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Abstract 

Training Generative Adversarial Networks (GAN) to 
generate high-quality images typically requires large 
datasets. Network pruning during training has recently 
emerged as a significant advancement for data-efficient 
GAN. However, simple and straightforward pruning can lead 
to the risk of losing key information, resulting in suboptimal 
results due to GAN’s competitive dynamics between 
generator (G) and discriminator (D). Addressing this, we 
present RG-GAN, a novel approach that marks the first 
incorporation of dynamic weight regeneration and pruning in 
GAN training to improve the quality of the generated 
samples, even with limited data. Specifically, RG-GAN 
initiates layer-wise dynamic pruning by removing less 
important weights to the quality of the generated images. 
While pruning enhances efficiency, excessive sparsity within 
layers can pose a risk of model collapse. To mitigate this 
issue, RG-GAN applies a dynamic regeneration method to 
reintroduce specific weights when they become important, 
ensuring a balance between sparsity and image quality. 
Though effective, the sparse network achieved through this 
process might eliminate some weights important to the 
combined G and D performance, a crucial aspect for 
achieving stable and effective GAN training. RG-GAN 
addresses this loss of weights by integrating learned sparse 
network weights back into the dense network at the previous 
stage during a follow-up regeneration step. Our results 
consistently demonstrate RG-GAN’s robust performance 
across a variety of scenarios, including different GAN 
architectures, datasets, and degrees of data scarcity, 
reinforcing its value as a generic training methodology. 
Results also show that data augmentation exhibits improved 
performance in conjunction with RG-GAN. Furthermore, 
RG-GAN can achieve fewer parameters without 
compromising, and even enhancing, the quality of the 
generated samples. Code can be found at this link: 
https://github.com/IntellicentAI-Lab/RG-GAN 

Introduction

Generative Adversarial Networks (GAN) (Goodfellow, 

Mirza, et al. 2014; Saxena et al. 2021) have achieved 

remarkable progress in generating high-quality images. 

They  

Figure 1: Comparative results of StyleGAN2 and our 

method (RG-StyleGAN2) on two datasets – Panda of 

256×256 resolution (trained only on 100 images) and 

FFHQ of 1024×1024 resolution (trained only on 1000 

images). While StyleGAN2 shows artifacts with limited 

data, our RG-StyleGAN2 leverages dynamic regeneration 

with pruning to boost image quality, improve data-

efficiency, and reduce computational costs (best viewed in 

color). 

have become essential in various visual tasks, such as 

domain adaptation (Hoffman et al. 2018; Hsu et al. 2020), 

image painting (Cheng et al. 2022), and image-to-image 

translation (Lee et al. 2018; Zhu et al. 2017). However, the 

effectiveness of GAN heavily relies on having large and 

diverse datasets but gathering such data can be time-

intensive and difficult (Kalibhat, Balaji, and Feizi 2021). 

Figure 1 shows StyleGAN2 shows artifacts with limited 
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data. To address the challenges posed by limited data, 

numerous techniques (Karras et al. 2018; Karras, Laine, and 

Aila 2019) have been introduced. Dynamic data 

augmentation (Zhao et al. 2020; Jiang et al. 2021) serves as 

a stabilizing mechanism for GAN training with limited data. 

A recent addition is the lottery ticket hypothesis (LTH) for 

GAN, termed “GAN tickets”, serves as a complementary 

strategy to existing augmentation approaches. LTH shows 

that identified sparse sub-networks, i.e., winning tickets, 

when trained separately can match or even surpass the 

performance of unpruned models. However, identifying 

these GAN tickets (T. Chen et al. 2021; X. Chen et al. 2021) 

necessitates repeated, resource-intensive train-prune-retrain 

cycles, leading to longer training time and increased 

floating-point operations (FLOPs) compared to 

conventional dense GAN training.  

 Recently, pruning during training has been introduced 

(Saxena et al. 2023) to investigate sparse sub-networks for 

data-efficient GAN. However, simple and straightforward 

pruning can lead to risk of losing key information, resulting 

in suboptimal results due to GAN’s competitive dynamics. 

Unlike traditional networks, GAN have an evolving training 

landscape due to adversarial training: weights deemed not 

important early in the training may become vital later, 

potentially being prematurely pruned. Different from 

existing works, we ask a question: 

Can we achieve enhanced stability and efficiency in GAN 

training for high-quality generation, even with limited data, 

by strategically regenerating prematurely pruned weights? 

 Addressing this, in this paper, we propose, RG-GAN, a 

novel approach that marks the first incorporation of dynamic 

weight regeneration and pruning in GAN training to 

improve the quality of the generated samples even with 

limited data. Here, regeneration refers to the process of 

reintroducing or regenerating previously pruned weights in 

the GAN training process. This allows the network to retain 

important structural information that might have been lost 

during the pruning process. This is of utmost need in data-

limited situations as data is not diverse and if key features 

are mistakenly pruned, they can be recovered through 

regeneration. 

 RG-GAN employs layer-wise dynamic pruning of 

weights (J. Liu et al. 2020), which dynamically removes 

weights based on their importance to the quality of the 

generated images. While pruning helps in making the model 

more efficient, it can also create a problem. If too many 

weights are removed, layers may become too sparse, which 

can lead to training instability or, in the worst case, a model 

collapse. To tackle this risk, regeneration allows for the 

recovery of pruned weights within the specific sparse layer 

and makes them part of the training process once again if 

they become important, named recurrent regeneration. By 

regenerating pruned weights, network is able to retain some 

of the original structure, which prevents network from 

collapsing or diverging during training. In this way, the 

model remains effective while also being efficient. 

 While effective and efficient, the sparse network achieved 

through dynamic pruning and recurrent regeneration process 

might eliminate weights that are essential to the 

collaborative performance of Generator (G) and 

Discriminator (D), a balance that is crucial for effective and 

robust GAN training. RG-GAN addresses this loss of 

weights by integrating learned sparse network weights back 

into the dense network at the previous stage during a follow-

up regeneration step, named augmented regeneration. This 

procedure ensures that key network weights are not 

permanently lost, preserving their collective importance to 

the GAN’s performance. Our contributions can be 

summarized as follows: 

• We propose an improved GAN training methodology, 

RG-GAN, that fuses dynamic pruning and regeneration 

during the training process. This innovation facilitates 

the optimization of network structures, resulting in high-

quality image generation, even in data-limited situations. 

• RG-GAN applies layer-wise dynamic pruning, 

considering each weight’s contribution to image quality. 

To prevent model collapse from over-pruning, a 

regeneration step is implemented to reintroduce some 

weights if they gain importance. Furthermore, to 

maintain equilibrium between G and D, an additional 

regeneration step is proposed to reintegrate learned 

sparse network weights back into its prior dense 

network.  

• We conduct extensive experiments to demonstrate the 

four merits of the proposed dynamic pruning and 

regeneration-based GAN training methodology. First, 

our method is robust, working well with a wide range of 

GAN architectures, and datasets of different resolutions 

(32×32, 64×64, 256×256, and 1024×1024) and data 

constraints (ranging from 10% to 100% of training data, 

and many few-shot datasets), reinforcing its value as a 

generic training methodology. Second, generating 

higher-quality samples both in regular and low-data 

regime setups. Third, our method provides an 

alternative to the GAN tickets and progressive growing 

method. Finally, removing unimportant weights through 

pruning also leads to reduced number of parameters. 

Methodology 

Figure 2 illustrates the training process. The key features of 

our training process include, (1) dynamic pruning followed 

by recurrent regeneration; and (2) augmented regeneration.  

 Dynamic Pruning and Recurrent Regeneration (RR). 

As shown in Algorithm 1, we start from a randomly 

initialized dense G and D structures and prune the networks 



by identifying and eliminating less important parameters. 

This dynamic, layer-wise pruning adjusts the pruning 

threshold based on the network’s performance and 

gradients. We represent the parameters of G and D with a 

set Wi, where i ranges from 1 to C, representing the layer in 

the network. Pruning applies a binary mask M to each 

parameter W, giving rise to the sparse structure of the 

network. This is done  

 

Figure 2: Overview of the RG-GAN training methodology. Best viewed in color. 

by defining a trainable pruning threshold vector t ∈ ℝco for 

each parameter matrix W ∈ ℝco×ci, and then using a unit step 

function (S(x)) to calculate the masks based on the 

magnitudes of the parameters and their respective 

thresholds. S(x) maps positive values (active weights > t) to 

1, and non- positive values to 0. Each network layer 

undergoes this process independently, learning individual 

thresholds, allowing dynamic, task-specific sparsity level 

adjustments. 

           Mij = S(|Wij| - ti), for 1 ≤ i ≤ co, 1 ≤ j ≤ ci          (1) 

 S(x) is non-differentiable and unsuitable for gradient 

computation, we use a differentiable approximation 

function, denoted as H(x) (Xu and Cheung 2020). This 

function permits gradient computations for pruned weights, 

enabling their potential reactivation if found beneficial for 

network performance. During the backward pass, all pruned 

weights are reactivated for gradient computation. A masking 

operation multiplies the computed gradients with the mask 

M, generated during the forward pass for the gradient 

update, i.e., no gradient update for reactivated weights in 

this pass. 

                                   �̂�= θ ⊙ Mij                                    (2) 

 In the subsequent forward pass, reactivated weights may 

gain importance based on gradients computed in the 

previous backward pass, leading to their inclusion in the 

training, i.e., recurrent regeneration.  

 This process is cyclical, where weights can be pruned, and 

subsequently reinstated multiple times based on their 

evolving contribution to the network’s performance. This 

dynamic, recurring cycle fosters an adaptable network 

structure capable of self-optimizing for a specific task. 

 We incorporate a sparse regularization term R in the 

training loss to encourage a higher level of sparsity in mask 

M by penalizing low threshold values. For a trainable 

masked layer with a threshold t ∈ ℝco, the regularization 

term is 𝐑 = ∑ 𝑒𝑥𝑝(−𝒕𝑖)
𝑪𝒐
𝑖=1 . The RG-GAN objective is as 

follows: 

min 
θG

max
θD

 𝔼x∽pdata
[fD(D(𝑥, θD⨀MD))] 

+ 𝔼z∽pz
[fG (D(G(𝑧, θG⨀MG)))] +  λ ∑ Ri

C
i=1                  (3) 

 where, θG, MG, θD, and MD represent the weights and 

masks for the parameter space of G and D. ⊙ denotes 

Hadamard product and λ is the penalty term promoting 

sparsity. The notations fD and fG represent the mapping 

functions from which various GAN losses can be derived. 

 RG-GAN employing dynamic pruning and recurrent 

regeneration, yields a sparse yet efficient model of G and D 

networks. This process focuses on preserving important 

weights, enhancing the network’s performance without 

compromising efficiency. Although sparse model 

demonstrates efficiency, it may be restrictive in terms of its 

capacity to represent complex features and maintain 

equilibrium during the training. In order to address this 

potential limitation, we introduce the process of augmented 

regeneration.  

 Augmented Regeneration. The process of augmented 

regeneration involves determining (1) when to apply 

augmented regeneration during the training? and (2) what 

values should be assigned to the regenerated weights in 

order to regenerate a dense neural network of G and D? 



This phase effectively restores all previously pruned 

connections, marking the transition from a pruned to a 

regrown dense network ready for further training. 

Augmented regeneration is applied when current epoch’s 

FID is greater than the weighted average FID value 

calculated over the previous n (n=5 in all experiments) 

epochs. This increase in the FID value indicates a decline in 

the quality of the generated images, suggesting the network 

may have pruned some important connections. In this case, 

pruned weights are reactivated with their old weights which 

provides a common starting point for both G and D. This 

can increase the likelihood of finding the equilibrium point 

again and results in more stable training. 
 

 

Algorithm 1: RG-GAN training 
 

Input: Discriminator 𝐷(𝑥, θ𝐷) with threshold 𝑡𝐷; Generator 

𝐺(𝑧, θ𝐺) with threshold 𝑡𝐺; training epochs 𝐾; sparse 

training mode indicator 𝐼; evaluate frequency 𝑒.  

Output: Converged 𝐺 and 𝐷 
 

 

1. Randomly initialize weights θ𝐺 ∈ 𝑅𝑁 , 𝜃𝐷 ∈ 𝑅𝑁, and 

initialize 𝑡𝐺, 𝑡𝐷 to zero 

2. 𝐼 ← True 

3. for t = 1, 2, …, 𝐾 do 
4.   if 𝐼 then 
5.     {θ̂𝐺 , θ̂𝐷}←Dynamic pruning({𝜃𝐺 , 𝜃𝐷}) by Eq 1 & 2 

6.     Compute loss by Eq (3) with {θ̂𝐺 , θ̂𝐷} 

7.     Update {θ̂𝐺 , θ̂𝐷}, and {𝑡𝐺 , 𝑡𝐷} 

8.     {θ̂𝐺 , θ̂𝐷}←Recurrent regeneration({�̂�𝐺 , �̂�𝐷},{𝑡𝐺 , 𝑡𝐷}) 

9.   else 

10.     Compute loss by Eq 3 with {θ̂𝐺 , θ̂𝐷} & update 

{θ𝐺 , θ𝐷} 

11.   end if 

12.   if mod (t, 𝑒) = 0 then 

13.     Calculate current FID F𝑐, weighted FID 𝐹𝑤  

14.     if F𝑐 > 𝐹𝑤  then 

15.          𝐼 ← False                        #activates dense training 

16.         {θ𝐺 , θ𝐷} ← Augmented regeneration ({�̂�𝐺 , �̂�𝐷}) 

17.     else 

18.         𝐼 ← True     

19.     end if 

20.   end if 

21. end for 

Experiments 

In this section, we extensively evaluate the effectiveness of 

our regeneration-based GAN training for image generation 

and further analyze our method. For 1024×1024 resolution, 

experiments are performed on NVIDIA RTX A6000 GPU 

(48GB), while for remaining resolutions, NVIDIA RTX 

3090 GPU (24GB) is used.  

 Base Models. We apply our method on the unconditional 

ProGAN (Karras et al. 2018), StyleGAN2 (Karras et al. 

2020), SNGAN (Miyato et al. 2018), FastGAN (B. Liu et 

al. 2021), and GAN tickets (T. Chen et al. 2021). We 

experiment with three distinct loss functions for the dcritic 

function namely, WGAN-GP (Gulrajani et al. 2017) used by 

ProGAN, Hinge loss used by SNGAN, and non-saturating 

GAN loss with 1-sided GP (Goodfellow, Pouget-Abadie, et 

al. 2014) used by StyleGAN2. These models were chosen to 

compare with RG-GAN due to their diversity in structures, 

SOTA performance, the utilization of different loss 

functions, and their broad use-cases. This comparison 

allows for a comprehensive evaluation of RG-GAN’s 

adaptability and robustness, across varying architectures 

and loss functions.  

 Datasets: RG-GAN’s effectiveness is exhaustively tested 

through evaluation on a wide spectrum of datasets, encom-

passing various resolutions 32×32, 64×64, 256×256 and 

1024×1024. These datasets range from the commonly used 

CIFAR-10 (32×32) and Tiny-ImageNet (64×64) (on 10%, 

20%, 50% and 100% of training dataset), to specific animal 

face (AF) datasets (256×256)(Si and Zhu 2011) (Dog (389 

images) and Cat (160 images)), 100-shot datasets 

(256×256) (Zhao et al. 2020) (Obama, Panda, and 

Grumpy-Cat), and the varying size of high-resolution 

FFHQ (1024×1024) (Karras, Laine, and Aila 2019). This 

broad testing landscape underscores RG-GAN’s ability to 

perform consistently across different domains and scales.  

 Evaluation Metrics. We use the widely adopted metric, 

Frechet Inception Distance (FID) (Heusel et al. 2017) 

which assesses generated image quality by comparing 

feature statistics from real and generated data, using an 

intermediate layer of a pre-trained Inception network. FID 

is consistent with human judgment, and a low FID indicates 

higher-quality images. We also provide the number of real 

images (#RI)(in Million (M) or in Thousand (K)) (Karras et 

al. 2018; Miyato et al. 2018) and FLOPs to show the 

efficiency of our model. If model A is taking less number of 

RIs and achieving comparable or better results than model 

B, it shows that model A is time-efficient. To compute 

results, we take an average over three runs. 

Image Generation 

In this section, we evaluate our proposed RG-GAN’s 

capability in handling distinct types of diversity present in 

the image datasets: inter-class and intra-class diversity. 

 Evaluation on Inter-Class Diversity. Our RG-GAN 

performance was tested on CIFAR-10 and Tiny-ImageNet 

datasets, which embodies significant inter-class diversity 

due to the presence of multiple distinct categories. Notably, 

our model showed considerable improvements across 

varying data availability levels (100%, 50%, 20%, and 10%) 

when compared to ProGAN and StyleGAN2 models at 

32×32 and 64×64 resolutions. As depicted in Table 1, these 

improvements were particularly notable in only 10% data 



scenarios, with gains of 5.78% and 2.08% in FID on CIFAR-

10, and 7.54% and 18.30% in FID on Tiny-ImageNet for 

RG-ProGAN and RG-StyleGAN2, respectively. This 

improvement can be attributed to our method’s unique 

capability of pruning and regenerating weights dynamically, 

enabling the model to adapt to new data and progressively 

refine its understanding of the task.  

 Evaluation on Intra-Class Diversity. To further assess 

the method’s robustness, we evaluate its performance on the 

FFHQ dataset. This dataset offers considerable intra-class 

diversity, as it comprises various human faces, each with 

distinct features, yet all belonging to the same class-human 

faces. This evaluation provides a test of our model’s 

capacity to handle diversity within a single class at high-

resolution. Furthermore, RG-GAN superior performance on  

Dataset Models 

100% data 50% data 20% data 10% data 

#RI 

(M) ↓ 
FID↓ 

#RI 

(M) ↓ 
FID↓ 

#RI 

(M) ↓ 
FID↓ 

#RI 

(M) ↓ 
FID↓ 

CIFAR-10 

(32×32) 

ProGAN 19.5 26.14 10.5 28.33 7.2 28.64 5.6 30.08 

RG-ProGAN 15.9 24.61 9.4 25.20 5.9 26.50 5.1 28.34 

StyleGAN2 17.7 13.19 6.4 17.22 4.1 29.77 3.2 36.45 

RG-StyleGAN2 11.3 11.97 4.7  16.50 3.3 26.32 1.3 31.69 

Tiny-

ImageNet 

(64×64) 

ProGAN 9.4 40.27 9.6 49.0 8.0 77.86 7.7 83.27 

RG-ProGAN 9.1  37.15 10.4  44.90 7.4 73.55 7.4 76.99 

StyleGAN2 19.2 20.95 14.5  30.03 5.1 65.26 3.2 84.86 

RG-StyleGAN2 16.5 20.07 11.0 26.14 4.6 53.61 2.7 69.33 

Table 1. FID comparison on datasets at 32×32 and 64×64 resolution. FID is calculated using 50k randomly generated 

samples, with the test data (10k) serving as the reference distribution. 

Models 70k 10k 5k 1k 

StyleGAN2 4.35 13.06 21.76 40.24 

RG-StyleGAN2 4.12 11.64 18.33 32.48 

Table 2. FID↓ on FFHQ dataset across varying size at 

1024×1024 resolution. FID is calculated using 50k 

randomly generated samples, with training data (70k) 

serving as the reference distribution.  

FFHQ is evident in the improved FID across all data sizes, 

i.e., 1k, 5k, 10k, and 70k (Table 2). This further attests to the 

effectiveness and robustness of RG-GAN when dealing with 

intra-class diversity and high-resolution data. 

Few-Shot Generation 

Results from Table 3 show that RG-GAN models 

consistently outperform their counterparts (ProGAN and 

StyleGAN2) across different few-shot datasets, indicating 

RG-GAN’s superior image generation capabilities. For 

instance, on the 100-shot Obama dataset, RG-StyleGAN2 

achieved a significantly lower FID (71.09) than StyleGAN2 

(86.67). We further diversify the data through an advanced 

augmentation technique, Differentiable Augmentation (DA) 

(Zhao et al. 2020). This combined with RG-GAN’s ability 

to dynamically adapt network structure through 

regeneration, led to improved performance. It indicates RG-

GAN’s complementary nature with such augmentation 

techniques. 

 We also compare with FastGAN which is recognized for 

its stability and speed in few-shot image synthesis (see Table 

4). Notably, RG-FastGAN manages to produce better image 

quality (FID↓) with fewer FLOPs↓ and #RI shown to D↓, as 

observed across all few-shot datasets. This shows that RG-

GAN can offer a better balance of efficiency and 

performance for few-shot image synthesis at high 

resolutions. 

GAN Tickets 

Recently, Iterative Magnitude Pruning (IMP) (T. Chen et al. 

2021) has demonstrated its effectiveness in identifying 

“lottery tickets” in GAN compared to other pruning methods 

(Han, Mao, and Dally 2015; Z. Liu et al. 2017). We use IMP 

at 20% and 46% pruning ratio on the full CIFAR-10 data on 

SNGAN, i.e., ST_SNGAN@20% and ST_SNGAN@46%, 

respectively. The results are summarized in Table 5. Results 

show that RG-GAN surpasses GAN tickets in terms of FID. 

Results also show that discovering GAN tickets can be time-

consuming (high #RI). Furthermore, RG-GAN consumes 

fewer FLOPs during training as compared to both GAN 

tickets and base SNGAN model.  

 

Models Obama G-Cat Panda 
Animal Face 

Cat Dog 

# of images 100 100 100 160 389 

ProGAN 129.5 135.8 235.8 289.7 259.3 

+RG 108.6 123.2 152.5 279.8 225.3 

StyleGAN2 86.6 51.3 34.2 81.9 157.6 

+RG 71.0 36.3 19.9 71.2 130.3 

+DA 46.3 28.6 12.8 42.8 58.4 

+DA+RG 44.8 27.3 12.2 42.1 56.7 

Table 3. FID on few-shot datasets at 256×256 resolution. 

FID is calculated using 5k randomly generated samples, 

with the training data serving as the reference distribution. 

+RG represents RG-GAN  



 

Dataset Models 
#RI 

(in K)↓ 

FLOPs 

×1015↓ 
FID↓ 

Obama 
FastGAN 360 7.14 40.96 

RG-FastGAN 328 6.34 35.81 

G-Cat 
FastGAN 400 7.93 25.71 

RG-FastGAN 360 6.98 24.31 

Panda FastGAN 400 7.93 10.58 

RG-FastGAN 328 6.34 9.87 

AF-Cat 
FastGAN 400 7.93 35.54 

RG-FastGAN 264 5.07 33.01 

AF-Dog 
FastGAN 720 14.27 53.28 

RG-FastGAN 680 13.32 52.04 

Table 4. FID comparison with state-of-the-art on few-shot 

datasets at 256×256 resolution.  

   
(a) Generator (G) (b) Discriminator (D) (c) Weight Regeneration@RR 

Figure 3: Patterns of pruning in G and D at (a) and (b)), and weight regeneration@RR in G and D at (c). The results also 

show that dynamic regeneration with pruning in RG-GAN enables balanced and simultaneous pruning and regeneration at 

G and D, mitigating the risk of losing key features and maintaining competitive dynamics essential for effective GAN. 

 

Models 
#RI 

(M)↓ 

FLOPs 

(×1017)↓ 
FID↓ 

SNGAN@0% 40.0 1.35 17.74 

ST_SNGAN@20% 92.5 2.60 18.96 

ST_SNGAN@46% 150.0 3.46 18.22 

Re-SNGAN 31.5 1.03 17.87 

Sparse_RG-SNGAN 31.5 1.06 15.64 

Dense_RG-SNGAN 36.0 1.21 17.24 

Table 5. Comparison to GAN tickets for full CIFAR-10. 

 We also compare with Re-GAN (Saxena et al. 2023) to 

see the benefit of regeneration in the GAN training. Results 

show that Sparse_RG-SNGAN (model output is sparse) and 

Dense_RG-SNGAN (model output is dense) outperform the 

Re-GAN. Notably, RG-SNGAN achieved the lowest FID, 

underscoring the effectiveness of incorporating dynamic 

regeneration in the GAN training process. 

Method Analysis 

In-Depth Analysis of Pruning Dynamics. In our analysis, 

we delve into the patterns of pruning within the G and D 

during the training process of RG-GAN as shown in Figure 

3 (a) and (b). By plotting the level of pruning achieved 

during the sparse phase, we aim to better understand how 

our model adapts and evolves throughout training. The 

observed pruning patterns in RG-GAN directly tie back to 

its design principles. As we noted, the early stages of 

training display an increased degree of pruning, a critical 

step towards the shedding of redundant connections and 

maximizing model efficiency. As the training advances, this 

aggressive pruning diminishes, indicating that our method 

appreciates the growing significance of weights to the 

model’s performance. 

 The differential pruning patterns across the layers of G 

and D also underline the model’s adaptability and strategic 

approach. For instance, the higher pruning in G’s early 

layers and D’s later layers reflects a reduction of redundancy 

or less complex feature representations. Pruning across 

layers emphasizes the model’s ability to dynamically assess 

and optimize the distribution of complexity across layers. 

Figure 3 (c) shows that the regeneration activity is more 

volatile and significant in the G, particularly at the 

beginning and in certain subsequent spikes. This could 

imply that the G's structure is being refined more 

aggressively or that it needs more adjustment as it learns to 

generate data. 

 As the training progresses to its end stages, we note that 

all layers of G converge to a similar level of sparsity. This 

demonstrates our design principle of achieving a balanced 

trade-off between model complexity and efficiency. While 



D’s ongoing increase in sparsity signifies model’s 

commitment to continual refinement and efficiency 

enhancement.  

 

 

Figure 4: FID vs Epochs 

These observations not only attest to the success of RG-

GAN model’s design but also offer significant insights for 

the future development of effective yet efficient GAN 

architectures. Figure 4 demonstrates that RG-SNGAN, 

utilizing dynamic pruning and weight regeneration, 

consistently surpasses SNGAN in terms of FID across all 

epochs, and reaches optimal performance faster, thereby 

demonstrating its improved performance and training 

efficiency. 

 Impact of Regeneration. In order to better understand 

the relative contributions of each component of RG-GAN, 

we conduct a study on the CIFAR-10 dataset (see Figure 5). 

We investigate the effects of adding dynamic pruning (DP), 

augmented regeneration (AR), and recurrent regeneration 

(RR) to the base SNGAN model, and further examine the 

impact of these additions when applied to either the G, D, or 

both networks (B) simultaneously. The analysis reveals how 

each component enhances RG-GAN’s overall performance. 

 The addition of RR to DP in SNGAN greatly enhances its 

performance, emphasizing the key role of weight 

regeneration in maintaining learned knowledge and 

boosting model efficacy. By incorporating AR in both G and 

D, we witness a significant boost in performance over using 

DP and RR alone. We set sparsity penalty (λ) 5e-12 for all 

experiments.  

Related Works 

Stabilizing GAN Training. Recent innovations have 

proposed various loss functions (Arjovsky, Chintala, and 

Bottou 2017; Deshpande, Zhang, and Schwing 2018; 

Berthelot, Schumm, and Metz 2017), regularizations 

(Miyato et al. 2018; Zhang et al. 2020), and architectural 

modifications (Radford, Metz, and Chintala 2016; Song et 

al. 2021; Karras et al. 2020) to enhance GAN (Goodfellow, 

Pouget-Abadie, et al. 2014). Among these, state-of-the-art 

models like StyleGAN (Karras, Laine, and Aila 2019; 

Karras et al. 2020) emphasize deeper and wider networks, 

leading to improved generalization but longer training 

durations. Deep models, having more parameters are more 

challenging to train due to weaker gradient flow (Karras et 

al. 2018; B. Liu et al. 2021; Karnewar and Wang 2020). 

Techniques like Progressive GAN (ProGAN) (Karras et al. 

2018) and MSG-GAN (Karnewar and Wang 2020) address 

these challenges. However, with limited data, these models 

face degraded performance and higher resource demands. 

While dynamic data augmentation (Zhao et al. 2020; Jiang 

et al. 2021) has been introduced to stabilize training, our 

approach uniquely focuses on a dynamic network 

architecture to enhance both stability and efficiency. 

Additionally, while sparsity in training has shown promise, 

there is a risk of losing of key features. 

 Lottery Ticket Hypothesis (LTH). Recent findings 

identified lottery tickets or winning tickets (Frankle and 

Carbin 2019) in GAN (X. Chen et al. 2021; Kalibhat, Balaji,  

 

Figure 5: Impact of Regeneration 

and Feizi 2021) that can be independently trained to match 

or even outperform dense networks. Some efforts scaled 

LTH (T. Chen et al. 2021), but these do not address the 

premature pruning of essential connections. Our method, in 

contrast, can restore these prematurely pruned connections, 

preserving model capacity. On the other hand, locating and 

training an LTH consumes significantly more FLOPs than 

training a dense one (Saxena et al. 2023). With the 

increasing complexity of state-of-the-art models like 

StyleGAN2, such resource demands could lead to financial 

and environmental challenges (Schwartz et al. 2020).  

 While these methods offer distinct and complementary 

approaches to ours, our achievements in high-quality image 

generation at reduced computational costs pave the way for 



us to train larger or more complex models for further 

enhancements in image quality.  

Conclusion 

This paper presents RG-GAN, a novel methodology 

introducing dynamic weight regeneration with pruning, as a 

new perspective to improve GAN training, particularly 

under limited data condition. Our extensive experiments 

confirm RG-GAN’s robustness, improved sample quality, 

and efficiency, outperforming existing approaches. This 

success drives our motivation to train even larger or more 

complex models for further quality advancements. While 

this work offers a practical approach using weight 

regeneration, future work could focus on the development 

of a theoretical framework around the concept of 

regeneration in GAN. This could offer new insights and 

guide further improvements in the methodology. RG-GAN 

could be extended to multimodal GAN to handle more 

complex real-world scenarios in a more efficient and stable 

manner.  
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