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Abstract — There are two main types of domain name-generating 

algorithms (DGAs) – random-looking and word-looking. While 

existing methods can effectively distinguish between the two types 

of DGAs with high accuracy, classifying different types of word-

looking DGAs has proven to be challenging, as they are often 

mistaken for legitimate domains. To address this issue, previous 

methods used character encoding with long short-term memory 

networks (LSTM) or convolutional neural networks (CNN) to 

model the character distribution of different word-looking DGAs. 

Since most word-looking DGAs are constructed using various 

dictionaries, we propose using word encoding instead of character 

encoding. Word encoding can provide a better characterization as 

it is based on the usage of different words in the dictionaries and 

their associations. Experimental results show that the 

classification accuracy for word-based DGAs increases by more 

than 7% (from 87% to 94%) using word encoding as compared to 

character encoding.  

I. INTRODUCTION

Domain name generation algorithms (DGAs) are techniques to 

generate a large number of domain names to facilitate the 

establishment of covert communication between bots and the 

command and control (C&C) server. By constantly changing 

domain names in communication, it makes the tracking and 

identification of malicious network traffic difficult. In this way, 

DGAs help to prevent the takedown of the C&C servers [1]. 

 There are two main types of DGA: random-looking and word-

looking [2-3]. Random-looking DGAs are produced by 

concatenating random strings of characters. In contrast, the 

word-looking DGAs are generated from concatenating words 

taken from a dictionary. Various methods have been proposed 

for detecting and classifying DGAs. Detection means to 

determine if the domain names are legitimate or generated by 

the DGA-based botnets, while classification identifies which 

method has been used to generate the DGA. Hence detection is 

a binary problem while classification is a multi-class problem. 

As reported in [4], the accuracy of the binary detection and 

multi-class classifications are over 90% and around 70% 

respectively using machine learning-based (ML) algorithms. 

Thus, it is much more difficult to classify the DGAs than to 

detect these domains from legitimate domains [5-7]. 

 Various methods, including ML and deep learning-based 

(DL) approaches, have been proposed for detecting and

classifying these domain names. In ML approaches, features

about character distributions in the domain names have been

used. Examples include vowels and consonant ratios or the

numerals and English characters ratios [8]. Most of the

extracted features were primarily targeted at random-looking

domains and are effective in characterizing the randomness in

the domain names. It, however, resulted in inferior

performance in characterizing word-looking domain names [6].

In contrast, existing DL methods explore character encoding to

characterize the character distribution and association within

the domain names. Thus, DL methods are more effective in

characterizing word-looking domain names than ML methods.

Despite that, word-looking DGAs are produced by using

different dictionaries. Instead of using character encoding,

word-level encoding can better characterize the nature of the

words used in the dictionary and their associations. We thus

explore the use of word encoding and DL techniques for word-

looking DGA classification.

  This paper is organized as follows. First, a comparative study 

of existing methods is given in Section II. Then, our proposed 

method is described in Section III. Experimental results are 

given in Section IV. Finally, we conclude our work in Section 

V. 

II. STUDY OF EXISTING METHODS

Domain name generation algorithms (DGAs) detection and 

classification are important problems in network security, as 
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these algorithms generate a large number of domain names to 

facilitate covert communication between bots and command 

and control servers. Table 1 illustrates the differences between 

the DGA detection and the classification problems. In detection, 

we only target to distinguish the legitimate and the DGAs. 

However, in classification, we want to know which algorithm 

has been used to generate the DGAs too.  

A way to detect DGAs is to check if the domain names can 

be resolved into IP addresses successfully. This is based on the 

fact that only a small number of the generated domain names 

are registered. If it cannot be resolved, an error signal called 

NXDomain response will be received. Thus, one approach to 

DGA detection is to analyze network traffic characteristics and 

detect the error signal returned through network 

communication. However, the network traffic analysis can 

only detect DGAs, but not classify them. Classifying DGAs 

requires analyzing the patterns of the algorithmically generated 

domain names. To address this issue, both ML and DL methods 

have been used for DGA classification [5-12].  

Feature extraction is a crucial step in ML methods. Features 

representing expert knowledge are extracted from the domain 

names to characterize the nature of domain names. Common 

types of features include statistical features, information theory 

features, and lexicographic features. For example, features like 

vowel-consonant ratio, TF-IDF features, n-gram distributions, 

the longest consecutive consonant/number/vowel sequences, 

pronounceability score, and entropy [9, 13-14] have been used 

to characterize the nature of the algorithmically generated 

domain names. While these features are somewhat effective in 

characterizing random-looking DGAs, accurately classifying 

word-looking DGAs remains a significant challenge. As 

reported in [4], the average F1 scores for classifying 11 word-

looking DGAs are 0.54, 0.57, and 0.68 for kNN, decision tree, 

and random forest respectively. This suggests that the extracted 

features are not sufficient for characterizing different DGA 

classes. This is consistent with findings from other authors [6]. 

One main reason for this is that words in word-looking DGAs 

of different dictionaries are indeed valid English words. Thus, 

extracted features across different dictionaries would likely be 

similar. 

DL has also been used for DGA classification. Unlike ML 

approaches, DL does not require feature extraction. Instead, the 

domain name is treated as a string of characters. With the use 

of a sufficient number of examples, a learning model is trained 

to distinguish and characterize the DGAs. As domain names 

are made up of characters, character encoding is commonly 

used to convert the domain names to numerical sequences. This 

process involves breaking down the domain name into 

individual characters and representing these characters as 

numerical values. 

Convolutional neural networks (CNN) and long short-term 

memory networks (LSTM) are popular DL models [15-17]. 

LSTM is often used for acquiring patterns in long sequences [7, 

10-11, 18]. CNN, on the other hand, uses a filter kernel with 

varied sizes to characterize sequential relationships [19-20]. 

Previous studies have shown that combining CNN and LSTM 

can improve detection and classification performance [6, 21]. 

According to a study in [5], the average F1 scores for 
classifying eleven word-looking DGAs are 0.87 and 0.90 for 

character-based Bi-LSTM and CNN-Bi-LSTM respectively. 

Comparing the performance of ML and DL approaches, we can 

see that the DL approach has shown a significant improvement 

in accurately classifying word-looking DGAs. It is promising 

to investigate whether the deep learning techniques can be 

improved further to classify the word-looking DGAs. 

 

Domain name Detection (Binary) Classification (multi-

class) 

Class Label Class Label 

Polyu Legit 0 legit 0 

Pointreply DGA 1 suppobox2 1 

Duringsuppose DGA 1 pizd 2 

Somewhatlemon DGA 1 nymaim 3 

Table 1: DGA detection and classification problems. 

III. PROPOSED METHODS 

In existing character-based DL models for DGA 

classification, characteristics among the connecting characters 

are considered. However, in word-looking DGAs, words from 

different dictionaries are concatenated. Table 2 shows details 

regarding the dictionary used in constructing word-looking 

DGAs. As all dictionaries contain valid English words, 

character-based encoding may not be effective in 

distinguishing the English words in different dictionaries.  

To better capture the linguistic and semantic structure [22, 

23] of the word-looking DGAs, a word-based encoding method 

can be used. In this section, we discuss a DL method for 

characterizing the word relationships in word-looking DGAs. 

In particular, we consider both CNN and LSTM models. These 

models can learn to identify patterns and relationships among 

words in a way that is not possible with character-based 

encoding. In this way, the word-looking DGA classification 

can be done more accurately. 



To extract the relevant parts of domain names from URLs, 

we followed the procedures outlined in [20]. If the URL 

contains a second-level domain name, we extract the second-

level part. If the URL contains a third-level domain name, we 

check if the second-level domain name is from a popular 

dynamic domain name service such as “no-ip.com” or 

“ddns.net”. If it is, we extract the third-level domain part. If the 

second-level domain name is not from a popular dynamic 

domain name service, we extract the longer string consisting of 

the second-level and the third-level domain names. This 

procedure helps extract the most relevant parts of the domain 

name while avoiding any unnecessary information. 

 

DGAs Dictionaries 

gozi  gpl: 4379 words,  luther: 1537 words  

nasa: 558 words,  rfc: 2460 words 

matsnu Use two dictionaries: verb dictionary (878 

words) and noun dictionary (1008 words) 

nymaim Use two dictionaries: the first has 2450 

words and the second has 4387 words 

pizd The dictionary contains 384 words 

rovnix Uses the US Declaration of Independence as 

the dictionary 

suppobox The dictionary in all versions contains 384 

words 

Table 2: Dictionaries used in different DGAs 

 

The next step in processing the domain names is to 

decompose them into words, which can help capture the 

semantic meaning of the domains. For example, the domains 

“preparetwenty” and “coveredpublicandfrom” can be 

decomposed into {“prepare”, “twenty”} and {“covered”, 

“public”, “and”, “from”} respectively. These words are valid 

English words that carry meaning and can provide important 

information for DGA classification. The subsequent DL model 

will be trained to characterize the association among the 

connecting words. Both CNN and Bi-LSTM will be used for 

DGA classifications. CNNs are effective at learning local 

features and patterns in the data [15-17], while Bi-LSTM can 

capture sequence dependencies and relationships among the 

words [22-23]. 

The proposed CNN and Bi-LSTM structure for DGA 

classification consists of an embedding layer with an M number 

of units, which maps each word to a vector representation. For 

CNN, the convolutional layer has 128 filters and a kernel size 

of 2, which applies the filter to the word embeddings to extract 

local features. The Bi-LSTM layer consists of 200 units to 

capture long-term dependencies and relationships among the 

words in the domain names. The output of the convolutional 

layer or the Bi-LSTM layer is then passed through three fully 

connected layers with 256, 128, and 128 units respectively, 

before being fed into the output layer with L units, 

corresponding to the L number of classes in the DGA 

classification.  

IV. EXPERIMENTAL RESULTS 

UMUDGA is a public dataset designed for detecting and 

profiling algorithmically generated domain names in DGA-

based botnet detection [4]. It contains over 30 million domain 

names from 50 DGA classes. In addition to the domain names, 

UMUDGA contains also basic statistical features, n-gram 

features, and NLP (natural language processing) features. In 

our study, we focus on the word-looking DGAs classification. 

To train and evaluate our proposed models, the dataset contains 

10,000 legitimate domain names and 10,000 algorithmically 

generated domains for each of the word-looking DGA classes. 

This dataset allows us to test the effectiveness of our models in 

classifying different types of word-looking DGAs. 

To evaluate and compare the performance, the precision, 

recall, and F1 scores are used. Precision is defined as the ratio 

between TP and (TP+FP) where TP is the number of samples 

that are in class A and are identified as A, and FP is the number 

of samples that are not in class A but are identified as A. Recall 

is the ratio between TP and (TP+FN) where FN is the number 

of samples that are in class A but is identified as not in A. In a 

perfect classification, both precision and recall should be equal 

to 1. In practice, increasing precision may decrease recall. The 

F1 score is the weighted average of precision and recall.    

Table 3 shows the average F1 scores of the proposed CNN 

and Bi-LSTM models. We can see that both models achieved 

an average F1 score of 0.94 for DGA classifications. We 

compared our proposed models with both ML models and other 

character-based DL models. For DL models such as CNN 

(character), LSTM.MI [24], and Bi-LSTM [5], their average F1 

scores are smaller than 0.88.  Hence, our proposed models can 

achieve an increase of at least a 7.7% improvement in the F1 

score. The improvement was much larger as compared to the 

ML models such as RF, DT, and kNN. Hence word encoding 

is beneficial for word-looking DGAs classification. 

Table 4 and Table 5 show respectively the percentage 

improvement in the F1 scores of the proposed CNN and Bi-

LSTM models against different ML and DL models for 

different DGAs. It clearly shows that deep learning models can 

always outperform machine learning models. Compared to 



other character-based DL models, our proposed word encoding 

CNN and Bi-LSTM improve the F1 scores for all classes.    

Besides, F1 scores, precision, and recall are also considered. 

Fig. 1 and Fig. 2 show respectively the boxplot of the precision 

and recall achieved by different models. Consistent with the F1 

scores results, DL models have better performance than the ML 

models. In addition, word encoding methods perform better 

than character encoding methods. 

 

 F1 score 

Legitimate DGAs 

Proposed (CNN) 0.805 0.936 

Proposed (Bi-LSTM) 0.773 0.944 

CNN (character) 0.711 0.854 

LSTM.MI [24, 5] 0.711 0.866 

Bi-LSTM [5] 0.721 0.874 

Random Forest (RF) [4] 0.662 0.682 

Decision Tree (DT) [4] 0.582 0.572 

kNN [4] 0.484 0.540 

Table 3: The average F1 scores for the proposed CNN and 

Bi-LSTM models in comparison with other character-based 

deep learning models and machine learning models. 

 

 kNN 

[4] 

DT 

[4] 

RF 

[4] 

CNN 

(char) 

LSTM 

.MI 

[24, 5] 

Bi-

LSTM 

[5] 

legit 67 38 21 13 13 11 

goziGpl 89 41 9.2 30 19 12 

goziLuther 83 94 42 6.7 5.8 2.4 

goziNasa 143 150 88 18 15 7.4 

goziRfc 183 158 98 23 21 14 

matsnu 20 20 7.9 6.7 6.1 8.0 

nymaim 130 64 29 14 11 12 

pizd 87 98 65 4.2 4.4 7.7 

rovnix 92 68 45 12 9.6 6.8 

suppobox1 102 106 70 2.1 3.0 6.5 

suppobox2 24 24 18 2.1 3.1 4.2 

suppobox3 23 20 11 1.0 0.6 0.7 

Average 87 73 42 11 9.2 7.7 

 Table 4: The percentage improvement in the F1 score of 

the proposed CNN model against different ML and DL models 

for both legitimate and DGA classes. 

   

 

 kNN 

[4] 

DT 

[4] 

RF 

[4] 

CNN 

(char) 

LSTM 

.MI 

[24, 5] 

Bi-

LSTM 

[5] 

legit 60 33 17 8.5 8.3 6.8 

goziGpl 93 44 12 33 21 15 

goziLuther 83 94 42 6.7 5.8 2.4 

goziNasa 158 156 92 21 17 9.8 

goziRfc 186 160 100 25 23 15 

matsnu 20 20 7.9 6.7 6.1 8.0 

nymaim 133 65 30 15 12 13 

pizd 87 98 65 4.2 4.4 7.7 

rovnix 92 68 45 12 9.6 6.8 

suppobox1 106 111 74 4.2 5.1 8.7 

suppobox2 24 24 18 2.1 3.1 4.2 

suppobox3 23 21 11 1.0 0.6 0.7 

average 88 74 43 12 9.7 8.2 

Table 5: The percentage improvement in the F1 score of the 

proposed Bi-LSTM model against different ML and DL 

models for both legitimate and DGA classes. 

     (a) 

     (b) 

Fig 1: Boxplots of the precision achieved by (a) ML models 

such as kNN, DT, and RF, and (b) DL models such as 

character encoding CNN, LSTM.MI, Bi-LSTM, the 

proposed CNN model, and the proposed Bi-LSTM model.   



 

(a) 

(b) 

Fig 2: Boxplots of the recall achieved by (a) ML models such 

as kNN, DT, and RF, and (b) DL models such as character 

encoding CNN, LSTM.MI, Bi-LSTM, the proposed CNN 

model, and the proposed Bi-LSTM model. 

 

V. CONCLUSIONS 

Existing state-of-the-art DGA classifications are ineffective 

at classifying word-looking DGAs. It is because word-looking 

DGAs are constructed by concatenating words from 

dictionaries. Features used in machine learning models are not 

designed to identify such patterns. The character encoding 

adopted by existing deep learning models achieves a better 

performance. To further improve the performance, the word 

encoding technique is applied to study the association of 

different words in the domain names. Experimental results 

show that the proposed word encoding-based CNN and Bi-

LSTM models achieve better classification performance than 

both the machine learning models and character encoding-

based deep learning models. 
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