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Abstract 

Accurate and robust prostate segmentation in transrectal ultrasound (TRUS) images is of great interest for 

ultrasound-guided brachytherapy for prostate cancer. However, the current practice of manual segmentation is 

difficult, time-consuming, and prone to errors. To overcome these challenges, we developed an accurate prostate 

segmentation framework (A-ProSeg) for TRUS images. The proposed segmentation method includes three 

innovation steps: (1) acquiring the sequence of vertices by using an improved polygonal segment-based method 

with a small number of radiologist-defined seed points as prior points; (2) establishing an optimal machine 

learning-based method by using the improved evolutionary neural network; and (3) obtaining smooth contours of 

the prostate region of interest using the optimized machine learning-based method. The proposed method was 

evaluated on 266 patients who underwent prostate cancer brachytherapy. The proposed method achieved a high 

performance against ground truth with a Dice similarity coefficient (DSC) of 96.2% ± 2.4%, a Jaccard similarity 

coefficient (Ω) of 94.4% ± 3.3%, and an accuracy (ACC) of 95.7% ± 2.7%, which are all higher than the state-of-

the-art methods. Sensitivity evaluation on different noise levels demonstrated that our method achieved high 

robustness against changes in image quality. Meanwhile, an ablation study was performed, and the significance 

of all the key components of the proposed method was demonstrated. 

Keywords: Prostate segmentation, transrectal ultrasound, global closed polygonal segment, distributed-based 

memory differential evolution, neural network, explainability-guided mathematical model. 

1 Introduction 

Prostate cancer is one of the leading causes of death among men worldwide. Transrectal ultrasound (TRUS) 

is routinely utilized in the diagnosis and brachytherapy of prostate disease [1]. Prostate gland segmentation is an 

essential step of TRUS-guided brachytherapy because it defines the target volume to be irradiated [2]. Precise 

segmentation is a prerequisite for successful treatment because segmentation errors may lead to an under-dose to 

the target and/or an over-dose to the surrounding normal tissues. The current clinical practice involves manual 

segmentation of the prostate, which is a tedious and time-consuming process; moreover, its accuracy often 

depends on the clinician’s experience [3]. Despite many advances in medical image segmentation, TRUS prostate 
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segmentation is accompanied by unique challenges owing to poor image quality and intensity heterogeneity, as 

shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Challenges in prostate segmentation caused by different factors. A) low signal-to-noise ratio (SNR), B) 

micro-calcification, C) intensity heterogeneity within the prostate, D) shadow artifacts, and E) speckle noise. 

1.1 Related studies 

Recently, four common imaging modalities have been used for disease diagnosis, including X-rays, magnetic 

resonance imaging (MRI), computed tomography (CT), and TRUS [4]. Unlike the other three modalities, TRUS 

has a higher dependence on prior information regarding shape features for prostate segmentation [5]. This is 

mainly because the outline cue of intrinsic ultrasound images is inadequate for accurate prostate outline detection 

[6]. In the field of medical image segmentation, the currently used methods are generally categorized into two 

types––fully automatic methods and semi-automatic methods––as briefly summarized below. 

 (i) Fully automatic methods: Currently, automatic prostate segmentation in TRUS images is a significant 

topic of interest [7]. A polar transformer network [8], which is used to segment the prostate in the polar coordinate 

system instead of the image coordinate system, was developed for ultrasound prostate segmentation. From the 

perspective of the polar coordinate system, the prostate surface is well parameterized through a radius map on the 

object surface regarding the coordinate of the centroid point. This assists the proposed network in improving the 

segmentation accuracy. However, the selection of the location of the centroid point may affect the location of the 

prostate. In addition, the performance of this model is severely influenced when the shape of the prostate is not 

convex-based. A novel feature pyramid network [9] equipped with attention modules to generate deep attentive 

features for prostate segmentation in TRUS images has been proposed. This method generates accurate results 

because the attention module emphasizes the salient features well. However, a total of forty patients’ data was 

used for training and testing, which potentially caused the overfitting owing to limited training samples. Hence, 

the author mentioned that they would concentrate on assessing the generalizability of their method on a larger 

dataset. In addition, no validation data was used for hunting for the optimal hyper-parameters of the neural network. 

A unity squeeze-and-excitation (SE) network model [10] has been reported, which combines the SE modules with 

Unity Network (U-Net) for prostate zonal segmentation. Owing to the advantage of the SE module in boosting 

meaningful features and suppressing the less useful ones, the Dice similarity coefficient (DSC) of the proposed 

method is as high as 0.91. However, the dataset was only divided into the training and testing groups, without a 

validation set for optimal model selection. A deep-learning model has been used to determine the effects of 

different parameters of the dataset, including dataset size, image quality, and image type, on the ultrasound prostate 

segmentation task [11]. When using 100 to 4,023 images for training, the corresponding DSC of the proposed 

method ranged from 0.72 to 0.91, in a dataset that included clinical prostate brachytherapy images. In contrast, 

the DSC of the proposed method was only 0.85 when using 1,000 images for training. However, owing to the 

difficulties in acquiring ultrasound prostate images, obtaining more than 4,000 images is a challenge for resource-
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limited hospitals. 

(ii) Semi-automatic methods: When using semi-automatic methods for prostate segmentation, the 

intervention of an expert radiologist is always sought to initialize the implementation procedure or refine the final 

result, which yields accurate and robust results [12]. A semi-automatic segmentation method [13] has been 

proposed and evaluated in prostate TRUS images. This method uses the inherent characteristics of the original 

images, with information on the shape, before fine-tuning the final segmentation results. However, the model is 

susceptible to noise and speckles. In addition, a multi-pipeline framework, including feature extraction, 

classification, and level set segmentation [14], has been developed. The segmentation step was implemented after 

classifying the obtained region of interest (ROI) features and background features, whereas a shape prior was used 

to correct the final segmentation results. However, 47 images were used for training and the other 85 images were 

used for testing, which may potentially cause overfitting at the training stage. A multi-label joint learning-based 

method [15] has also been described for ultrasound prostate segmentation. This method potentially incorporates 

prior knowledge of the dataset, such as space location information about the TRUS volume, the clinical target, 

and the planning target. However, the precision of labels can potentially influence the performance of the proposed 

method. In addition, the accuracy of the method is severely affected by the prostate’s variable shape and size. A 

semi-supervised learning method was designed [16] for prostate segmentation using prior knowledge of the 

shadow artifacts. During training, the model can learn how to distinguish shadow artifacts from the prostate ROI, 

which improves the segmentation accuracy. 

1.2 Contributions/innovations of this work 

In our study, we introduce the technical contributions of our boundary delineation method in the ultrasound 

image processing area, as indicated below: 

1. During TRUS-guided brachytherapy, segmenting the prostate gland is significant, which can accurately 

determine the target volume that is to be irradiated. Meanwhile, it can ensure the dosage of the target is 

appropriate. The purpose of our study is to achieve a high-accuracy contour that can make sure 

successful treatment during TRUS-guided brachytherapy. 

2. Considering that the precise detection of prostate contour from ultrasound images is challenging work, 

the DSCs of recent fully-automatic methods are nearly 0.9 [16] [17]. Our study develops a semi-

automatic contour detection approach that adopts radiologist-defined data seed points as prior, resulting 

in a DSC of 0.962. 

3. Owing to their excellent capability to deal with noisy input, many researchers have used the principal 

curve (PC) technology to separate unusual tissues from the neighboring normal tissues [18]. 

Nevertheless, the potential problem with PC methods is that the number of vertices must be pre-decided 

by the users, and our developed technique herein focuses on this issue. 

Compared with current methods, there are four primary novelties of the segmentation method proposed in 

this study: 

1. We present a hybrid segmentation architecture that combines an improved, closed-principal curve-based 

method with an improved machine-learning method. This method uses the principal curve-based 

method for automatically approaching the center of the dataset and machine learning during the training 

stage to reduce model error.  

2. Our previous studies [18] [19] [20] were our first attempts to utilize a closed K-polygonal segment 

(CKPS) method for medical image segmentation with promising performance. Based on these previous 

studies, in this study, we propose a novel global closed polygonal segment (GCPS) method, with 

improvements in 1) vertex cleaning, 2) the vertex-merge model, and 3) constraint conditions. 

3. A distributed-based memory differential evolution (DMDE) method has been newly proposed for the 
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optimal initialization of the Caputo fractional-order backpropagation learning (CFBL) method [21]. 

Unlike the originally distributed differential evolution framework proposed in Ref. [22], we used a new 

memory-based differential evolution (DE) model to replace the original DE when processing the slave 

node. 

4. Through careful analysis and experimental verification, an intrinsic problem was found with the 

principal curve-based method: the method lacks a mechanism to obtain a smooth contour. To solve this 

problem, a map function (represented by parameters of the CFBL) was designed, which can smooth the 

prostate contour while matching the ground truth (GT) contour. 

The initial results of this study were published as a conference paper at the 2021 IEEE International 

Conference on Bioinformatics and Biomedicine conference [23]. This manuscript extends the contents of the 

conference paper in several aspects. 

1. A detailed review of the literature has been included to place our work within the context of existing 

techniques. We have presented our work in more detail and have included comprehensive results, which 

were constrained in our conference paper owing to the limited number of pages allowed. 

2. We have added more details of each experiment as follows. First, we have added qualitative and 

quantitative experiments to discuss the impact of patient age. Second, we used higher noise with a lower 

signal-to-noise ratio to corrupt the testing data, which was then used to test the accuracy and robustness 

of our method. Third, we adjusted the number of validation and testing datasets. We used more testing 

data to evaluate the prediction performance adequately. Fourth, we performed more ablation 

experiments to investigate the influence of each component of our method. Fifth, we added the standard 

deviation of each metric (i.e., DSC, Jaccard similarity coefficient (Ω), accuracy (ACC), and Hausdorff 

distance (HD)) to evaluate the robustness of our method further. 

3. A comprehensive comparison of our methods with those reported in the literature is presented. In the 

initial paper, we compared our deep learning architecture (i.e., Mask RCNN [24]) with hybrid 

architecture (i.e., Hull-CPS [19] and a deep-belief network (DBN)-CPS [20]). Our model was also 

compared with a more recent hybrid segmentation architecture known as the H-SegMod method, which 

was proposed in our previous study [25]. Furthermore, our A-ProSeg was compared with a well-known 

transformer-based architecture known as the UTNet method [26], and good segmentation architecture 

named as U-Net [27] and U-Net++ [28]. Meanwhile, the statistical significance of all the methods was 

also investigated. 

2. Methods 

2.1 Problem statement 

Let the initial seed points set be P = {pi, p2, …, pn}, which represent the limited manually selected seed points. 

We expect to acquire a smooth outline of the prostate ROI, for which the seed point set P is known as a prior. Let 

us assume that the seed point P is perfect without any abnormal point pj, and we expect to find a suitable polygonal 

segment-based method [18] for training, which is a variant of the principal curve-based methods [29]. After 

training, the optimal vertex sequence D, which consists of the vertex sequence t and vertex coordinates v(xi, yi) 

[30], was adaptively found. At this time, the results represented the polygon-based prostate contour [18], which 

was not smooth. Then, using t as the input of the CFBL method and the vertex coordinates (vx, vy) for minimizing 

the mean square error (MSE) [9], CFBL was used as the training model. When the training was completed, CFBL 

had the best performance, and the MSE and DSC values were infinitely close to 0 and 1, respectively. Finally, the 

coordinates of the optimized vertices were used to represent the prostate contour, as shown in Eq. (1) and Eq. (2). 

This mathematical expression has been denoted in our previous conference paper [23]. For ease of understanding, 
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both of those equations are presented again: 
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In Eq. (1), the output layer’s neuron c(•) consisting of c(x) and c(y) is obtained, which are regarded as the 

continuous functions c(x(t)) and c(y(t)), respectively, on the vertex sequence t, as shown below: 
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where w and b denote the weight and threshold of the CFBL model, respectively, and h represents the number of 

hidden neurons. The details of both equations can be found in our conference paper [23]. 

However, two challenging issues may appear in this framework: 

1. The quality of dataset P would be affected when there are abnormal points p (i.e., uneven distribution 

or incorrect locations). Hence, we need to find the appropriate polygonal segment-based methods to 

remove the unavailable points and obtain the optimal vertex sequence D. 

2. After training, the model parameters of the optimal CFBL model would be adopted to represent the 

coordinates of the optimized vertices used to update the prostate contour, as shown in Eq. (1) and Eq. 

(2). However, the option of the CFBL model’s parameters would affect the performance of CFBL, 

causing the selection of the CFBL with optimal model parameters to be a challenging issue. 

2.2 Overall architecture 

In this section, we present the use of our hybrid A-ProSeg architecture for obtaining a smooth contour of the 

arbitrary ROI using a small number of manually selected seed points P as a prior (<8% of points as a prior). The 

main steps of our model are as follows: 

1. Using the GCPS, a polygon-based curve f comprising segments S = {s1, s2,.. sis} was obtained. 

2. The DMDE was used to achieve the best initialization of the parameters (i.e., weight and threshold) of 

the CFBL model. 

3. The precision of the prostate contour was improved by constraining the global deviation E, shown as 

1

m

kk
E E

=
=  , during CFBL training, in which Ek represents the MSE calculated by the actual and 

expected outputs. 

4. The smooth mathematical-model-based coordinates of the optimized vertices (shown in Eq. (1) and Eq. 

(2)) were denoted to represent the prostate contour. 

Fig. 2 illustrates the overall A-ProSeg architecture. The details of our A-ProSeg architecture are shown in the 

following subsections. 
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Fig. 2 The A-ProSeg architecture. 

2.3 GCPS 

Because the traditional K-segments polygonal segment (KPS) model [31] cannot fit the closed dataset, our 

previous model, termed the CKPS model, was first developed by adding a new initial step and several judging 

conditions [18] [19] [20]. However, both of these methods improved the model’s usefulness, by dealing with 

scattering, uneven distributions, and abnormal data [32]. In this study, inspired by the work of [32] and Zhang et 

al. [33], the GCPS was devised to handle the aforementioned issues through several modified steps. Furthermore, 

several constraint conditions were added. The improvements in the GCPS model mainly comprise three parts: 1) 

vertex cleaning, 2) the vertex-merge model, and 3) constraint conditions. 

2.3.1 Traditional KPS 

A traditional KPS [31] model was previously proposed, with the main steps including the initial way (T0), a 

projection step (T1), a vertex optimization step (T2), converge conditions (T3), and a new vertex addition (T4). 

The details of these steps have been previously described [31]. 

2.3.2 Our previous model, termed the CKPS model 

Compared with the KPS model, the CKPS model[18] [19] [20] includes several improvements, i.e., a new 

initial step (T5) and judging conditions (T6). 

In the improved initialization step (T5), a closed square was used as the starting curve, replacing the first 

principal component line [31] used in the traditional KPS model. Furthermore, the judging conditions (T6) 

described by [18] mainly comprise three aspects:1) the whole loop exits if the segment number 

( ) * 1/3 1/2, ( ) ( )k c n f n f r −  =  ; 2) both the inner and outer loops should meet the distance constraint conditions; 

and 3) there are several additionally added conditions, including optimal selections of vertices, segments, and the 

contour curve’s shape. 
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2.3.3 Our newly proposed GCPS model 

To decrease the possibility of generating a distorted principal curve caused by abnormal vertices, based on 

the CKPS model, we added several improvements, including vertex cleaning (I0), vertex merging (I1), and several 

constraint conditions (I2). All of the improvements to the GCPS model (i.e., I0, I1, and I2) were implemented 

after the vertex optimization step (T2), as shown in Fig. 3. 

 

Fig. 3 The workflow of the GCPS model. T0–T4 show the main steps of the traditional KPS model, and T5–

T6 show the main steps of the CKPS model. I0–I5 show the key improvements in our newly proposed GCPS 

model. 

1. Vertex cleaning (I0) 

We used flag(vi) to represent the vertex cleaning label, the initial value of which is 1. When the distance of 

the i-th segment lsi > data radius r, flag(vi) is set to 0, and the vertex vi is removed. In addition, lsi needs to satisfy 

the rule that 1   1si i il v v i m+= −  
 , in which m represents the number of vertices of the polygonal curve. 

The data radius r decides the dataset scale and needs to satisfy 

1

x P
y P

r max x y
n



= − 
, in which x and y represent 

the coordinates of the x- and y-axis of p, respectively. 

2. Vertex merging (I1) 

Owing to the presence of abnormal vertices that may cause distortion of the principal curve f, a vertex 

merging model was developed to handle this issue, as shown in Algorithm 1. 

Algorithm 1 The vertices merging model 

Input: f0 = (v, s), the initial principal curve of vertices to be merged 

Output: f1, reduction of f0 

1:   for each vertex vi∈f0 do 

2:     Set vl and vr be the left and right neighboring vertex of vi, respectively 

4:     Obtain the Euclidean distance d(vl, vi) and d(vi, vr) based on the work of [34]  

5:     Obtain the average distance threshold 
11

1
( , )

m

t i ii
d d v v

m
−=

=   



 

8 

 

6:     if d(vl, vi) > d(vi, vr) / 3 or d(vl, vi) < 2×dt then 

7:        Remove vi, and connect vl and vr 

8:     end if 

9:   end for 

10:  for each vertex vi∈f0 do 

11:    Obtain the directional angle θvlvi between vl and vi 

12:    θvlvi = arctan[(vi×y - vl×y) / (vi×x - vl×x)] 

13:    Obtain the directional angle between vi and vr 

14:    θvivr = arctan[(vr×y - vi×y) / (vr×x - vi×x)] 

15:    Obtain β = |θvlvi - θvivr| 

16:    if β > π then 

17:      β = 2π - β 

18:    else 

19:      Remove vi, and connect vl and vr 

20:    end if 

21:  end for 

3. Constraint conditions (I2) 

Two constraint conditions were proposed to decide whether the freshly inserted vertex vi should be deleted. 

If it satisfies either of the following constraint condition, the vertex vi must be removed: 1) the vertex vi exceeds 

the range of the data radius r or 2) very few points pi projecting to the edge si or vertex vi exist. 

2.4 DMDE 

When the initial value of the model parameters of neural networks (NNs) is selected stochastically, it easily 

gets trapped in the local minima of the error surface in the NN’s training stage [35]. The DE network is good at 

global searching and has been used widely. For example, Leema N et al. [36] used DE networks to search the 

optimal weights of NNs. However, traditional DE networks do not consider improving their performance from 

certain aspects, such as using a suitable migration technique, memorizing the value of optimal parameters from 

the last loop, and improving population diversity [37]. To solve these problems, a new method termed the DMDE 

was designed by combining distributed- and memory-based techniques and multi-mutation operators. 

2.4.1 Distributed-based technique 

The distributed-based mechanism [22] was adopted to migrate the optimal individual in each parallel 

subpopulation to the latter subpopulation in the ring topology. However, a new memory-based DE was developed 

to replace the original DE when processing the slave node [22]. 

2.4.2 Memory-based technique 

A memory-based DE was proposed to save the best mean mutation factor (uF) and mean crossover rate (uCR) 

from the last loop and then use these two parameters in the next loop. The primary steps of the memory-based DE 

were as follows. 

(i) The initial values of the uF and uCR were set in the range of [0, 1]. In addition, the recent iteration number 

G < the maximum iteration number, GMax, where the initial value of G is 1. 

(ii) The initial values of F and CR were randomly selected within the range of [uF, 1] and [uCR, 1], 

respectively. 

(iii) The mutant individual va
G+1 was produced through the mutation step, as shown in Section 2.4.3. 

(iv) The experimental individual ua
G+1 was obtained in the crossover step, as follows: 
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1
1 ,    [0,1]

  
,     

G
G a

Ga
a

vec if rand CR
u

x otherwise

+
+  
= 
                           (3) 

 (v) The next candidate was obtained in the selection step, as follows: 

1 1
1 ,    ( ) ( )

  
,       

G G G
G a a a

Ga
a

u if f u f x
x

x otherwise

+ +
+  
= 
                          (4) 

(vi) SCR and SF were the successful crossover and mutation probabilities, respectively, where both the 

parameters were required to meet Lehmer’s function (meanL(•)) [38] as follows: 

2

CR( ) CR

CR

CR S

L

CR S

CR
mean S

CR





=


                              (5) 

2

F( ) F

F

F S

L
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F
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F





=



                             (6) 

(vii) uF and uCR were modified as follows: 

(1 ) ( )L FuF ap uF ap mean S= −  +                          (7) 

(1 ) ( )L CRuCR ap uCR ap mean S= −  +                         (8) 

where the adjusted parameter ap was randomly chosen within the range of [0, 1]. 

If G < Gmax, the model proceeded to step (ii), in which the values of both the uF and uCR in this loop 

were used for the next loop, while G = G + 1. On the contrary, if G ≥ GMax, it exited the loop and 

proceeded to the next step. 

(viii) The optimal individual was determined. 

2.4.3 Multi-mutation operators 

To enhance the diversity of the population, two-mutation operators were utilized to generate the mutant 

vector individual veca
G+1 as follows: 

1 2 3

1 2 3 4 5

11

2 3

( ),                            [0,1]

( ) ( ),      

G G G

a a a GG

a G G G G G

a a a a a

x rand x x if rand p
vec

x rand x x rand x x otherwise

+
 +  − 

= 
+  − +  −              (9) 

where rand denotes a random value within the range of [0, 1]. Ak (k∈[1, 5]) is an integer and randomly selected 

within [1, Np], where Np is the number of solutions. PG is the probability when using the mutation operator, denoted 

as follows: 

max min
min

( )
G

G p p
p p

GMax

 −
= +

                            (10) 

where pmin and pmax are the minimal and maximal probabilities, respectively, when using the mutation operator. 

2.5 CFBL 

Because the Caputo-type fractional gradient descent (CFGD) module [39] has good heredity and memory, 

we used a CFGD-based CFBL in this study [21]. Unlike backpropagation neural networks (BPNNs) [36], the key 

advantage of CFBL is that the CFGD is used to replace the gradient descent method [40] to optimize the weight 

vector at the forward propagation stage. In addition, CFBL has input, hidden, and output layers, which can explain 

the arbitrary continuous function and achieve the arbitrarily expected precision [41]. 

At the forward propagation stage of the CFBL, the sigmoid activation function h1 =1 / (1+e-x) was adopted 

from the input to the hidden layers, whereas the tanh activation function h2 = (ex - e-x) / (ex + e-x) was utilized from 

the hidden to the output layers. Meanwhile, the backpropagation stage was used to update the weight of the CFBL. 

After training, the coordinates of the optimized vertices were used to denote the prostate contour, which was 
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expressed by an explainability-guided mathematical model, as shown in Eq. (1) and Eq. (2). For better 

understanding, the details of CFBL are illustrated in Appendix 1 and 2. 

3. Experimental settings 

3.1 Materials 

The Tsinghua Changgung Hospital (TCH) prostate dataset used in this study [23] contained TRUS images 

of 266 patients undergoing brachytherapy (945 slices), which was obtained by a Hitachi HI VISION Avius® 

ultrasound diagnostic equipment and an integrated high-resolution linear transducer whose frequency is within 

[4MHz, 8MHz]. Each patient had both axial and sagittal view slices. The original data were in Digital Imaging 

and Communications in Medicine (DICOM) format, and the matrix size of the dataset was 1,024 × 768 pixels. 

All data images were rescaled to 600 × 450 pixels. The GT contours of the prostate were manually delineated by 

three professional radiologists, and the final GT was then determined by a majority vote based on the three experts’ 

annotations. If the mark of each radiologist obtains the same number of votes, they will discuss and determine the 

consensus ground truth. Fig. 4 shows the process of obtaining the GT contour. The evaluation metrics, i.e., DSC, 

Ω, ACC, and HD, were used, where ACC and HD are the boundary-based metrics, and DSC and Ω are the region-

based metrics [19] [42]. 

Region-based metrics: 

TP
=

FP+TP+FN


                                 (11) 

2TP
DSC=

2TP+FP+FN                                (12) 

Boundary-based metrics: 

TP+TN
ACC=

TP+FN+FP+TN                               (13) 

2 2
( , ) max(max min ,max min )

y Y x Xx X y Y
HD X Y x y x y

  
= − −                (14) 

where TP, FP, FN, and TN indicate true positive, false positive, false negative, and true negative, respectively. X 

and Y represent the experimental result and ground truth, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Extraction of the prostrate ground truth contour. 



 

11 

 

3.2 Parameter settings 

One hundred and ninety patients (675 slices) were randomly chosen for training, with 20 patients (66 slices) 

for validation and 56 (204 slices) for testing. Each patient had several axial slices, but only one sagittal slice. The 

neural network-based CFBL model was optimized using the stochastic gradient descent scheme, adopting an 

initial learning rate, momentum, and maximum epoch of 0.4, 0.9, and 1,000, respectively. Each experiment was 

conducted on a personal computer with an Intel® CoreTM i7-8750H processor and a Geforce GTX 1070 Max-Q 

graphics processing unit with 8 GB of memory. To assist the readers’ understanding, the parameter settings for 

our initial model are provided in Appendix 3. 

4. Results 

4.1 Step-by-step visualization 

For ease of understanding, Fig. 5 shows the progressively improved qualitative experimental outcomes. The 

original data and the GT, manually determined by three physicians (first column), were the inputs of our A-ProSeg 

model. After adopting the GCPS model to achieve a polygon comprising the segments, the approximate shape of 

the contour could be determined (second column). The advantage of the GCPS model is that it allows the 

optimization of the location of each vertex based on the rule of minimizing the penalty distance [31], in which the 

location of each segment is also updated. After executing the DMDE-CFBL, the final result was obtained (third 

column). The DMDE was used to achieve the best initialization of the parameters (i.e., weight and threshold) of 

the CFBL model. After CFBL training, the model parameters were used to explain the smooth mathematical 

expression of the prostate contour to ensure the experimental outcomes were more precise and smoother. To make 

the model more intuitive, the third row was introduced to denote the zooming visualization of the compared 

outcomes (second row), in which the red and blue lines show the GT and experimental outcomes, respectively. As 

shown in the third row (visualization of the ROI), the outcome of our A-ProSeg model was the best among all 

steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Qualitative illustration of the experimental results step by step. 

4.2 Robustness to noise 

Given that different levels of salt and pepper noise may result in different levels of influence on the 
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segmentation results, many recent studies have chosen the optimal signal-to-noise ratio (SNR) through repeated 

trials. A patch-based fuzzy local similarity c-means method [43] was used for image segmentation, and the noise 

densities were set in the range of [0.05, 0.2], corresponding to an SNR range of [0.8, 0.95]. An active contour 

model [44] has previously been proposed for medical image segmentation, and good performance has been 

demonstrated with the salt and pepper noise with different noise densities set in the range of [0.05, 0.2], which 

corresponds to an SNR range of [0.8, 0.95]. A lower SNR value results in poorer image quality [43]. To better 

validate the robustness of our proposed A-ProSeg model, the SNR was set with lower values, including 0.9, 0.85, 

and 0.8. In addition, another overlap evaluation criterion [45] was used for evaluation, which is adopted to evaluate 

the influence of different levels of noise on raw data, calculated as follows: 

redR blueR
overlap

redR


=                                  (15) 

where the overlap rate (overlap) illustrates the scale of overlap between the red (redR) and blue (blueR) areas. 

Table 1 presents the robustness of our method tested with variable degrees of salt and pepper noise. The 

values indicate that when the SNR decreases, the mean values of all the metrics (i.e., DSC, Ω, and ACC) and the 

overlap also decrease. However, the mean values of all the metrics were greater than 92%, indicating that no 

matter whether the raw testing set was corrupted by different levels of noise, the performance of our model has 

satisfactory performance. 

Furthermore, two slices were randomly selected for visualization validation, as shown in Fig. 6. The first 

three rows show the visualization results of one slice, and the last three rows show the results of the other slice. 

The visualization results of each slice contain three parts, including the original image, the histogram of the initial 

images, and the segmentation-compared results. According to the histogram row (second and fifth row), the red 

line shows the number of pixels at the different gray values of the raw images, whereas the blue line shows the 

number of pixels at the different gray values of the corrupted images. From the histogram row, the level of damage 

to the images at different SNRs can be seen. The blue line shows the segmentation results of the proposed method, 

whereas the red line shows the GT. 



 

13 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Visualization results of the proposed method at different levels of salt and pepper noise. The red arrow 

indicates the missing and blurred boundaries of the prostate. In the second and fifth rows, the overlap metric is 

addopted for evaluating the effect of various degrees of noise on original data, and details are shown below: 

first, the number of pixels for the gray value within [0, 255] in the ultrasound image is calculated. Secondly, 

the overlap region is shown, where the red and light blue represent the areas that only belong to clean images 

and noisy images, respectively, and the purple area represents the pixel overlap area between clean and noisy 

images. Finally, the overlap metric is calculated for evaluation. 

 

Table 1 Performance of the proposed method under varying degrees of salt and pepper noise. 

Different degrees of noise  DSC (%) Ω (%) ACC (%) HD (mm) 

Original testing set 96.2 + 2.4 94.4 + 3.3 95.7 + 2.7 1.9 + 0.9 

SNR = 0.9 94.9 + 2.9 93.3 + 3.5 94.6 + 3.2 2.7 + 1.6 

SNR = 0.85 94.2 + 3.8 92.8 + 4.3 93.9 + 3.4 2.9 + 1.7 

SNR = 0.8 93.5 + 4 92.4 + 4.7 93.3 + 3.7 3.3 + 1.9 
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4.3 Ablation study (AS) 

In this section, an AS is discussed to demonstrate the impact of each component of our A-ProSeg model. 

Three evaluation metrics, i.e., DSC, Ω, and ACC, were used. All of the methods used the same number of slices 

for data training, validation, and testing. The results of the AS are shown in Table 2. We used the CKPS-BPNN as 

the baseline model, where it inherits the characteristic of the principal curve to fit the data automatically, while 

using a neural network for training to decrease the model error (AS1). To improve the performance of AS1, and 

solve the issue that the neural network is always trapped in local minimum during training, the memory-based DE 

model is adopted (AS2). Further enhancing the capability of AS2, the distributed-based scheme is added to well 

hunt for the optimal individual (AS3). Based on the AS3 model, the global-based closed polygonal segment 

(GCPS) is developed, whose improvements are the vertex cleaning scheme, the vertex-merge model, and 

constraint conditions (AS4). Different from AS4, our A-ProSeg model uses the CFBL model to improve the 

heredity and memory performance of the neural network model. 

The baseline model (CKPS-BPNN) had the lowest DSC, Ω, and ACC values of 90.3%, 89%, and 90%, 

respectively. After making some improvements (i.e., MDE, DMDE, GCPS, and CFBL) on the baseline model 

(CKPS-BPNN), the DSC, Ω, and ACC values increased by approximately 3.43%–6.53%, 3.37%–6.16%, and 

3.44%–6.33%, respectively. Overall, our A-ProSeg model (GCPS + DMDE + CFBL) achieved the best results. 

Three patients were randomly chosen for qualitative demonstration, as shown in Fig. 7. Table 3 indicates the P-

values from the paired Student’s t-test on the DSCs between our method (AS5) and other different ASs. 

Table 2 The quantitative performance of the model demonstrated using an ablation study. 

AS Models DSC (%) Ω (%) ACC (%) HD (mm) 

AS1 Baseline 90.3 + 4.5 89 + 5.7 90 + 4.6 4.3 + 2.2 

AS2 CKPS-MDE-

BPNN 

93.4 + 3.6 92 + 4.4 93.1 + 3.9 3.3 + 1.8 

AS3 CKPS-DMDE-

BPNN 

93.8 + 3.6 92.4 + 4.1 93.4 + 3.5 3.1 + 1.9 

AS4 GCPS-DMDE-

BPNN 

95.8 + 2.5 94 + 3.7 95.3 + 3.4 1.9 + 1.0 

AS5 Our A-ProSeg 96.2 + 2.4 94.4 + 3.3 95.7 + 2.7 1.9 + 0.9 

CKPS: closed K-polygonal segment model   GCPS: global closed polygonal segment model 

MDE: memory-based differential evolution model   DMDE: distributed-based memory differential evolution 

BPNN: backpropagation neural network   CFBL: Caputo fractional-order backpropagation learning model 

Table 3 P-values from paired Student’s t-tests comparing the dynamic susceptibility contrast values between 

our method (AS5) and the other ASs. 

 AS1 AS2 AS3 AS4 

p-value to  

our method (AS5) 
<0.001 <0.001 <0.01 <0.1 
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Fig. 7 Qualitative demonstration of ablation study of three patient cases. The first row represents the original 

data. The second row represents the GT manually contoured by professional radiologists. Rows 3 to 7 represent 

the results of five comparison techniques (AS1, AS2, AS3, AS4, and AS5). The red and blue curves show the 

GT and experimental results, respectively. The orange arrow indicates the missing or blurred outlines of the 

prostate. 

4.4 Comparison with state-of-the-art (SOTA) methods 

Our hybrid A-ProSeg model was compared with SOTA methods, including the hybrid prostate segmentation 

method (H-SegMod) [25], U-Net [27], U-Net++ [28], and the U-shape hybrid transformer network (UTNet) [26]. 

H-SegMod is the method developed in our previous study. It is a hybrid, semi-automatic method that uses limited 

prior points to assist the model in locating the prostate contour cue in TRUS images. UTNet is a fully automatic, 

self-attention-based convolutional NN and is widely used in the medical image segmentation field. It integrates 

the features of the self-attention module to capture long-range associative features. Moreover, a Jiangsu Province 

Hospital of Chinese Medicine (JPHCM) dataset [5] was included for external evaluation to assess the 

generalizability of our A-ProSeg model. The JPHCM dataset contained 55 brachytherapy patients (total of 393 

slices) gathered by the Nanjing University of Chinese Medicine, Nanjing, China. The ultrasound slices were 

acquired via a Vinno 70 Lab digital ultrasound diagnostic system (Vinno, Suzhou, China) and an integrated 

ultrasound probe whose frequency is within the range of 4-8 MHz. 
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Owing to the influence of the limited training data on deep learning methods, image rotation was used to 

augment the number of training data sizes, where each raw image was rotated within [−15°, 15°] until a total of 

1,500 training images were achieved. Nevertheless, both H-SegMod and our method used only original data 

without data augmentation. 

4.4.1 Internal evaluation on the TCH dataset 

1. Deep learning methods without using prior points 

The segmentation performance of all of the methods is shown in Table 4. Table 5 also presents the P-values 

from the paired Student’s t-test on the DSCs between our method and the comparison methods. In the hybrid 

models (i.e., H-SegMod and our A-ProSeg model), the DSC, Ω, and ACC values increased by approximately 

4.27%–5.48%, 5.04%–5.82%, and 4.64%–5.86%, respectively, compared with the corresponding values for the 

deep-learning-based model (UTNet). Overall, our A-ProSeg model achieved the best performance, with DSC, Ω, 

and ACC of 96.2 ± 2.4%, 94.4 ± 3.3%, and 95.7 ± 2.7%, respectively. 

Table 4 Quantitative comparison of the hybrid models with existing state-of-the-art models on the TCH dataset. 

Publication Model 
DSC 

(%) 
Ω (%) ACC (%) HD (mm) 

End-to-end 

time (h) 

Testing time 

(s) 

U-Net 
Deep 

learning 

90.4 + 

7.2 

88.6 + 

7.9 
90.4 + 8.4 4.2 + 1.8 ~6 3 

U-Net++ 
Deep 

learning 

91.4 + 

7.7 

89.5 + 

8.4 
90.6 + 7.9 4.6 + 1.9 ~22 5 

UTNet 
Deep 

learning 

91.2 + 

8.1 

89.2 + 

9.6 
90.4 + 8.4 4.1 + 2.2 ~20 4 

H-SegMod Hybrid 
95.1 + 

2.9 

93.7 + 

4.4 
94.6 + 3.5 2.1 + 1.1 ~2.1 3 

Our A-

ProSeg 
Hybrid 

96.2 + 

2.4 

94.4 + 

3.3 
95.7 + 2.7 1.9 + 0.9 ~2 3 

 

Table 5 P-values from paired Student’s t-tests comparing the dynamic susceptibility contrast values between 

our A-ProSeg model and the other state-of-the-art models on the TCH dataset. 

 H-SegMod UTNet U-Net++ U-Net 

p-value to our A-ProSeg <0.001 <0.1 <0.1 <0.1 

2. Deep learning methods using 8% of points as a prior 

Table 6 represents the capability of all the models on both accuracy and efficiency views, and we also use 

the p-value from the paired student’s t-test on the DSC values between our model and other state-of-the-art models 

for evaluation, shown in Table 7. From Table 6, the testing time of all the methods is close. However, compared 

with deep learning models, the hybrid methods perform better. The potential reasons for this phenomenon are that 

1) the hybrid methods inherit the characteristic of a principal curve to fit the dataset automatically so that to 

achieve higher accuracy, and 2) the hybrid methods adopt the multilayer perceptron neural network for training, 

whose architecture is more straightforward than deep learning neural network and needs less time for training. 

Overall, our model obtained the most satisfactory capability, with DSC, Ω, ACC, and HD of 96.2 ± 2.4%, 94.4 ± 

3.3%, 95.7 ± 2.7%, and 1.9 + 0.9 (mm), respectively. 

Table 6 Quantitative comparison of the hybrid models with existing state-of-the-art models on the Tsinghua 

Changgung Hospital dataset. 
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Publication Model 
DSC 

(%) 
Ω (%) ACC (%) HD (mm) 

End-to-end 

time (h) 

Testing time 

(s) 

U-Net 
Deep 

learning 

94.1 + 

3.4 

93.2 + 

4.7 
93.8 + 4.1 2.9 + 1.4 ~3 3 

U-Net++ 
Deep 

learning 

94.7 + 

3.7 
93 + 4.1 94.2 + 3.8 2.6 + 1.2 ~8 4 

UTNet 
Deep 

learning 

94.4 + 

3.8 

93.3 + 

3.9 
94.1 + 4.2 2.7 + 1.2 ~7 3 

H-SegMod Hybrid 
95.1 + 

2.9 

93.7 + 

4.4 
94.6 + 3.5 2.4 + 1.1 ~2.1 3 

Our A-

ProSeg 
Hybrid 

96.2 + 

2.4 

94.4 + 

3.3 
95.7 + 2.7 1.9 + 0.9 ~2 3 

 

Table 7 P-values from paired Student’s t-tests comparing the dynamic susceptibility contrast values between 

our A-ProSeg model and the other state-of-the-art models on the TCH dataset. 

 H-SegMod UTNet U-Net++ U-Net 

p-value to our A-ProSeg <0.001 <0.01 <0.01 <0.01 

4.4.2 External evaluation on the JPHCM dataset 

1. Deep learning methods without using prior points 

The JPHCM dataset contains 393 slices from 95 patients. All of the slices were resized to 600 × 450 pixels 

and used for testing the capability of all the methods, including our A-ProSeg model. Table 8 shows the capability 

of all of the SOTA models on the JPHCM dataset. The DSC, Ω, and ACC values of our A-ProSeg model increased 

by 1.59%–5.99%, 0.64%–7.55%, and 1.38%–6.48%, respectively, compared with the corresponding values for 

the other SOTA models (Table 8). Compared with our A-ProSeg model, the P-values for comparisons with the H-

SegMod and UTNet models when using the DSC results were < 0.01 and < 0.1, respectively. More details on the 

statistical analysis are provided in Table 9. 

Table 8 Quantitative comparison of the hybrid models with the existing state-of-the-art models 

on the JPHCM dataset. 

Publication Model 
DSC 

(%) 
Ω (%) ACC (%) HD (mm) 

Testing time 

(s) 

U-Net 
Deep 

learning 

89.2 + 

9.2 

86.1 + 

10.4 
88.6 + 9.4 4.5 + 2.2 3 

U-Net++ 
Deep 

learning 

90.7 + 

9.2 

87.9 + 

9.8 
89.6 + 8.6 4.3 + 2.1 4 

UTNet 
Deep 

learning 

90.4 + 

8.9 

87.4 + 

9.7 
89.4 + 9 4.5 + 2.2 4 

H-SegMod Hybrid 
94.3 + 

3.1 

93.4 + 

4.5 
93.9 + 3.8 3.1 + 1.6 3 

Our A-ProSeg Hybrid 
95.8 + 

2.5 
94 + 3.5 95.2 + 2.9 2.1 + 1.2 3 

 

Table 9 P-values from paired Student’s t-tests comparing dynamic susceptibility contrast values between 

different methods on the JPHCM dataset. 
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 H-SegMod UTNet U-Net++ U-Net 

p-value to our A-ProSeg <0.01 <0.1 <0.1 <0.1 

2. Deep learning methods using 8% of points as a prior 

To better compare the optimal performance of all the methods on the same conditions, we used the same 

number of prior points to assist deep learning models for prediction. The quantitative evaluation of all the methods 

is shown in Table 10, and Table 11 represents the statistical analysis. Due to the guidance of prior points, all the 

methods achieve satisfactory performance, where the maximum deviations of DSC, Ω, and ACC between our A-

ProSeg method and deep learning model (U-Net) are only 2.2%, 1.5%, and 2.1%, respectively. 

Table 10 Quantitative comparison of the hybrid models with existing state-of-the-art models 

on the JPHCM dataset. 

Publication Model 
DSC 

(%) 
Ω (%) ACC (%) HD (mm) 

Testing time 

(s) 

U-Net 
Deep 

learning 

93.7 + 

3.7 

92.6 + 

4.9 
93.2 + 4.4 3.1 + 1.5 3 

U-Net++ 
Deep 

learning 

94.5 + 

3.9 

92.6 + 

4.5 
94.1 + 3.9 2.7 + 1.4 3 

UTNet 
Deep 

learning 

94.2 + 

4.3 

93.2 + 

5.3 
93.7 + 4.9 2.9 + 1.4 3 

H-SegMod Hybrid 
94.3 + 

3.1 

93.4 + 

4.5 
93.9 + 3.8 3.1 + 1.6 3 

Our A-

ProSeg 
Hybrid 

95.8 + 

2.5 
94 + 3.5 95.2 + 2.9 2.1 + 1.2 3 

 

Table 11 P-values from paired Student’s t-tests comparing dynamic susceptibility contrast values 

between different methods on the JPHCM dataset. 

 H-SegMod UTNet U-Net++ U-Net 

p-value to our A-ProSeg <0.001 <0.01 <0.01 <0.01 

5. Discussion 

Accurate prostate segmentation in TRUS is difficult because the prostate outline is often ambiguous or may 

disappear. In this study, we developed a novel A-ProSeg segmentation method that uses AI-based and polygonal 

segment-based methods. Compared with SOTA segmentation methods, our method makes three key contributions. 

First, semi-automatic and fully automatic methods are currently used for ultrasound segmentation tasks. The DSCs 

of most existing fully automatic models [16] [17] are approximately 0.9. Using limited radiologist-defined points 

as a prior, our study achieved satisfactory outcomes, and the DSC of our study increased by approximately 6.88% 

compared with the fully automatic models [16] [17]. Second, compared with deep-learning-based segmentation 

methods that use more than 4,000 images for training with a DSC of 0.92 [46], our approach used 675 training 

images with a DSC of 0.96. The main reason for this performance is that our method uses prior information while 

inheriting the advantage of the principal curve to be close to the dataset’s center automatically. Third, unlike 

traditional principal curve techniques, our method contains a smooth mathematical mapping function, achieved 

by CFBL, to yield a smooth prostate boundary. Our experimental outcomes demonstrate that our approach 

achieved satisfactory capability. The remainder of this section comprehensively summarizes our findings. 

Discussion of the A-ProSeg model’s innovations: Our main findings are that our proposed model (a) had clear 
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step-by-step visualization (Section 4.1); (b) produced robust results across noise levels (Section 4.2); (c) was more 

accurate than the current SOTA prostate segmentation methods on internal and external evaluations, and using 

with and without prior points (Section 4.4); (d) was able to handle most of the image artifacts effectively, such as 

missing and blurred boundaries, based on principal curve-based and machine-learning-based methods (Overall); 

and (e) was able to yield a smooth contour through an explainability-guided mathematical model (Overall). 

Moreover, we included an ablation study to show the importance of each component of the proposed method 

(Section 4.3). 

Influence of different noise levels: We used a histogram to indicate the relationship between the gray values 

(x-axis) and the number of pixels (y-axis) (Fig. 6 in Section 4.2). As per our findings, grayscale-based ultrasound 

images are mostly composed of black pixels, and the gray value equals zero [47]. Hence, in this study, a limited 

number of pixels (y-axis), in the range of [0, 10,000], was selected for display. After the damage caused by 

different levels of noise (SNR decreases), the overlap decreases, illustrating that the image was damaged by higher 

levels of noise. In addition, based on the quantitative performance of our A-ProSeg model, all of the evaluation 

metrics (i.e., DSC, Ω, and ACC) were maintained at a level greater than 92%, indicating that our model has good 

robustness, even when dealing with severely damaged images (Table 1 and Fig. 6). Fig. 8, which shows the 

relevant zoomed-in images from Fig. 6, shows that the degree of image damage increased with decreasing SNRs. 

 

 

 

 

 

 

 

 

 

Fig. 8 Zoomed-in images of Fig. 6 corrupted by various degrees of salt and pepper noise. 

Difficulty in acquiring data: As shown in Fig. 7 in Section 4.3, only two image views (axial and sagittal) 

were used for assessments. Several axial-view and only one sagittal view slices were used per patient. The TRUS 

slice acquisition procedure is shown below. After manually inserting an ultrasound probe into the patient’s rectum, 

the physician adjusted the probe to achieve a regular cross-sectional prostate slice. Nevertheless, it is nearly 

impossible for a physician to rotate the probe in the rectum to acquire a coronal-view slice owing to the patient’s 

pain tolerance. In addition, owing to limitations in the probe’s rotation angle, acquiring several sagittal view slices 

is challenging. Thus, we acquired only one sagittal view slice (i.e., the slice with the maximum cross-section that 

was the clearest) per patient. 

Influence of each improvement of our A-ProSeg model: As indicated by the results for models AS1 to AS5 

(our model), presented in Table 2 in Section 4.3, the performance of the model increased sequentially. Based on 

the AS1 model, both AS2 and AS3 introduced a DE-based scheme to determine the optimal initialization of NNs 

to resist the NN getting trapped in the local minima during training. Upon combination with the GCPS scheme, 

model AS4 exhibited better performance than AS3 owing to the ability of GCPS to handle abnormal vertices. 

Compared with model AS4, our A-ProSeg model adopted the CFBL scheme with good heredity and memory and 

exhibited the most satisfactory performance. 

Comparison of our method using different numbers and locations of prior points: This work used 8% of 

points of contours manually delineated by radiologists (closer to the prostate contour) as the prior points. To better 

assess the impact of the different numbers and locations of prior points, the seed points closer to the shadowed 
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areas were re-collected, where DSC and testing time were adopted as the evaluation metrics. The evaluation 

performance of our method is shown in Table 12. From Table 12, when using the prior points around the prostate 

outline, the performance of our approach was better than using the prior points closer to shadowed areas. Our 

method has the best accuracy when using <50% of prior points, but the prior information used is too strong. When 

using fewer prior points with less delineation time, our method needs more time for training (<1% of points 

situation). When using more seed points, our approach becomes stable faster, while using too much time for 

delineation (<50% of points situation). All in all, our method achieves the best performance using <8% of points 

as prior. 

Table 12 Performance of our method using different numbers and locations of prior points 

Method Metrics 
<1% of 

points 

<5% of 

points 

<8% of 

points 

<10% of 

points 

<15% of 

points 

<30% of 

points 

<50% of 

points 

Closer to 

shadowed 

areas 

DSC 

(%) 

81.2 + 

8.4 
84.7 + 6.3 86.9 + 4.4 

87.5 + 

3.5 

90.6 + 

2.7 
94.4 + 1.4 97.1 + 0.9 

End-to-

end time 

(h) 

2.1 2 2 2.2 2.3 2.3 2.4 

Testing 

time (s) 
5 4 4 4 3 2 2 

Closer to 

the 

prostate 

contour 

DSC 

(%) 

92.6 + 

4.5 
94.1 + 3.4 96.2 + 2.4 

96.4 + 

2.4 

96.9 + 

1.7 
97.3 + 1.2 98.5 + 0.7 

End-to-

end time 

(h) 

1.9 1.9 2 2.3 2.3 2.4 2.4 

Testing 

time (s) 
4 3 3 3 3 2 2 

Comparison between our method and delineation of professional radiologists: In this work, the GT contours 

of the prostate manually delineated by each professional radiologist were used for comparison. From Table 13, 

we can find that compared with GTs, GT3 spends the least end-to-end time for delineation, while the DSC is the 

lowest. In addition, GT1 achieves the best DSC while spending the longest end-to-end time. Overall, our method 

achieves the highest DSC, and the total spending time is reasonable. 

Table 13 Evaluation between our method and delineation of professional radiologists. 

GTs 1, 2, 3 were manually delineated by three professional radiologists, respectively. 

Method DSC End-to-end time (h) Testing time (s) 

GT1 93.3 + 4.1 2.2 5 

GT2 92.6 + 4.5 1.9 4 

GT3 91.7 + 5.1 1.5 3 

Our method 96.2 + 2.4 2 3 

Comparison with the SOTA models on two datasets: Tables 4–11 in Section 4.4 show comparisons of two 

types of models: deep-learning-based and hybrid-based models. Compared with the deep-learning-based models, 

the hybrid models produce more accurate segmentation results with fewer training slices, indicating that the hybrid 

models comprising the principal curve-based and neural network-based techniques achieve improved performance 

for data fitting. Overall, our A-ProSeg model achieved the best performance. 

Comparison between inter-institutional datasets: According to the data presented in Tables 4–11 in Section 

4.4, all methods performed better on the JPHCM dataset than the TCH dataset. The main reasons underlying this 
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observation can be as follows. First, the datasets were acquired using different equipment and detection parameters, 

and the quality of the two datasets was different. The prostate was more challenging to segment in the TCH dataset 

than the JPHCM dataset, owing to the high gain of the images, which made the prostate boundary blurry. Second, 

the total JPHCM dataset was used for prediction, which is more challenging for all of the models. In addition, one 

randomly selected slice in the JPHCM dataset was used for qualitative external evaluation, as shown in Fig. 9. 

Overall, our A-ProSeg model had the most satisfactory performance of the models tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Qualitative external evaluation on the JPHCM dataset. 

Evaluation of our method on different subregions using 8% of points as a prior: To assess the influence of 

data on different subregions (i.e., apex, mid-gland, and base subregions), we re-collected data from 25 JPHCM 

patients for testing, containing 100 apex slices and 100 base slices. To achieve optimal performance, we used 8% 

prior points for all the methods. The quantitative experimental outcomes of our method are indicated in Table 14, 

and Fig. 10 shows the qualitative effects. Table 14 shows that our method achieves the best performance using 

various metrics (i.e., DSC, Ω, ACC, and HD) on various subregions (i.e., apex, mid-gland, and base areas). 

Table 14 Quantitative evaluation of state-of-the-art models using various subregions. 

Method Apex slice Mid-gland slice Base slice 

U-Net 

DSC (%) 89.9 + 8.4 DSC (%) 89.2 + 9.2 DSC (%) 88.1 + 9.5 

Ω (%) 87.3 + 9.8 Ω (%) 86.1 + 10.4 Ω (%) 84.4 + 10.5 

ACC (%) 89.6 + 8.6 ACC (%) 88.6 + 9.4 ACC (%) 86.9 + 9.9 

HD (mm) 4.5 + 2.2 HD (mm) 4.5 + 2.2 HD (mm) 4.9 + 2.4 

U-Net++ 

DSC (%) 91.5 + 8.2 DSC (%) 90.7 + 9.2 DSC (%) 90.2 + 8.4 

Ω (%) 89.2 + 8.7 Ω (%) 87.9 + 9.8 Ω (%) 86.7 + 9.3 

ACC (%) 91.1 + 7.6 ACC (%) 89.6 + 8.6 ACC (%) 89 + 8.1 

HD (mm) 4.2 + 2 HD (mm) 4.3 + 2.1 HD (mm) 4.5 + 2.1 

UTNet 

DSC (%) 91.1 + 7.5 DSC (%) 90.4 + 8.9 DSC (%) 89.3 + 9.1 

Ω (%) 88.7 + 9.1 Ω (%) 87.4 + 9.7 Ω (%) 87.9 + 9.4 

ACC (%) 90.4 + 8.8 ACC (%) 89.4 + 9 ACC (%) 88.6 + 8.8 

HD (mm) 4.5 + 2.2 HD (mm) 4.5 + 2.2 HD (mm) 4.7 + 2.2 
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H-SegMod 

DSC (%) 94.8 + 2.8 DSC (%) 94.3 + 3.1 DSC (%) 93.8 + 3.3 

Ω (%) 93.9 + 4.3 Ω (%) 93.4 + 4.5 Ω (%) 93.1 + 4.6 

ACC (%) 94.3 + 3.4 ACC (%) 93.9 + 3.8 ACC (%) 93.5 + 3.9 

HD (mm) 2.8 + 1.5 HD (mm) 3.1 + 1.6 HD (mm) 3.5 + 1.6 

Our method 

DSC (%) 96.1 + 2.3 DSC (%) 95.8 + 2.5 DSC (%) 95.4 + 2.6 

Ω (%) 94.1 + 3.4 Ω (%) 94 + 3.5 Ω (%) 93.6 + 3.7 

ACC (%) 95.6 + 2.7 ACC (%) 95.2 + 2.9 ACC (%) 94.8 + 3.2 

HD (mm) 2 + 1.1 HD (mm) 2.1 + 1.2 HD (mm) 2.3 + 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Qualitative visualization of the randomly selected slices at different subregions, including mid-gland, 

apex, and base regions. Every two rows represent the slice and its corresponding zooming display of the region 

of interest. The blue and red curves represent the experimental results and ground truth, respectively. In 

addition, we use the green arrow, pointing to the areas with obvious contrast in experimental results. 

Improvements in our A-ProSeg model, compared with the previous model, H-SegMod: According to the data 

presented in Tables 4–11 in Section 4.4, our method exhibited better performance than our previous model, termed 

H-SegMod [25]. To achieve this goal, several improvements were included. 

1. Based on the H-SegMod model, our method further used a vertex-merge model to handle abnormal 
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vertices to avoid generating a distorted principal curve f. 

2. Unlike the H-SegMod model, our method utilized a memory-based evolution network to reuse the 

optimal parameters in every loop. 

3. We used the CFGD module to replace the gradient descent method [40] used in our previous H-SegMod 

model to ensure good heredity and memory of the NN. 

Future work: Our proposed method achieved some promising results; however, the performance of our 

method could be further enhanced in the future. First, the use of our proposed method can be further investigated 

under different modalities (i.e., CT and MRI) or for different organs (i.e., kidney, bladder, and gallbladder).  

Second, model compression is very important to our cascaded framework, especially for resource-constrained 

systems, and is also necessary for real-time disease diagnosis. Third, we wish to transfer the semi-automatic 

method to a fully automatic method, which would have more significant clinical applications. Fourth, corrupted 

testing data, in which the SNRs were selected at 0.9, 0.85, and 0.8, were used to evaluate the robustness of our A-

ProSeg model. In the future, we wish to test the limits of the robustness of our model using lower SNRs, and add 

a constraint condition to use evaluation metrics (i.e., DSC, Ω, and ACC) greater than 0.9. Fifth, owing to the lack 

of several primary properties, including model robustness, safety, transparency, accountability, non-discrimination 

and fairness, data privacy, and governance, both traditional and explainable artificial intelligence (AI) cannot be 

defined as trustworthy AI [48] [49]. With in-depth interactions between humans and machines, trustworthy AI 

methods will become a research hotspot. In the future, we aim to develop novel techniques to complete the 

transformation of our A-ProSeg model. 

6. Conclusions 

We developed a novel A-ProSeg method for segmentation in TRUS prostate images. Our method contains 

several innovations, including (1) an enhanced principal curve-based method, (2) an enhanced evolution NN, and 

(3) an explainability-guided mathematical function of the prostate ROI contour. To demonstrate the accuracy and 

robustness of our method, quantitative and qualitative evaluations were conducted by comparing our method with 

SOTA segmentation models. Owing to its accurate prostate segmentation, our method holds great promise for 

application in TRUS-based brachytherapy for prostate cancer. 
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Appendix 

1. Traditional BPNN 

Because a three-layer network can express arbitrary nonlinear functions and achieve arbitrarily expected 

precision [50], we used a three-layer architecture involving the input, hidden, and output layers comprised of the 

neurons {I1,…,II}, {H1,..., Hh}, and {O1,…, Ok}, respectively. The forward and backward propagation stages were 

the primary stages of the BPNN; the forward propagation stage was used to calculate the outcome of each layer; 

and the backward propagation stage was used to update the model parameters (i.e., weight). 

During the forward propagation stage, the total error E can be calculated as follows: 
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where Ei represents the square error a and o and eo represent the experimental and expected outputs of the output 

layer, respectively, where eo represents the GT. 

During the back-propagation stage, the weights between the layers were updated based on the gradient 

descent (GD) method [51] as follows: 
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where G indicates the current iteration number, and LR1 and LR2 indicate the learning rates from the input- to the 

hidden- layers and the hidden- to the output- layers, respectively. 

2. Our CFBL 

Recently, research groups have commonly adopted the gradient descent module to minimize the model error 

of the BPNN model error [36]. Owing to the satisfactory memory and heredity of the CFGD technique [39] and 

the favorable performance of L2 regularization to resist overfitting without revising the network structure, and 

enlightened by the work of Chen et al. [52], CFBL was developed in this study. 

2.1 Fractional-order backpropagation learning (FBL) 

The primary contribution of FBL is its use of the CFGD method instead of the GD method [40] to optimize 

the model weight of the backpropagation step. 

According to the theory rule, in the backpropagation stage, the weight vector is optimized, as shown in Eq. 

(19) and Eq. (20): 
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where LR1 and LR2 are within [0, 1], and Caputo (•) indicates the Caputo derivative operator [21] defined as 

follows: 
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where t represents the projection index, α indicates the fractional parameter in the range of [0, 1],  represents 

the gamma formula, F(•) indicates the sum formula [52], and 1 2min{ ( ), ( )}ih hkcp w G w G=   is the calibration 

parameter. 

2.2 L2 regularization 

Owing to the limited training set, FBL is always influenced by the overfitting phenomenon [53], and L2 

regularization is a common technique to resist overfitting without revising the network architecture [50]. Therefore, 
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L2 regularization was introduced into FBL to generate the CFBL. After combing with L2 regularization, the model 

error function EL2 was updated as follows: 

2

2

2
LE E w


= +                                 (23) 

where 
2

w indicates the sum of the squares of total weight vectors, and 0   represents the regularization 

parameter. 

According to Eq. (23), Eq. (19) and Eq. (20) can be updated as follows: 
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3. Initial setting of parameters of our A-ProSeg 

Here is the setting of the initial parameters of our A-ProSeg, shown in Table 15. 

Table 15 Setting of initial parameters of our method. 

 Parameters Initial value 

Global 

setting 

Total number of TCH / JPHCM data 945 slices / 95 patients (393 slices) 

Number of training set 190 patients (675 slices) 

Number of validation slices 20 patients (66 slices) 

Number of testing slices 56 patients (204 slices) 

Number of testing slices 70 patients (300 slices) 

Scale of each slice 600×450 

GCPS 

Vertices cleaning label flag(vi) 1 

Data radius (r) 1 

Optimal weight parameter (λ) 0.13 

DMDE 

Number of solutions (Np) 150 

Mutation factor (F) 0.8 

Crossover factor (CR) 0.6 

Average mutation factor (uF)  1 

Average crossover rate (uCR) 0.9 

Probability of using the mutation operator (pG) 1 

Current iteration number (G) 1 

Max iteration number (GMax) 500 

CFBL 

Number of input neurons (I) 1 

Number of hidden neurons (h) 10 

Number of output neurons (k) 2 

Weight from input to hidden, and hidden to output layer (w1 / w2) 1 

Threshold at the hidden / output neuron (b1 / b2) 1 

Learning rate (LR) 0.4 

Momentum (m) 0.9 

Current iteration number (G) 1 

Max epoch (Gmax) 1,000 
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