consequently, MFT seeks some (joint) strategy but without infor-
mation compilation across team members; by contrast, MFC only involves a single agent
so naturally seeks control by its own centralized information. (ii) Owning to the informa-
tion distinction above, analysis of MFT and MFC also proceed very differently. For MFT,
two crucial steps are variational decomposition and duality procedure to construct auxiliary
problem for a representative agent. By comparison, MFC analysis is rather straightforward,
no need to invoke variation and duality since it involves single-agent and central-information
only. In addition, MFT essentially invokes some fixed-point arguments but this is not needed
in MFC. (iii) Although in context of the homogeneous model (i.e., all agents are symmetric),
there exists some connection between MFT and MFC (to partial content) in analysis. How-
ever, such connections will no longer be valid for the heterogenous model in the presence of
nonsymmetric agents, especially with continuum heterogeneity.

MFT v.s. MFG. Furthermore, MFT is also quite different from MFG. (i) Concept differ-
ence. Although both are for large population systems, MFC is for cooperative agents towards
a social-optima (Pareto) while MFG for noncooperative agents to an Nash equilibrium. (ii)
Analysis difference. By (i), MFG and MFT analysis are very distinctive, especially for fixed-
point arguments. In MFG, we can directly freeze state-average limit limy_, ;oo x¥) to con-
struct cost functional of auxiliary problem, and derive a consistency condition (CC) to com-
plete the fixed point argument. However, for MFT, we cannot freeze x V) directly as in MFG.
Instead, MFT auxiliary functional must be specified in an indirect way. Roughly speaking, we
should apply variational decomposition and weak duality, then auxiliary cost based on it, then
fixed-point argument. Noting such pivotal variational decomposition is not needed at all for
MFG because of its noncooperative nature. (iii) Moreover, verifications of the above MFT
asymptotic social-optima and MFG asymptotic Nash equilibrium are also very distinctive.
For example, due to the cooperative structure, all agents Ay, ..., Ay in MFT cooperate to
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minimize jsoc)(u( )), and u_; (i.e., all decisions except .4;) cannot be viewed as endogenous
terms as in MFG.

Please refer to [3, 5, 9, 11, 13, 30, 31] for some recent work on MFG and refer to [8,
10, 18, 29, 36] for the limit relation between MFG and noncooperate N -player games. The
interested readers may refer to, for example, [27, 34, 39], for a detailed analysis comparison
between MFG and MFT, and [38, 40] for some recent studies from various perspectives with
different modeling variants. In particular, see [23] for MFT with volatility uncertainty; [25]
for linear-quadratic-Gaussian (LQG) mean-field social optimization with a major player; [30]
for MFG with optimal investment under relative performance criteria; [33] for LQG games
with a major player and continuum-parametrized minor players; and [41] for mean-field team
in LQG models with Markov jump parameters.

Our work distinguishes itself from all the above MFT literature by the following fairly
(even not the most) general formulation, in LQG context. Unlike (1), the individual dynamic
of agent 4; now takes

dx;(t) = [Ae, ()xi (1) + B(t)u; (1) + F(0)x™N(1)]dt
3) + [C(1)x: (1) + Do, (1u; (t) + F(0)x™ ()] dW; (1),
xi(0)=£eR", 1<i<N,

where {©; } *; is a sequence of independent random variables which are also independent
of {(W;(s),s > O}N | to represent diversity. The range of {©; }l | 1s a (possibly continuum)
subset in R¥, hence our framework includes both finite diversity and continuum diversity.
Please refer to Section 2 for more information. The admissible strategy set for A; is

d,
“) U = {uiOlui () € Lg; (0, T3 1)),

]

where G' C F¥ or G € H! is a subfiltration representing the partial information; I' C R” is
a nonempty closed convex set representing the input constraint.

There are four main modeling features in formulation (3), (4):

(1) Weakly coupled controlled-diffusion. It is remarkable that in (3), when Dg, # 0 so
control process enters diffusion terms of LSDE, and when F # 0 so all individual states
are weakly coupled in diffusion terms also. In this case, we may call (3) to be diffusion-
controlled and weakly coupled. This differs from [27] in modeling that is only drift-controlled
and weakly coupled. Such modeling difference also brings considerable analysis distinctions,
for example, on the relevant study of Hamiltonian systems, as well as consistency condition
(CC) (see more comparison details in Section 3 and Section 6). Without loss of generality, no
forcing terms such as f, o involve in (3).

(ii) Random diversity. Recall that (1) is homogenous since all agents are endowed with
identical parameters thus they become symmetric Subsequently, the (decentralized) optimal
strategy and states, still denoted as {u;}Y iy and {x; }1 1» should turn to be exchangeable. By
contrast, in (3), a random index ®; is introduced in parameter A, D (also possible to be
equipped on other parameters including the cost) to model the diversity across the underly-
ing large-scale system. All agents thereby become heterogenous. Although the heterogenous
large-scale system is already addressed in works such as [21, 25], we point out in these
works, the heterogenous index is technically treated as some realization after random sam-
pling, along with necessary ordinal arrangements within each subclass. Thus, essentially the
index therein is some deterministic realization. This differs substantially from our random
index treatment here along with related analysis, to be highlighted later. In addition, our in-
dex ©; can assume a continuum support that distinguishes from most heterogenous literature
with only finite/discrete support (see, e.g., [21, 25]). Moreover, although continuum hetero-
geneity is also discussed in, for example, [33], but analysis therein heavily relies upon the
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LQ structure with full input and resultant explicit representation. Such analysis collapses in
the current formulation (3), due to the intrinsic diffusion-controlled weakly coupled feature
introduced before, and an input constraint feature to be introduced below.

(iii) Input constraint. Note that a convex-closed set I is introduced in (4) denoting some
pointwise constraint in control input. Recall that such pointwise input constraint is well doc-
umented in, for example, [14, 16, 22, 32]. A typical example is I' = R™ representing the
positive control, or no-shorting constraint in portfolio selection ([32]). Other examples may
include subspace ([16]) or a general convex cone ([22]). We remark that pointwise input con-
straint is also studied in large-scale/large-population context such as [20] but in a competitive
MFG setup, which differs from our cooperative MFT here.

(iv) Partial information. Last but not least, the admissible control set is confined on a
partial information set Léi (0, T; T"). LQG control with partial information is also well doc-
umented (e.g., [42]). Also, partial information for large population systems is also addressed
recently (see [6, 7, 17, 24] for partial information/observation mean-field game). However, to
our best knowledge, it is the first time addressing partial information in mean-field team con-
text. Notice that the partial information setting differs from that of partial observation ([4])
for which some filtering method with innovation process should be invoked. We defer more
detailed information structure to Section 2 after more rigorous formulation.

To a certain content, our aim in our current work is to solve the LQG MFT problem in a
rather general setup, by combining the aforementioned features (i)—(iv) together. Although
we admit various effective techniques have been already proposed to tackle these features
individually, however their combination brings much more technical hurdles, and makes the
associated analysis rather challenging. For example, the continuum heterogenous large-scale
system is well studied by [33] in mean-field game setup. Nevertheless, its parallel analysis
variant to MFT fails to work in the current formulation because of the following reason-
ing. Due to the controlled-diffusion feature (i), the related CC does not admit direct char-
acterization because the adjoint process of some backward SDE should enter CC dynamics.
Therefore, the direct augmented method in [40] fails to work here. Instead, some indirect
embedding method [21, 38] becomes necessary in the presence of (i). Nevertheless, due to
the continuum heterogenous feature (ii), the classical embedding CC in [21, 38] no longer
works since we have to construct an infinite-dimensional Brownian motion-driven system (on
continuum-valued space) to replicate the empirical distribution generated by the controlled
large-scale system. Meanwhile, the method in [38] is also not infeasible since it mainly relies
on some closed-form representation of optimal state/cost. This becomes unavailable because
of the input constraint (iii) imposed above. In a nutshell, in case (i) or (iii) not combined
together, we may still handle continuum heterogenous MFT with (i) by modifying existing
methods in, for example, [38]. However, the combination of (i), (ii), (iii) together makes all
such existing methods no longer workable.

Other examples include the person-by-person procedure due to continuum heterogeneous
(i1), and the tailor-made decentralized strategy in presence of both pointwise constraint (iii)
and partial information constraint (iv). To circumvent these difficulties, we propose some
novel analysis techniques such as weak duality and modified embedding representation, etc.
More analysis details are illuminated in Section 3 and Section 4.3.

Our main contributions can be sketched as follows: (1) First, we devise a new framework
to unify homogenous and heterogenous (discrete or continuum) setups in the large-scale sys-
tem. In particular, it is enabled to transform the heterogenous setup into a homogenous one,
with the tradeoff of an augmented randomness. (2) Second, under such new framework, we
derive a modified embedding representation of the CC system (a crux in MFT analysis) to
accommodate the continuum diversities. (3) Third, the input constraint and partial informa-
tion constraint are both tackled, and a CC system with double projection operator is derived.
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Specifically, the CC system takes a coupled mean-field type forward backward stochastic
differential equations (FBSDESs) involving both projection mapping and conditional expecta-
tion. This seems quite novel in large-scale literature. (4) Last, the well-posedness of the CC
system and asymptotic team optimality are established under mild conditions. Please refer
to Section 6 for detailed literature comparisons and discussions on homogeneity and hetero-
geneity.

The remainder of this paper is organized as follows. In Section 2, we give the formulation
of the LQG heterogeneous agents problem with input constraints and partial information pat-
tern. In Section 3, we apply variational decomposition and weak duality to find the auxiliary
control problem of the individual agent. The decentralized strategy and well-posedness of
consistency condition is established in Section 4. Section 5 studies the asymptotic optimality
of decentralized strategy. We give a synthetic analysis on homogeneity and heterogeneity and
compare our framework with those in the current literature in Section 6.

2. Problem formulation. We first introduce some standard notations used throughout
this paper. Let R” be the n-dimensional Euclidean space with the inner product denoted by
(-, -, ). R™ ig the space of all (n x m) matrices, endowed with the inner product (M, M) =
tr[M 1TM2], where x T denotes the transpose of a matrix (or vector) x and tr is the trace of a
matrix. M € S" denotes the set of symmetric n X n matrices with real elements. M > (>)0
denotes that M € S" which is positive (semi)definite, while M >> 0 denotes that, M — el >0
for some ¢ > 0.

Assume that (2, F, P) is a complete probability space on which {W;(z),0 <r < T}lN: 118
a N-fold Brownian motion (note here W; might be vector-valued, say, including a common
noise component Wy) and {®; }lN: | is a sequence of independent random variables to represent
diversity. In some sense, we may interpret {®;} as some endogenous randomness, while {W;}
some exogenous randomness for the generic agent .A;. Moreover, we assume {®; }lN: | are also
independent of {W;(s), s > O}lN: 1~ Let {.EW}OS,ST be the filtration generated by {W;(s),0 <
s < t}f\’:1 and define }",W’G) =0(®;,1<i<N) \/.7-",W. The set of null sets on €2 is defined by
Np={M e Q3G € }'ovg’@ with M C G and P(G) = 0}. Consider the augmented filtration
F = {Fi}o<i<T With F; = a(}"tW’(") U Np). Then F = {F;}o<;<1 represents the centralized
information including all Brownian motions (BMs) and diversity index components across
all agents (principal and marginals).

For any Euclidean space V, 1 < p < 00, and T > 0, introduce the following spaces:

° L;T (2; V) :={n:Q— V|nis Fr-measurable such that E|n|? < oco}.
e L0, T;V):={¢():[0, T] — V such that esssupg ;<7 @(s)| < oo}.
° Lg(O, T;V):={e(:): 2 x[0, T] — V is progressively measurable such that
E [ |o(s)|? ds < 00).
We consider a weakly coupled large population system of heterogeneous agents {A; : 1 <

i < N} with the dynamics of the agents given in (3), and cost functional (2). For the sake of
presentation, we restate them as follows:

dx; =[Ae,x; + Bu; + Fx™]dt + [Cx; + De,u; + Fx™]dw;,

xi(0) =& eR",

5 T

® Fi(00) = 38 [ [l — He®), i — He) 4 (R, s,
1<i<N.

As mentioned before, state (3) and functional (2) formulate a weakly coupled large-scale sys-
tem with heterogeneous agents. The aggregate team functional of N agents is js(oAC/ )(u(-)) =



A UNIFIED APPROACH TO LQG MEAN-FIELD TEAM 2791

ZlN:l Ji(u(-)). In (5), (Ae,;(-), B(-), C(-), De, (), F(-), I?(-)) are called the state-coefficient
datum, while (Q(-), H(-), R(-)) the cost weight datum. We explain more details for the above
datum. F, F are weakly coupling coefficients on state-drift and state-diffusion respectively;
H is a weakly coupling coefficient on functional; C, Dg, are diffusion state-dependence and
diffusion control-dependence coefficients respectively. Note that Dg, # O represents the case
when control enters diffusion alike the risky portfolio selection (e.g., [22, 32, 44]); F, F #0
denotes the agents are coupled in the dynamics such as the price formation problem (e.g.,
[19, 28]); H # 0 denotes the relative performance formulation (e.g., [16]).

Unlike state (1), we introduce {®,-}f.\’: 1 in (3) as some diversity index to characterize the
possible heterogenous features among all agents. We point out that ®; may be vector-valued
on a Cartesian grid space, say [a1, b1] X [aa, by] or [ay, b1] x {1, ..., K}, to represent various
feature dimensions, either in continuum space or discrete space, or in a hybrid manner.

For simplicity, we only assume that the coefficients A and D are dependent on ®;. Similar
analysis can be generalized to the case when all other coefficients are also ®;-dependent.
Besides, in what follows the time variable ¢ will usually be suppressed if no confusion occurs.
We now introduce the following assumption on distribution and coefficient datum set:

(Al) Fori=1,...,N, ®;:Q — § are independent identically distributed (i.i.d) with the
distribution function ®(6), that is, [ d®(0) = 1, where S is a (possibly continuum) subset
in Cartesian space R¥. Note that the discrete set, that is, finite diversity, is a special example.

(A2) For any 6 € S, Ap(+), F(),C(), F € L0, T; R"™"), B(-), Dg(-) € L®(0, T;
R™™) Q) e L0, T;S"), H(-) € L*(0, T;S"), R(-) € L*(0, T; S™).

(A3) Q()=0,R()>0.

REMARK 2.1. We remark that discrete- or finite-valued ®; might be transformed into
continuum one by assigning uniform distribution on compact intervals along with given par-
titions. Indeed, this is equivalent to simulating a given discrete random variable using the
quantile method by uniform distribution. Thus, hereafter we focus on vector-valued index ®;
on R¥. Similar analysis can be found in [33] for MFG with continuum-parametrized hetero-
geneous minor players and [35] for MFG with a continuum of agents.

Under assumptions (A1)-(A2), the state (3) admits a unique strong solution x(-) =
x1(),...,an()) € LIZF(O, T; RNV*") and the cost functional is well defined for each admis-
sible control strategy u(-) on appropriate admissible space, to be detailed soon. Moreover,
under assumption (A3), the cost functional is uniform convex, that is, there exists some 6 > 0
such that 7.’ () > 8E [ [u(s)|2ds.

Given state (3) and functional (2), we can specify the associated information structures.
Because of interactive coupling by state-average x@M) = % ZlNzl Xi, Ji(u;j, u_;) depends on
total team-decision u = (u;, u—;). In this sense, (3) exhibits the so-called weakly interactive
coupling in decision when N — +o00. Again, by such interactive coupling, the information
structure of (3) becomes more involved:

e Decentralized, open-loop information: consider the filtration ]-"tWi =og(Wi(s),0<s <1),
]-',Wi’@’ =0(0;) Vv .7-",W’, 0 <t < oo, and the set of null sets N = {M € Q|G €
]-'ooi’@i with M C G and P(G) = 0}, and create the augmented filtration ' = {.7-'} Jo<i<T
with F! = o (F, PO UNE’;,). Note that {F'} only depends on W; and ©; instead of state
x; itself, thus we call it an open-loop (although it also differs from classical open-loop
due to the mean-field nature) information since it depends directly on underlying random-
ness.
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e Decentralized, closed-loop information: denote by {Hi}oEZET the filtration of individual
state x; augmented by N, that is, Hi = o{x;(s),0 < s <t} V Aj.. Note that {#!} only
depends on the underlying principal state x; itself, thus we call it closed-loop (although it
also differs from classical closed-loop due to mean-field nature). We remark that x; is not
adapted to I due to weak coupling.

e Decentralized, partial information: Let G C F! be a sub-o-field of 7! (or, G| C H! be
a sub-o-field of 7—[;), then G' = {Qt"}ofth represents the decentralized open-loop (or
closed-loop) partial information available to .4;.

REMARK 2.2. For decentralized, partial information pattern, G/ is a given filtration
representing the information available to A; at time t. For example, G, = ]:(lr—a) 4> Or

Qf = ét_ s € [0, T'], where 6 > O denotes the fixed delay of information. In this case, Q;
represent the partial information in an open-loop or closed-loop sense, respectively. Another
example is that W; = (Wi, Wo) takes vector-valued Brownian motion including a common
noise component Wo, then g;‘ = U{Wi (s), ®;,0 < s <t} denotes the partial information in
an open-loop. Also, in case ®; = (0,1, ©;»), then g;' =o{W;(s),®;1,0 <s <t} denotes the
partial information to underlying diversity.

Therefore, B! = F! v H! and B’ := {B!}o<;<r represent (full) decentralized information.
Then we have the following structure inclusion chart:

G' C |F' (decentralized open-loop), H' (decentralized closed-loop)}
C B/ (decentralized) C F(full).

Noticing due to state-average x™, x; (1) ¢ F!, thus, NO inclusion relations between open-
loop F' = {F/}o</<7 and closed-loop H' = {H!}o<,<7. This is different from classical con-
trol where the open-loop information includes closed-loop information. Given the informa-
tion structure, we are ready to formulate the relevant admissible control sets:

e Centralized full-information set: L{ic’f ={u;i()|u;(-) € L%(O, T,1)}.
o Decentralized full-information open-loop set: U5 = {u; (-)|u; (-) € L,(0, T; T)}.
e Decentralized full-information closed-loop set: utf = {u; ()|ui(-) € L? (0, T; ).

i,cl —

e Decentralized partial-information set: L{id P ={u; ()i () € L2 0, T; )}

We point out here G’ is general to include both open-loop or closed-loop partial information.
Now we propose the following optimization problem.

Problem LOG-MFT. Find a team strategy set u(-) = (u1(-), ..., un(-)) where u; (-) € Z/ll-c’f,
1 <i <N, such that
T (@) = inf T i)y ooy ui (s un ().
uiel{’ 1<i<N

Under some mild conditions on datum (Q, R) (e.g., (A3)), it is possible to ensure the ex-
istence and uniqueness of optimal mean-field team strategy in a centralized sense. This can
proceed by classical vector-optimization or control method but in a high-dimension setting
because of the existence of a large number of weakly coupled team agents. However, such
a strategy, from a computational viewpoint, turns out to be intractable because of the infor-
mation requirement to collect all agents’ states simultaneously. Instead, it is more tractable
to consider some decentralized strategy for which only the local (distributed) information for
a given agent is needed. Moreover, considering the partial information pattern, we introduce
the following definition on asymptotic social optimality.
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DEFINITION 2.3. A strategy set U(-) = (41(-), ..., un(-)) with {i; € L{id’p}fvz1 is said to
be e-social optimal if there exists € = &(N) > 0, limy— +o0&(N) = 0 such that

(@)~ int T we) <
ueld;’

REMARK 2.4. In Remark 2.2, we emphasize W; might be a vector-valued Brownian
motion including a common noise component. For simplicity, in the following we assume
that W;, i = 1,..., N are independent one-dimensional Brownian motions. Note that for
the case Wi = (Wi ,;Wvo) takes vector-valued Brownian motion including a common noise
component Wp and W;,i =1, ..., N being independent one-dimensional Brownian motions,
the procedures in Section 3 and Section 4 are still workable. However, in this case Ea in
(26) should be the conditional expectation E[alfzo] where {.7-",0} is the filtration generated
by the common noise Wy. For this kind of consistency system, please refer to [21] for more
information.

As discussed before, centralized strategy based on classical vector optimization/control
turns out to be ineffective to handle weakly coupled but highly complex LQG-MFT. Alter-
natively, it is more amenable to construct some decentralized strategy on distributional infor-
mation only. Such strategy construction can be implemented using mean-field team analysis
through the following steps:

Step 1 (Section 3.1): applying variational decomposition for a generic agent;

Step 2 (Section 3.2): applying weak duality to construct auxiliary control (AC) problem;

Step 3 (Section 4): solving AC to determine the limiting state-average by consistency
condition (CC);

Step 4 (Section 5): verifying the asymptotic social optimality of the derived decentralized
team strategy.

We now proceed step by step to construct the distributed LQG-MFT strategy.

3. Mean-field team analysis. Our current work focuses on team optimization, so a
variational analysis becomes unavoidable to calibrate a response of related componentwise
Fréchet differentials for a generic agent, say .4;. Such an analysis is not required in MFG
as all agents there are noncooperative. Hence, unlike MFG, we need to quantify the fotal

variation of social cost 8\75(01? (8u;) triggered by individual variation Su; of A;.

3.1. Variational decomposition. In order to quantify (total) variation 5@%}’) (6u;) owning
to basic Su; by a generic A;, we need to compute the variation of social cost when A; adopts
an alternative strategy while all others’ decisions remain unchanged. Subsequently, in Step 1,
we would like to figure out a variational decomposition for the original (5) around the central-
ized strategy (although we prefer to circumvent its direct but high-dimensional computation).
The variational decomposition consists of three substeps, as detailed below.

3.1.1. Decomposition of 8$(ég)(8ui). First we will obtain 8\7&/) (8u;) when A; uses
an alternative strategy. Let {u; € L{l.c’f }fV: | be the centralized optimal team strategy (its ex-
istence can be ensured under some mild convexity conditions. But, as discussed above,
such strategies are intractable for real computation purposes because of the “curse of di-
mensionality”’). Now consider the perturbation for a given benchmark agent, say, 4; to
use the alternative strategy u; € L{ic’f and all other agents still apply the strategy u_; =
(ui,...,uj—1,Ui41,...,uy). The realized state (3) corresponding to (u;, u—_;) and (u;, u—_;)
are denoted by (x1,...,xy) and (X1, ..., Xn), respectively. We denote the agent index set as
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IT=1{1,...,N}. To start the variational decomposition, it is helpful to present the following
causal-relation flow-chart first:

Su;j =u; —u;
—_——
principal basic variation

= Oxi=xi(up) —x(;)) = Oxj;=x;(x;)—Xx;(x)

principal intermediate variation marginal variation
- 8‘_7j,i(5ul') :%(uivﬁ—i)_jj(ﬁhﬁ—i)a j=1"“’N’
[ —

marginal cost variation
= 3TN Cu) =T i i) — TG (@i i),

total cost variation
where du; is the most basic variation “block™ for other variation structures; we write x; (i;)
to emphasize its dependence of x; on u;, and similarly for X; (i;); we call §x; the principal
intermediate variation as it depends indirectly on basic §u; via principal state; similarly, dx; ;
marginal variations from the point of A;; also x ; (x;) depends on x; via weak-coupling xM),
similar to x;(x;). Note that the subscripts of 6x;; means that x; is the principal state while

Xj, j # i, are marginal ones, from the viewpoint of .4;. Moreover, from the standpoint of 4;,
the variational equations for the principal state x;, and marginal states {x;} ;- satisfy

dsx; =[Ae,8x; + Bdu; + Féx™M]dt 4 [Céx; + De,su; + Fsx™M]aw;,

(6)
3x;(0) =0,
- j#i, déxj;=[Ae,8xj; + FsxN]dt +[Céx;; + Fox™M]daw;,
8x;,(0) =0.
Denote x_; =3 ;; dx;,; the aggregate variation of marginal agents (benchmark to A;), so

applying linear state-aggregation,

déx_; = [Z Ag,8xji+ (N — 1)F5x(N)} dt
J#i
+ ) [C8xj; + FsxM]dw;, 8x_;(0) = 0.
J#i
Similarly, we can obtain the variation of cost functionals as follows. For the principal cost of

A

®)

T
8T (Su;) = E/ [(Q(F — HZ™), 8x; — H8x™)) + (Rit;, Su;)] dr.
0
For marginal costs of A;:
T
8J;.1(8u;) :Ef (0(x; — HX™), 8x;,; — HsxM)dr, j#i.
0

Therefore, the total variation of the social cost, from person-by-person variation of A;, be-
comes

ST (Suy)

T
O . .
JF#i

+ (RzZ,-,Sui)} dt
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:E/OT[<Q;,», 8x;) —(QHZ™  8x;) — (ONZ™), Hsx ™)

©)
+{QHFM, Hsx ™)+ 3 (0%, 8x.:) — Y (QHE™, 5x;)
J#i J#
+ (N = D{@HZ™M, H5x™) + (Ri;, Sui)} dt
T
:E/ [(Qii, 8x;) +(H(H, Q)x™), Sxi)+<H(H, 0)i™), Zaxj,i>
0 j#i
+ ) (0x;,8x),) + (Rﬁ,-,éu,-)}dt
J#i
=h+L+L+1L+Is,
where H(H, Q) ;== —QH — HQ + HQH. There arise five decomposition terms in (9).

Among them, /5 depends directly on the principal basic variation $u;, whereas I, I, de-
pend on principal intermediate variation §x; that further depends on the basic du;. More-
over, I3, I4 depend on the marginal variations {8x;;}j+; that further depends on the princi-

pal ones éx;, du;. We denote ||6x;[|;2 = (E fOT 16x; 1% ds)1/2. By a standard SDE estimation,
16xill;2 < (K + O(N_%)) |6u;]l;» where K is independent on N, and only depends on coef-
ficients of (3). Moreover, [|6x; ;2 = O(N_%)ll(Sui |;2 for j #i. Also, note that in general,
it is not true that ||Su; || ;2 = O (||6x;l12).

Noting in (9), only I; and [I5 directly depend on (basic) principal variations du;, 8x;
whereas I, I3, 14 are intermediate with indirect dependence &M 5x j,i)- Thus, the reformu-
lation below is invoked, in the spirit of mean-field approximation, to get rid of such implicit
dependence in I, I3, 14 progressively.

3.1.2. Reformulation of I, I3. For I, I3, we need to approximate the empirical state-
average xV) by its mean-field limit using heuristic reasoning. Therefore, replacing XV of
I, I3 in (9) by state-average limit x (to be determined later in Step 3) will yield

T
ST 6u) =E | [(Qfl-, 5x;) -+ (H(H, Q)% 6x;) + (H(H, Q)% 6x_1)

1 ) )
(10) +5 > (Qxj, Néx;j;) + (Rii;, 8u,~)] dt + ¢
J#i
=L+ Db+ 1+ I3+ 15+,

where
T
g1 = —Ef (H(H, Q)& — ™), N6x™M)dr.
0

Note that terms [, B, I5 in (10) already depend on the principal variations du; or éx;. Thus,
we only need to analyze the limiting behavior for the remaining term I3 and I4. It is remark-
able that 73, 14 respectively involve components: §x_; and % > j#i(QXj, N dx; ;) that both
depend on principal basic §u; in a rather implicit manner.

o~ 1
3.1.3. Reformulation of I3, 1. Note that for j # i, [|6x;;ll;,2 = O(N™2)||du;| 2, so
limy 4 [|6x;,i ]l ;2 = 0. Hence we need to introduce some limiting term x;'-‘ to replace the
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re-scaled Néx;; in rate ||x;.‘ —Néxjll=0 (Nf%) |6u; || ;2. This helps us deal with the varia-
tion of /4. In addition, we introduce limiting term x** = [ x;* d®(0) to replace 8x_; in rate

|x** — x| = O(N_%) |6u;||; 2. This will help us deal with Iz. Moreover, by the indepen-
dence between {©;}, {W;} and heuristic mean-field arguments, we construct the following
coupled system:

dx;‘ = |:A@jx;f + Féx; + F/ xp* dCD(O)] dt
S
(11 + [Cx;-‘ + Fox; + ﬁ/ x;‘*dcb(é)} dw;,
S

dx;* =[Agx)™ + Féx; + Fx;*]dt, x;*(0)=0,
xﬂmzo, j#i,0€S.

Therefore,

T
8T (Bu;) =E fo [(Qii, 8x;) +(H(H, Q)%, 8x;) + (H(H, 0)%, x™)

1 ) . 3
(12) +NZ(QXJ',X;‘)—F(Rui,z?ul-)]dt+zgl
J# =1
. - - 3
=h+h+L+L+15+) e,
=1
where

T
£ = —IE/ (H(H, Q)%, x*™* — 8x_;)d1,
0

T 1 .
£3 =E/(; N Z(ij‘, N(ij',,' —xj)dt.
J#i
Noting I of (12) connects to a sequence of exchangeable random variables { fOT(Q)E‘,-,

x¥)ydt} e L}T (2; R). By de Finetti theorem, they are conditionally independent identically
distributed with respect to some tail sigma-algebra. Also, it is observable that such tail sigma-
algebra should depend on éx; in a rather implicit way. Then, we may apply the conditional
law of large numbers to identify the related average. We present some weak duality as an

approach to break away 8 %gg) (8u;) from dependence on x’/-k and x™**.

3.2. Weak duality. Although (12) is free of the marginal {6x; ;};-; but a trade-off is the
raised limiting quantities x* and x** that are still intermediate. For auxiliary construction, we
need to further eliminate them via some duality. Due to continuum heterogeneity and state-
coupling dynamics, pertinent duality will take a fairly complex argument, and heavily depend
on some weak equivalence in distributional rather than a (strong) pathwise sense. Thus, we
term it as a “weak’” duality procedure, as detailed below. More specifically, in order to break

away 8\75(0]!)(8%-) of (12) from direct dependence on x’l‘f and x** (see I3, 1), we introduce

the following adjoint equations {y{ }j=i and yg satisfying

N
dy] =aldi+ g aw;+ Y pllaw, (1) =0, #i,
I=1,1#j
dy§ =a5dt,  y§(T)=0, #€S,
where {W;};; are some Brownian motion copies matching all marginal agents in a large-
scaled system, from the benchmark point of .4;. We remark that y29 is parametrized by the

(13)
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diversity index in continuum support: 6 € S, while y{ is parametrized by the marginal agent
index j € Z\{i}. Accordingly, the duality below should be in distributional and agentwise

sense, respectively indexed by 0 € S and j € Z. To start, first apply Itd’s formula to ( y{ , x;‘)
for each marginal agent index j # i, and take expectation, by countable agentwise addition
for all j € Z\{i},

0= IE/ [ al—i—A@yl—i—CTﬂ 0N+ = ZFT{-i—FTﬂ x*¥)
(14) J#i J#t
+— ZFT +ﬁT51“,5x,->} dr.
J#l
Similarly, by distributed integral on all 6 € S,

T
(15) 0:/ [/(ag + AgyS —|—FTyg,x;*)dCD(G)+/(FTy§,8xi)d<I>(9)]dt
0 S S
Combing (14) and (15) with (12)

8T g0 (Bui) =E f [Qxl,(sm +(H(H, )%, sx,)—%DFT +FTp{ sxi)
J7Fi

_/<FTy§,ax,~)d<b(9)+ (RL?,-,Su,-)}dt
(16) HEf [ (0% —af = 40,51 - CTﬂ{j’xﬁ] a
J#L

—IE/ /< H(H, Q)% + — J;FT iy FTpl)

3
+ad ALY+ FTY X >d¢(9)dl+281.
=1
Let

=H(H, Q)x — FTEy{ — FTEBY —A)y5 — FTyY,

hence we reach the following weak duality adjoint process:

N
dy] = (Q%; — A,y —CTBYdi+ B dW;+ 3 Bl dw,
(17) A , I=Li%)
dyS):—(—H(H, Q)x—(FTEyf FTIE/S ) gyz FTyg)dt,
yI(T)=0, j#i, y(T)=0, 0€S.

We point out that the above system can be rewritten as

N
dy] = (0%; — ALy —CTp{)dr+ T aw;+ > pllawi.
‘ =Ll
dyy = —(—=H(H, Q)% — (FTEy] + FTEB/) — Ayys — FT)5)d,
MM =0, j#i,  y(D=0.
We remark that y? is a degenerate BSDE by noting ® € Fy. Also, it is not necessary to
specify any dependence assumption between ©; and © since y{ and yé”) get coupled only
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through the expectation operator. In other words, the coupling and associated consistency
condition only concern their expectations. Still, we may term the resulting duality as weak
duality. Substituting (17) into (16), we have

$TL bui )—Ef (05, 530) + (H(H, Q)8 531) = 4 UF Tl + Fp{l o)
J#i

—/S(FTyg,(Sx,-)dCI>(9)+(Rﬁi,zSui)]dt—i-Zel,
where i
84—1@/ <FT<E[yl —N§y1)+FT( (B gﬂ ),x**>dt.

We observe that the initial terms such as (Qx;, x}?) in (12), are now reformulated with some
inner product between principal intermediate variation §x; and some quantities in terms by

yg and y{ in an agentwise (i.e., j 7 i) manner. Then, we can identify the tail filtration for
exchangeable { fOT(Q)? I3 xj) dt}j+; based on éx; with a degenerated filtration. So, applying

the conditional law of large number, and noticing { y{ , J # i} are identical distributed, we
reach the following representation with expectation operator:

T ~
8T (Su;) =E /O [(Qii, 8x;) — <—H(H, 0)i + FE[y]+ FE[B}]
(18) .
+FT/ y§d®(9),8xi>+(Rﬁ,-,su,-)}dt+281,
S =1

where y; (depending on X, that is, the optimized state for the generic agent) is some copy
with the same distribution for generic y{ :

N
dy) =[0% — Aby1 —CTBldi + gLaw + Y plaw,,
(19) 1=1,1#£1
dy§ =[H(H, Q)% — (F"Ey| + FTEB]) — A] y§ — F"y§]dt,

yi(T) =0, Yi(T)=0, 0¢€S,

and

85—IE/ <FT<E[y1 —ﬁ2y1>+FT< (1] - Z,B >5x,->dt.

J#

We remark that y; has the same distribution with generic yl. This again explains why we
term the above procedure as “weak” duality. We point out all variations terms in (18), are
now directly depending only on principal (basic, or intermediate) variations. Thus, we now
formulate a decentralized auxiliary cost differential §J; (Su;):

T ~ A
33i6u) = | [<szi, Sx1) — <—H<H, 0%+ F 5+ FT
0
20)
+ FT/ Aot dd>(9),6x,->+ (Rii;, 3ui)]dt.
S

REMARK 3.1. There are four undetermmed terms in (20) respectively: X by (10) is the
state-average limit; (1 = E[y], ,31 E[ﬂl] y3 ?) is from (19) because of the weak duality
procedure. All these terms, especially x, will be determined by CC in Section 4.
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REMARK 3.2. In (20), we introduce the first variation of auxiliary cost functional
8J;(8u;) and ignore the error term ¢;, [ =1, ..., 5. The convergence rate estimation of these
terms and the rigorous proofs will be given in Section 5.

4. Auxiliary control problem and consistency condition. This section aims to com-
plete Step 3 concerning the auxiliary problem, which has a double-fold role in its formula-
tion and solvability. By weakly coupling of MFT, the centralized strategy is infeasible due
to the curse of dimensionality. Alternatively, the decentralized one is more desirable that it
can be derived by formulating an auxiliary cost with a frozen state-average limit. Counterpart
formulation in MFG is quite straightforward because of the competitive feature. However,
for MFT, such auxiliary formulation becomes more complicated because each agent must
take into account social cost on others. Subsequently, formulation of the auxiliary problem,
together with an earlier variational decomposition and weak duality, will jointly complete the
above complex freezing procedure. Next, solvability of the auxiliary problem enables us to
design decentralized MFT strategies with asymptotic optimality. Now, we present more role
details.

4.1. Auxiliary control with double-projection. (20) contains only the principal terms §x;
and Su;, thus it links to an optimal control problem using local information of 4; only. Now
we can introduce the following auxiliary control (AC) problem for a generic A;:

L 1T

Minimize J; (u; (-)) = EE/O [(Oxi, xi) — 2(E, xi) + (Ru;, u;)] dt,

subject to dx; (1) = [Ae,x; + Bu; + Fx]dt 4+ [Cx; + De,u; + F£1dW; (1),
x;i(0) =&,

(AC):

with
Q) BB S B) = —HH, QF + F 15+ FTpi + FT/Sygdcb(m,

where X is the limiting state-average term introduced in (10); (yg , V1, ,31) depends on X sat-
isfying dynamics (19). Also, we remark that $; depends on optimal state ;.

We will apply the stochastic maximum principle to study Problem (AC). To this end, we
introduce the following first-order adjoint equation:

dpi(t) = —[A, pi + Oxi — E+ Clqi]dt + q; dW; (1), p;i(T)=0.

Let u be the optimal control and (x/, p}, g;") the corresponding state and adjoint state. For
any u; € L%Gi (0, T; R™) such that u} +u; € L{f;)’;, we have uf :=uj +eu; € Z/{f(’)’;. The corre-
sponding state and adjoint state with respect to u§ are denoted by (xf, pf, g7 ). Introduce the
following variational equation:

dy;(t) =[Ae,yi + Bu;1dt + [Cy; + De,u;1dW;(t), yi(0)=0.

Applying It6’s formula to (p;, y;), by the optimality of u} (i.e., J; (uf) — J;(u}) > 0), we
have IEfOT(Ru;“ +BTp + D(T)iCIi, u;j)ds >0.Forany 0 <t <T and gf—measurable random
variable n;, let

ui(s), sé¢ft.t+el;
uy(s) +ui(s) = (6 sl ]

Nis set,t+e€]
Therefore, éIE [,’Jre(Ru;" +BTp; + Dgiq,-, ni —uj)ds > 0.Let e - 0, we have E(R() x

wi(t) + BT (1) pf(t) + Dg, (g (1), ni — uf (1)) =0, 1 € [0,T]. For any v €T and A €
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Gi, define n; = vla + uf(1)lac, we have E(R(D)uj(t) + BT (1) p} (1) + D (g} (1), v —
ui(t))Ip > 0,1 €[0,T]. Since A € G! is arbitrary, we have E[{R(t)uj(t) + BT(t)p;k(t) +
D§ (g} (1), v —uf(1))|Gi1= 0,1 €0, T], P-as., that is,
(—R@)u} (1) + E[-BT (1) pf (1) — D, (1)g; (1G], v — uf (1)) <0,
te€[0,T], P-a.s.

Since v € I is arbitrary and I" is a closed convex set, it follows from the well-known results
of convex analysis that (22) is equivalent to

(23) uf(t)=Pr[R™'E[-B ' pj(t) — D, q; (1)IG;]], ae.te[0,T], Pas.,

where Pr[-] is the projection mapping from R™ to its closed convex subset I under the

(22)

norm ||v||%e = (R% v, R2v). Note that there involves two projections in (23), because of the
input constraint and partial information constraint. This differs from [20, 21] which include
only input constraint. Furthermore, the two projections are noncommutative due to above
maximum principle arguments. In this case, the related Hamiltonian system for (AC) becomes
dx} =[Ae,x} + BPr[R™'E[-B" p}(t) — D{ ¢} (1)|G}]] + F&)dt

+[Cxf + Do, Pr[R™'E[—B p} (1) — D, qf ()IGI]] + FX]dW; (1),
dpf =—[Ad, pf + Ox; — B+ C g ]dt + g dWi (o),
x7(0) =§, pi(T) =0,
which is a fully coupled FBSDEs with double-projection: the mapping on the input convex-
closed set, and the filtering for partial information (i.e., conditional expectation on subspace).

(24)

4.2. Consistency condition. Note that the optimal strategy for the auxiliary control prob-
lem involves some undetermined terms (X, yi, ,31) In this section, we will characterize the
undetermined processes, especially state-average limit x, in (21) via some consistency match-
ing scheme. Given the Hamiltonian system by (24), all agents should apply some exchange-
able team decisions {u*}N | and the realized states should be as follows:

dx} =[Ae,x; + BPr[RT'E[-B" p}(t) — D¢, 47 (1IG}]] + Fx*™M]dt
+[Cxf + Do, Pr[R™'E[—B" p} (1) — D q; (1)1G]]] + Fx*N]dw; (1),

X} (0) =&,
where x*®™) = L Z —, x"and (p}, g7) is the solution of (24). Making all such exchangeable
strategies aggregated and applying the de Finetti theore