
Word encoding for word-looking DGA-based Botnet
classification

Sea Ran Cleon Liew* and Ngai Fong Law
* University of Waterloo, Canada

E-mail: srcliew@uwaterloo.ca

The Hong Kong Polytechnic University, Hong Kong

E-mail: ennflaw@polyu.edu.hk

Abstract — There are two main types of domain name-generating

algorithms (DGAs) – random-looking and word-looking. While

existing methods can effectively distinguish between the two types

of DGAs with high accuracy, classifying different types of word-

looking DGAs has proven to be challenging, as they are often

mistaken for legitimate domains. To address this issue, previous

methods used character encoding with long short-term memory

networks (LSTM) or convolutional neural networks (CNN) to

model the character distribution of different word-looking DGAs.

Since most word-looking DGAs are constructed using various

dictionaries, we propose using word encoding instead of character

encoding. Word encoding can provide a better characterization as

it is based on the usage of different words in the dictionaries and

their associations. Experimental results show that the

classification accuracy for word-based DGAs increases by more

than 7% (from 87% to 94%) using word encoding as compared to

character encoding.

I. INTRODUCTION

Domain name generation algorithms (DGAs) are techniques to

generate a large number of domain names to facilitate the

establishment of covert communication between bots and the

command and control (C&C) server. By constantly changing

domain names in communication, it makes the tracking and

identification of malicious network traffic difficult. In this way,

DGAs help to prevent the takedown of the C&C servers [1].

 There are two main types of DGA: random-looking and word-

looking [2-3]. Random-looking DGAs are produced by

concatenating random strings of characters. In contrast, the

word-looking DGAs are generated from concatenating words

taken from a dictionary. Various methods have been proposed

for detecting and classifying DGAs. Detection means to

determine if the domain names are legitimate or generated by

the DGA-based botnets, while classification identifies which

method has been used to generate the DGA. Hence detection is

a binary problem while classification is a multi-class problem.

As reported in [4], the accuracy of the binary detection and

multi-class classifications are over 90% and around 70%

respectively using machine learning-based (ML) algorithms.

Thus, it is much more difficult to classify the DGAs than to

detect these domains from legitimate domains [5-7].

 Various methods, including ML and deep learning-based

(DL) approaches, have been proposed for detecting and

classifying these domain names. In ML approaches, features

about character distributions in the domain names have been

used. Examples include vowels and consonant ratios or the

numerals and English characters ratios [8]. Most of the

extracted features were primarily targeted at random-looking

domains and are effective in characterizing the randomness in

the domain names. It, however, resulted in inferior

performance in characterizing word-looking domain names [6].

In contrast, existing DL methods explore character encoding to

characterize the character distribution and association within

the domain names. Thus, DL methods are more effective in

characterizing word-looking domain names than ML methods.

Despite that, word-looking DGAs are produced by using

different dictionaries. Instead of using character encoding,

word-level encoding can better characterize the nature of the

words used in the dictionary and their associations. We thus

explore the use of word encoding and DL techniques for word-

looking DGA classification.

 This paper is organized as follows. First, a comparative study

of existing methods is given in Section II. Then, our proposed

method is described in Section III. Experimental results are

given in Section IV. Finally, we conclude our work in Section

V.

II. STUDY OF EXISTING METHODS

Domain name generation algorithms (DGAs) detection and

classification are important problems in network security, as

This is the Pre-Published Version.
The following publication S. R. C. Liew and N. F. Law, "Word encoding for word-looking DGA-based Botnet classification," 2023 Asia Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Taipei, Taiwan, 2023, pp. 1816-1821 is available
at https://doi.org/10.1109/APSIPAASC58517.2023.10317505.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

these algorithms generate a large number of domain names to

facilitate covert communication between bots and command

and control servers. Table 1 illustrates the differences between

the DGA detection and the classification problems. In detection,

we only target to distinguish the legitimate and the DGAs.

However, in classification, we want to know which algorithm

has been used to generate the DGAs too.

A way to detect DGAs is to check if the domain names can

be resolved into IP addresses successfully. This is based on the

fact that only a small number of the generated domain names

are registered. If it cannot be resolved, an error signal called

NXDomain response will be received. Thus, one approach to

DGA detection is to analyze network traffic characteristics and

detect the error signal returned through network

communication. However, the network traffic analysis can

only detect DGAs, but not classify them. Classifying DGAs

requires analyzing the patterns of the algorithmically generated

domain names. To address this issue, both ML and DL methods

have been used for DGA classification [5-12].

Feature extraction is a crucial step in ML methods. Features

representing expert knowledge are extracted from the domain

names to characterize the nature of domain names. Common

types of features include statistical features, information theory

features, and lexicographic features. For example, features like

vowel-consonant ratio, TF-IDF features, n-gram distributions,

the longest consecutive consonant/number/vowel sequences,

pronounceability score, and entropy [9, 13-14] have been used

to characterize the nature of the algorithmically generated

domain names. While these features are somewhat effective in

characterizing random-looking DGAs, accurately classifying

word-looking DGAs remains a significant challenge. As

reported in [4], the average F1 scores for classifying 11 word-

looking DGAs are 0.54, 0.57, and 0.68 for kNN, decision tree,

and random forest respectively. This suggests that the extracted

features are not sufficient for characterizing different DGA

classes. This is consistent with findings from other authors [6].

One main reason for this is that words in word-looking DGAs

of different dictionaries are indeed valid English words. Thus,

extracted features across different dictionaries would likely be

similar.

DL has also been used for DGA classification. Unlike ML

approaches, DL does not require feature extraction. Instead, the

domain name is treated as a string of characters. With the use

of a sufficient number of examples, a learning model is trained

to distinguish and characterize the DGAs. As domain names

are made up of characters, character encoding is commonly

used to convert the domain names to numerical sequences. This

process involves breaking down the domain name into

individual characters and representing these characters as

numerical values.

Convolutional neural networks (CNN) and long short-term

memory networks (LSTM) are popular DL models [15-17].

LSTM is often used for acquiring patterns in long sequences [7,

10-11, 18]. CNN, on the other hand, uses a filter kernel with

varied sizes to characterize sequential relationships [19-20].

Previous studies have shown that combining CNN and LSTM

can improve detection and classification performance [6, 21].

According to a study in [5], the average F1 scores for
classifying eleven word-looking DGAs are 0.87 and 0.90 for

character-based Bi-LSTM and CNN-Bi-LSTM respectively.

Comparing the performance of ML and DL approaches, we can

see that the DL approach has shown a significant improvement

in accurately classifying word-looking DGAs. It is promising

to investigate whether the deep learning techniques can be

improved further to classify the word-looking DGAs.

Domain name Detection (Binary) Classification (multi-

class)

Class Label Class Label

Polyu Legit 0 legit 0

Pointreply DGA 1 suppobox2 1

Duringsuppose DGA 1 pizd 2

Somewhatlemon DGA 1 nymaim 3

Table 1: DGA detection and classification problems.

III. PROPOSED METHODS

In existing character-based DL models for DGA

classification, characteristics among the connecting characters

are considered. However, in word-looking DGAs, words from

different dictionaries are concatenated. Table 2 shows details

regarding the dictionary used in constructing word-looking

DGAs. As all dictionaries contain valid English words,

character-based encoding may not be effective in

distinguishing the English words in different dictionaries.

To better capture the linguistic and semantic structure [22,

23] of the word-looking DGAs, a word-based encoding method

can be used. In this section, we discuss a DL method for

characterizing the word relationships in word-looking DGAs.

In particular, we consider both CNN and LSTM models. These

models can learn to identify patterns and relationships among

words in a way that is not possible with character-based

encoding. In this way, the word-looking DGA classification

can be done more accurately.

To extract the relevant parts of domain names from URLs,

we followed the procedures outlined in [20]. If the URL

contains a second-level domain name, we extract the second-

level part. If the URL contains a third-level domain name, we

check if the second-level domain name is from a popular

dynamic domain name service such as “no-ip.com” or

“ddns.net”. If it is, we extract the third-level domain part. If the

second-level domain name is not from a popular dynamic

domain name service, we extract the longer string consisting of

the second-level and the third-level domain names. This

procedure helps extract the most relevant parts of the domain

name while avoiding any unnecessary information.

DGAs Dictionaries

gozi gpl: 4379 words, luther: 1537 words

nasa: 558 words, rfc: 2460 words

matsnu Use two dictionaries: verb dictionary (878

words) and noun dictionary (1008 words)

nymaim Use two dictionaries: the first has 2450

words and the second has 4387 words

pizd The dictionary contains 384 words

rovnix Uses the US Declaration of Independence as

the dictionary

suppobox The dictionary in all versions contains 384

words

Table 2: Dictionaries used in different DGAs

The next step in processing the domain names is to

decompose them into words, which can help capture the

semantic meaning of the domains. For example, the domains

“preparetwenty” and “coveredpublicandfrom” can be

decomposed into {“prepare”, “twenty”} and {“covered”,

“public”, “and”, “from”} respectively. These words are valid

English words that carry meaning and can provide important

information for DGA classification. The subsequent DL model

will be trained to characterize the association among the

connecting words. Both CNN and Bi-LSTM will be used for

DGA classifications. CNNs are effective at learning local

features and patterns in the data [15-17], while Bi-LSTM can

capture sequence dependencies and relationships among the

words [22-23].

The proposed CNN and Bi-LSTM structure for DGA

classification consists of an embedding layer with an M number

of units, which maps each word to a vector representation. For

CNN, the convolutional layer has 128 filters and a kernel size

of 2, which applies the filter to the word embeddings to extract

local features. The Bi-LSTM layer consists of 200 units to

capture long-term dependencies and relationships among the

words in the domain names. The output of the convolutional

layer or the Bi-LSTM layer is then passed through three fully

connected layers with 256, 128, and 128 units respectively,

before being fed into the output layer with L units,

corresponding to the L number of classes in the DGA

classification.

IV. EXPERIMENTAL RESULTS

UMUDGA is a public dataset designed for detecting and

profiling algorithmically generated domain names in DGA-

based botnet detection [4]. It contains over 30 million domain

names from 50 DGA classes. In addition to the domain names,

UMUDGA contains also basic statistical features, n-gram

features, and NLP (natural language processing) features. In

our study, we focus on the word-looking DGAs classification.

To train and evaluate our proposed models, the dataset contains

10,000 legitimate domain names and 10,000 algorithmically

generated domains for each of the word-looking DGA classes.

This dataset allows us to test the effectiveness of our models in

classifying different types of word-looking DGAs.

To evaluate and compare the performance, the precision,

recall, and F1 scores are used. Precision is defined as the ratio

between TP and (TP+FP) where TP is the number of samples

that are in class A and are identified as A, and FP is the number

of samples that are not in class A but are identified as A. Recall

is the ratio between TP and (TP+FN) where FN is the number

of samples that are in class A but is identified as not in A. In a

perfect classification, both precision and recall should be equal

to 1. In practice, increasing precision may decrease recall. The

F1 score is the weighted average of precision and recall.

Table 3 shows the average F1 scores of the proposed CNN

and Bi-LSTM models. We can see that both models achieved

an average F1 score of 0.94 for DGA classifications. We

compared our proposed models with both ML models and other

character-based DL models. For DL models such as CNN

(character), LSTM.MI [24], and Bi-LSTM [5], their average F1

scores are smaller than 0.88. Hence, our proposed models can

achieve an increase of at least a 7.7% improvement in the F1

score. The improvement was much larger as compared to the

ML models such as RF, DT, and kNN. Hence word encoding

is beneficial for word-looking DGAs classification.

Table 4 and Table 5 show respectively the percentage

improvement in the F1 scores of the proposed CNN and Bi-

LSTM models against different ML and DL models for

different DGAs. It clearly shows that deep learning models can

always outperform machine learning models. Compared to

other character-based DL models, our proposed word encoding

CNN and Bi-LSTM improve the F1 scores for all classes.

Besides, F1 scores, precision, and recall are also considered.

Fig. 1 and Fig. 2 show respectively the boxplot of the precision

and recall achieved by different models. Consistent with the F1

scores results, DL models have better performance than the ML

models. In addition, word encoding methods perform better

than character encoding methods.

 F1 score

Legitimate DGAs

Proposed (CNN) 0.805 0.936

Proposed (Bi-LSTM) 0.773 0.944

CNN (character) 0.711 0.854

LSTM.MI [24, 5] 0.711 0.866

Bi-LSTM [5] 0.721 0.874

Random Forest (RF) [4] 0.662 0.682

Decision Tree (DT) [4] 0.582 0.572

kNN [4] 0.484 0.540

Table 3: The average F1 scores for the proposed CNN and

Bi-LSTM models in comparison with other character-based

deep learning models and machine learning models.

 kNN

[4]

DT

[4]

RF

[4]

CNN

(char)

LSTM

.MI

[24, 5]

Bi-

LSTM

[5]

legit 67 38 21 13 13 11

goziGpl 89 41 9.2 30 19 12

goziLuther 83 94 42 6.7 5.8 2.4

goziNasa 143 150 88 18 15 7.4

goziRfc 183 158 98 23 21 14

matsnu 20 20 7.9 6.7 6.1 8.0

nymaim 130 64 29 14 11 12

pizd 87 98 65 4.2 4.4 7.7

rovnix 92 68 45 12 9.6 6.8

suppobox1 102 106 70 2.1 3.0 6.5

suppobox2 24 24 18 2.1 3.1 4.2

suppobox3 23 20 11 1.0 0.6 0.7

Average 87 73 42 11 9.2 7.7

 Table 4: The percentage improvement in the F1 score of

the proposed CNN model against different ML and DL models

for both legitimate and DGA classes.

 kNN

[4]

DT

[4]

RF

[4]

CNN

(char)

LSTM

.MI

[24, 5]

Bi-

LSTM

[5]

legit 60 33 17 8.5 8.3 6.8

goziGpl 93 44 12 33 21 15

goziLuther 83 94 42 6.7 5.8 2.4

goziNasa 158 156 92 21 17 9.8

goziRfc 186 160 100 25 23 15

matsnu 20 20 7.9 6.7 6.1 8.0

nymaim 133 65 30 15 12 13

pizd 87 98 65 4.2 4.4 7.7

rovnix 92 68 45 12 9.6 6.8

suppobox1 106 111 74 4.2 5.1 8.7

suppobox2 24 24 18 2.1 3.1 4.2

suppobox3 23 21 11 1.0 0.6 0.7

average 88 74 43 12 9.7 8.2

Table 5: The percentage improvement in the F1 score of the

proposed Bi-LSTM model against different ML and DL

models for both legitimate and DGA classes.

 (a)

 (b)

Fig 1: Boxplots of the precision achieved by (a) ML models

such as kNN, DT, and RF, and (b) DL models such as

character encoding CNN, LSTM.MI, Bi-LSTM, the

proposed CNN model, and the proposed Bi-LSTM model.

(a)

(b)

Fig 2: Boxplots of the recall achieved by (a) ML models such

as kNN, DT, and RF, and (b) DL models such as character

encoding CNN, LSTM.MI, Bi-LSTM, the proposed CNN

model, and the proposed Bi-LSTM model.

V. CONCLUSIONS

Existing state-of-the-art DGA classifications are ineffective

at classifying word-looking DGAs. It is because word-looking

DGAs are constructed by concatenating words from

dictionaries. Features used in machine learning models are not

designed to identify such patterns. The character encoding

adopted by existing deep learning models achieves a better

performance. To further improve the performance, the word

encoding technique is applied to study the association of

different words in the domain names. Experimental results

show that the proposed word encoding-based CNN and Bi-

LSTM models achieve better classification performance than

both the machine learning models and character encoding-

based deep learning models.

REFERENCES

[1] G. Vormayr, T. Zseby, and J. Fabini, “Botnet Communication

Patterns”, IEEE Communications Surveys & Tutorials, 19, 2768-

2796, 2017.

[2] Z. Wang, and Y. Guo, “Neural networks based domain name

generation”, Journal of Information Security and Applications,

61, 102948, 2021.

[3] T. Wang, L. Chen, and Y. Genc, “A dictionary-based method for

detecting machine-generated domains”, Information Security

Journal: A Global Perspective, Vol. 30, Issue 4, 2020.

[4] M. Zago, M. G. Pérez, and G. M. Pérez, “UMUDGA: A dataset

for profiling DGA-based botnet”, Computers & Security, 92,

101719, 2020.

[5] A. Cucchiarelli, C. Morbidoni, L. Spalazzi, and M. Baldi,

“Algorithmically generated malicious domain names detection

based on n-grams features”, Expert Systems with Applications,

170, 114551, 2021.

[6] F. Ren, Z. Jiang, X. Wang, and J. Liu, “A DGA domain names

detection modeling method based on integrating an attention

mechanism and deep neural network”, Cybersecurity, 3, 1-13,

2020.

[7] P. Vij, S.D. Nikam, and A. Bhatia, “Detection of Algorithmically

Generated Domain Names using LSTM”, International

Conference on COMmunication Systems & NETworkS

(COMSNETS), 1-6, 2020.

[8] H.P. Vranken, and H. Alizadeh, “Detection of DGA-Generated

Domain Names with TF-IDF”, Electronics, 11, 414, 2022.

[9] A.O. Almashhadani, M. Kaiiali, D. Carlin, and S. Sezer,

“MaldomDetector: A system for detecting algorithmically

generated domain names with machine learning”, Computers &

Security, 93, 101787, 2020.

[10] Y. Qiao, B. Zhang, W. Zhang, A.K. Sangaiah, and H. Wu, “DGA

Domain Name Classification Method Based on Long Short-Term

Memory with Attention Mechanism”, Applied Sciences, 9, 4205,

2019.

[11] J.P. Selvi, R.J. Rodríguez, and E. Soria-Olivas, “Toward Optimal

LSTM Neural Networks for Detecting Algorithmically

Generated Domain Names”, IEEE Access, 9, 126446-126456,

2021.

[12] Z. Wang, Y. Guo, and D. Montgomery, “Machine learning-based

algorithmically generated domain detection”, Computers and

Electrical Engineering, 100, 107841, 2022.

[13] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-

Nimeh, W. Lee, and D. Dagon, “From Throw-Away Traffic to

Bots: Detecting the Rise of DGA-Based Malware”, USENIX

Security Symposium, 24, 2012.

[14] L. Bilge, S. Şen, D. Balzarotti, E. Kirda, and C. Krügel,

“Exposure: A Passive DNS Analysis Service to Detect and

Report Malicious Domains”, ACM Transactions on Information

Systems Security, 16, 14, 2014.

[15] Y. Liu, Z. Zhou, Y. Yang, N.F. Law and A.A. Bharath, “Efficient

Source Camera Identification with Diversity-enhanced Patch

Selection and Deep Residual Prediction”, Sensors, 21(14), 4701,

2021.

[16] A. Zhang, Z. Zou, Y. Liu, Y. Chen, Y. Yang, Y. Chen, N.F. Law,

“Automated Detection of Circulating Tumor Cells using Faster

Region Convolution Neural Network”, Journal of Medical

Imaging and Health Informatics, 9(1), 167-174, 2019.

[17] M. Irshad, N.F. Law, K.H. Loo and S. Haider, “IMGCAT: an

Approach to Dismantle the Anonymity of a Source Camera using

Correlative Features and an Integrated 1D Convolutional Neural

Network”, Array, 18, 100279, 2023.

[18] J. Woodbridge, H. Anderson, A. Ahuja, and D. Grant, “Predicting

Domain Generation Algorithms with Long Short-Term Memory

Networks”, ArXiv, abs/1611.00791, 2016.

[19] Z. Feng, C. Shuo, and W. Xiaochuan, “Classification for DGA-

Based Malicious Domain Names with Deep Learning

Architectures”, International Journal of Intelligent Information

Systems, Vol. 6, Issue 6, 67-71, 2017.

[20] B. Yu, D.L. Gray, J. Pan, M.D. Cock and A.C. Nascimento,

“Inline DGA Detection with Deep Networks”, 2017 IEEE

International Conference on Data Mining Workshops (ICDMW),

683-692, 2017.

[21] H. Mac, D. Tran, V. Tong, L.G. Nguyen, and H.A. Tran, “DGA

Botnet Detection Using Supervised Learning

Methods”, Proceedings of the Eighth International Symposium

on Information and Communication Technology, 211-218, 2017.

[22] S.R.C. Liew, and N.F. Law, “BEAM – an Algorithm for

Detecting Phishing Link”, Proceedings of 2022 APSIPA Annual

Summit and Conference, 598-604, 2022.

[23] S.R.C. Liew and N.F. Law, “Use of Subword Tokenization for

Domain Generation Algorithm Classification”, Cybersecurity

(accepted), 2023, doi: 10.1186/s42400-023-00183-8.

[24] D. Tran, H. Mac, V. Tong, H.A. Tran, and L.G. Nguyen, “A

LSTM based Framework for Handling Multiclass Imbalance in

DGA Botnet Detection”, Neurocomputing, 275: 2401, 2018.

