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Abstract 

The planning and operational decision-making problems of electric transit systems have received 

significant attention recently in the process of transport electrification. Given an electrified electric 

transit system with constructed charging facilities, a coordinated bus charging schedule strategy 

can improve the system’s operating efficiency by fully utilizing available charging resources. This 

paper proposes a novel optimization approach for the electric bus charging scheduling problem. 

To tackle the nonlinear relationship between the amount of energy and the time spent charging, 

this paper discretizes the decision variables for the charging schedule into time intervals in the first 

place. A linear integer program is formulated with the objective of minimizing the system’s total 

charging time. A Lagrangian relaxation-based solution approach is proposed to decompose the 

model into subproblems with respect to individual vehicles. A tailored constraint generation 

scheme is developed to enhance computing efficiency. Numerical examples are conducted to 

verify the proposed models and solution algorithms. Our experiments confirm that the proposed 

coordinating charging strategy outperforms greedy strategies, such as first-in-first-out, by 

optimizing the charging order. The results also provide a number of insights that can help transit 

operators design cost-effective electric transit operational plans. 
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Lagrangian relaxation. 
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1. Introduction

Rapid urbanization and motorization have resulted in a sharp rise in vehicle ownership and

created substantially environmental (e.g., noise and pollutant emissions) and social (e.g., energy 

consumption, traffic congestion) problems. Road transport is also considered as a severe threat to 

global warming due to greenhouse gas (GHG) emissions. It is reported that the transportation 

sector accounts for more than 25% of the worldwide energy consumption (Juan et al., 2016) and 

27% of GHG emissions (Fan et al., 2018). However, because of the strong built-in inertia with 

physical and regulatory infrastructure in the urban transportation system, it is challenging to tackle 

urban environmental problems solely from transport aspects through enhancing the system 

mobility or restricting the use of private vehicles. 

As an alternative to the fuel-powered vehicle, green transport fleets for mass mobilities have 

a promising potential to reduce negative climate impacts from urban transport and improve air 

quality conditions. Over the past decades, many cities worldwide, such as Shenzhen, Hong Kong, 

New York, Chicago, Curitiba, among many others, have been committed to providing considerable 

and continuous investment in the electrification of urban transportation (Wang et al., 2019; Tran 

et al., 2021). China has ranked first in terms of the market share among the world’s electric transit 

market (Du et al., 2019). By the end of 2017, Shenzhen becomes the world’s first city which 

replaces all conventional fuel-powered buses with battery-powered ones, where more than 16,000 

vehicles are deployed, and 500 charging stations are built equipped with 8,000 chargers (Lin et al., 

2019). About 48% of emissions (nearly 100% of particulate matter) are reduced compared to fossil 

fuel-powered buses.  

For a newly planning electric transit system, an integrated planning scheme is needed, which 

should optimize the planning (e.g., charging facility location) and operational (e.g., itinerary, 

frequency, and schedule) decisions comprehensively (Liu et al., 2020). While for a fully electrified 

transit system, where the construction of electrification infrastructure has been completed, it is 

natural to optimize operational decisions with the restriction of available resources (including a 

limited number of chargers, the maximum permissible electrical peak load, etc.). Hence, it is well 

recognized that developing a cost-effective bus operational strategy by coordinating the existing 

bus operational schedule and the charging plan is of essential importance for the electric transit 

system (Li, 2016). 
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In practice, the electric bus (EB) charging scheduling strategies are distinct at different times 

of the day (Chen et al., 2018): at night, most of EBs are out of operation and can be fully charged 

for the next day’s operation; in the daytime, EBs should be recharged according to the 

predetermined operational schedule. Houbbadi et al. (2019) define these two types of charging 

strategies as overnight charging and opportunity charging. At the planning level, the decisions of 

where and how to deploy the charging infrastructure only concern the tradeoff between 

construction cost and the maximum coverage of all recharging stations, which cannot guarantee 

that each bus can be recharged immediately when it arrives at the charging station. Hence, 

unnecessary delays would occur because of the overlapped charging times.  

To mitigate the charging congestion at stations, this paper proposed an EB charging 

scheduling optimization model which aims to design a coordinated charging schedule for the 

opportunity charging in the daytime. The proposed model aims to minimize the total charging time 

of the entire fleet in the electric transit network with the restrictions of the existing bus operational 

schedule and charging facilities. Considering the nonlinearity of the battery charging function, a 

discretization technique is adopted to reformulate the relationship of the battery’s state-of-charge 

(SOC) and charging time, aiming to ensure the computational tractability of the optimization 

model.  

1.1 Literature review 

Over the past decade, increasing awareness of the electrification of the urban transit system 

has led to a growing body of literature on the subject of optimization models for bus charging 

scheduling (see Table 1). The coordinated charging strategy is of great importance for the transit 

network with fixed routes and schedules (Wang et al., 2017), and any delay occurring in the 

charging process would cause the unreliability of further services. Compared with the generic 

electric vehicle (EV), the coordinated charging problem of EB is more complicated for the 

following two reasons: 1) due to the vehicle mass and long driving range, an EB may have a 55 

kWh or larger battery capacity (30 kWh for generic EVs), resulting in a longer charging time and 

extended occupancy of charging facilities; 2) to maintain reasonable bus service frequency and 

reliability, the charging process must be completed within a relatively short time frame with 

respect to a predetermined schedule (De Filippo et al., 2014). Hence, the optimization model 

designed for the EV coordinated charging problem has been widely recognized to be unsuitable 

for electric transit systems (He et al., 2019). 



4 
 

Considering the time-dependent vehicle state, the EB charging strategies can be classified 

into dynamic and static cases. In the dynamic case, the EB charging process is controlled with 

respect to predictable operation or real-time feedback measurements from the system (Korkas et 

al., 2017). In the static case, the decision-making process of a bus charging schedule is designed 

from a long-term perspective. In this paper, we focus on the latter case which seeks to develop a 

stable bus charging schedule that determines when, where and how long a bus would charge. 

Table 1. Review of existing works. 

Literature Model Objective Decision 

variable 

Solution method 

Li (2013) ILP Min. of the operation cost VS Exact algorithm; 

column generation 

Paul et al. (2014) - Min. of charging energy - Greedy algorithm 

You et al. (2015) ILP Min. of the total system cost VS Exact algorithm; 

dual decomposition 

Wang et al. (2017) MILP Min. of the total annual cost VS Commercial solver 

Chen et al. (2018) MILP Min. of the sum of electricity 

purchase costs 

VS Commercial solver 

Rogge et al. (2018) MILP Min. of the total cost of 

ownership 

VS Heuristic algorithm 

Wei et al. (2018) MILP Min. of the total cost VS; VM Commercial solver 

Houbbadi et al. 

(2019) 

NP Min. of the battery aging cost VS Gradient-based 

optimization method 

Abdelwahed et al. 

(2020) 

MILP -Min. of the impact on grid 

-Min. of the total charging cost 

VS Commercial solver 

Bagherinezhad et 

al. (2020) 

SOCP Min. of the total operational cost VS Commercial solver 

He et al. (2020) NP Min. of the total charging cost VS Commercial solver 

Rinaldi et al. 

(2020) 

MILP Min. of the total operational cost VS Exact algorithm; 

decomposition 

Zhou et al. (2020) ILP Min. of the peak-valley load VS Commercial solver 

Bie et al. (2021) ILP -Min. of delays in departure time 

-Min. of energy consumption 

-Min. of bus procurement cost 

VS Heuristic algorithm 

Liang et al. (2021) ILP Max of the operator’s welfare VS; OD; VR  

Lu et al. (2021) MILP Min. of the total cost VS Heuristic algorithm 

Zhang et al. (2021) MILP Min. of the total operational cost VS Exact algorithm 

This paper ILP Min. of the total charging time VS; VM Lagrangian 

decomposition 

Note: ILP: integer linear program; MILP: mixed-integer linear program; SOCP: second-order cone program; 

NP: nonlinear program; OD: order dispatching; VR: vehicle rebalancing; VS: vehicle charging schedule; 

VM: vehicle mileage. 
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There is a large body of research on optimization models of bus charging scheduling (see 

Table 1). Li (2013) defines the EB scheduling problem as a vehicle-scheduling problem with route 

constraints concerning the maximum route distance and maximum distance before battery renewal 

for EBs. Vehicle-scheduling models for both battery-swapping and fast charging are proposed. 

You et al. (2015) optimize the schedule of battery charging in the battery-swapping station to 

guarantee that each bus can find a fully charged battery to switch. Wei et al. (2018) investigate the 

unique spatio-temporal characteristics of the EB deployment. They indicate that: 1) to guarantee 

the long daily operation time, both the en-route charging at bus terminals and overnight charging 

at the garage are needed; and 2) to smooth the transition from traditional fuel-powered buses to 

EBs, the space-time trajectories of EBs should fit into the current route and schedule. In this regard, 

a spatio-temporal optimization model is proposed to minimize the cost of vehicle replacement. 

Houbbadi et al. (2019) mainly focus on the centralized overnight charging and first take the battery 

aging effects in the bus charging scheduling problem. With the help of advanced energy storage 

technology, Chen et al. (2018) are among the first to study the scheduling problem of the energy 

storage system charging and discharging in the energy storage system considering the time-of-use 

(TOU) electricity price.  

There are also several studies related to the integrated optimization of the electric transit 

network and the corresponding bus charging schedule. Wang et al. (2017) propose a concurrent 

modeling framework that optimizes the charging station locations, number of chargers, and bus 

recharging schedule. The result shows that the total number of recharging activities is influenced 

significantly by the EB maximum driving range. For a newly constructed electric transit system, 

the smooth transition from fuel-powered buses to EBs is a major concern. Rogge et al. (2018) 

focus on the charging scheduling problem of a mixed fleet of buses, namely diesel and electric 

buses. The proposed model aims to minimize the total cost of ownership of electric vehicle fleets 

in the entire transit system. The results show that a mixed fleet could be advantageous depending 

on the features of the bus routes.  

The vehicle’s nonlinear charging function has been widely recognized as one of the critical 

concerns in the decision-making problems of the electric transportation system, which makes the 

optimization models to be highly nonlinear and nonconvex (Xu and Meng, 2019). Pelletier et al. 

(2017) have conducted a comprehensive analysis of the battery degradation and 

charging/discharging behavior of EV batteries. It is found that the battery in an EV is usually 
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charged through two phases: linear phase (or the constant current phase where the SOC increases 

linearly) and nonlinear phase (or the constant voltage phase where the current decreases 

exponentially and the SOC increases concavely). Montoya et al. (2017) are among the first to 

investigate the electric vehicle routing problem with nonlinear charging functions. Each charging 

mode (e.g., slow, moderate, and fast) is approximated by a three-phase piecewise linear function. 

Similarly, Pelletier et al. (2018) also use the piecewise linear charging function which is divided 

into three phases with respect to the charging current. Due to the fact that the analytical expression 

of SOC in the constant voltage phase does not exist, Xu and Meng (2019) develop an implicit 

function of SOC with respect to the charging time based on the battery circuit model discussed by 

Pelletier et al. (2017). Froger et al. (2019) propose an arc-based formulation to track the time and 

SOC via piecewise linear approximations of nonlinear functions. Lee (2021) develops a novel 

extended charging stations network which explicitly considers the nonlinear charging function 

without any approximation. It is the first time that the global optimal is achieved with an exact 

nonlinear charging time function. Zhang et al. (2021) also adopt the piecewise linear charging 

function proposed by Pelletier et al. (2017) and further consider the battery degradation effect.  

1.2 Objectives and contributions 

According to the literature, the EB is characterized by three features: 1) longer charging time 

requirements, 2) strict operational schedule, and 3) enough charging power for the next trip. 

Though there have been some works in developing operational scheduling for EBs, the major 

limitation of existing studies lies in that the objectives of bus scheduling over-emphasize the 

reduction of operating costs, including electricity cost (considering the time-of-use electricity 

price), infrastructure investment cost (capacities of charging stations), and environmental cost 

(emission issues). The trade-off between the reduction of operation cost and the improvement of 

service reliability by reducing unnecessary delays has received little attention. 

Moreover, from the operations research perspective, the traditional bus scheduling problem 

is to cover all bus trips in the timetable with known starting and ending times (Li and Head, 2009), 

which is usually formulated in the mixed-integer programming (MIP). Due to the nonlinearity of 

the vehicle charging function, the EB coordinated charging scheduling problem is usually 

nonlinear and nonconvex that cannot be solved efficiently by the existing solution algorithms. 

Although the shape of the charging function is well-known, deriving the analytical expression to 

describe it is intrinsically complex due to various environmental factors, such as current, voltage, 
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battery’s SOC, and temperature (Wang et al., 2013). Most of the existing studies simplify this issue 

by introducing linear function approximations (Felipe et al., 2014; Schiffer and Walther, 2017). 

Little attention has been paid to the discretized approach to model the nonlinear charging function.  

To sum up, there still lacks efficient methods to calibrate the charging function of both EV 

and EB. Although some linearization techniques, such as the piecewise linearization (Montoya et 

al., 2017; Pelletier et al., 2018), have been widely applied to approximate the charging function, 

which would inevitably result in a relatively complex formulation and generate additional 

variables and constraints to the primal problem. Additionally, how to comprehensively embed the 

nonlinear charging function in the bus charging scheduling problem and to formulate a 

polynomially solvable programming model are still open questions in the literature due to its strong 

nonlinearity and NP-hardness. Moreover, the bus charging process is usually inconsistent in 

practice, where the bus with an urgent and scheduled trip is allowed to be charged in a prior order. 

Little attention has been paid to model the inconsistent charging process, which is of considerable 

significance during rush hours. 

Hence, the contribution of this study is threefold. First, a novel bus charging scheduling 

optimization model from a network-level is formulated for the daytime opportunity charging mode. 

Second, a discretization technique is developed to track the time and SOC of the EB during 

charging, which intends to tackle the nonlinearity caused by the charging function. Third, a 

Lagrangian relaxation-based solution approach is developed based on the proposed optimization 

model, and a tailored constraint generation scheme is designed to enhance the solution algorithm’s 

efficiency.  

The remainder of this paper is organized as follows. Section 2 gives a generic description of 

the bus charging scheduling problem. The optimization model formulated for the network-based 

bus charging scheduling problems is presented in section 3. Section 4 develops a Lagrangian 

relaxation-based solution algorithm and a tailored constraint generation method, which could 

enhance the efficiency of the Lagrangian relaxation method. Section 5 gives numerical 

experiments to illustrate the model and solution method. Conclusions are presented in section 6. 

2 Problem description 

An electric transit system is usually composed of three main components: charging stations, 

timetable, trip-assignment schedule (see Fig. 1). The timetable records the arrival and departure 

times of a bus at each station. A bus trip can then be defined by the departure time at a station and 
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the arrival time at another station. The relationship between buses and trips is recorded by the trip-

assignment schedule.  

The deployment of charging stations (including their location and corresponding facility 

capacity) is usually determined in the planning stage (Li, 2016; He et al., 2019; Lin et al., 2019). 

This study focuses on the optimization of EB’s daytime opportunity charging schedule at the 

operational level with given charging station deployment and trip-assignment schedule. The 

timetable of all buses is assumed to be known as a priori. This assumption is acceptable with the 

consideration of eliminating the negative impacts of adjusting the regular operating schedule of 

the transit system. Consequently, by optimizing the bus charging schedule for the transit operator, 

the proposed model determines when, where, and how long each bus should be charged.  

Compared with overnight charging, daytime opportunity charging has the following 

characteristics: 1) The battery is not necessary to be fully charged at every charging station. To 

avoid redundant charging time and reduce the occupation time of chargers, an EB can only be 

charged to a target SOC that guarantees the energy consumption for the next trip; 2) Congestion 

issue may occur at the station when the charging demand exceeds the number of chargers; 3) The 

charging process of an EB can be interrupted in the case that another EB which arrives later but 

has limited time to be charged.  

A feasible charging schedule of the illustrated electric transit network is presented in Fig. 2. 

Assume that station 4 has only one charger. Bus 3 arrives at station 4 at 8:30 and starts to charge 

immediately. Bus 1 arrives later but only has one hour for dwelling and charging. In such cases, 

the charging process of bus 1 can be interrupted and bus 1 would be charged first without waiting 

in the queue or violating the following scheduled trips.  

 

Figure 1. Example of an electric transit system. 
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Figure 2. Trip and charging schedule. 

The notations of the sets, parameters, and variables used in the following sections are listed 

in Table 2. 

Table 2. List of notations. 

Notation Description 

Set  

L  Set of bus lines. 
N  Set of charging stations. 
S  Set of states for the battery power. 

T  Set of timestamps of the entire planning horizon. 
τ  Set of timestamps in the charging function.  

Parameter  

,l ja  Scheduled arrival time of a bus in line l  at the j -th station. 

,l jd  Scheduled departure time of a bus in line l  at the j -th station. 

,l jD  Electricity consumption of a bus in l  when traveling between the j -th 

station and the ( )+1j -th station. l L ,  1,..., 1lj N −  (%). 

lG  Minimum required SOC of a vehicle in bus line l , l L  (%). 

H  Total charging time from the empty state (SOC=0%) to the fully charged 

state (SOC=100%) (hours). 

nM  Number of chargers at station n , n N . 

lN  Total number of stations contained in bus line l , l L . 

 Total number of battery states. 

 Total number of time intervals in the charging function. 

lU  Maximum number of periods of buses in line l  is allowed to be charged 

at each station. 
  The length of a time interval. 

Variable  

,

tt

l ju

 Binary variable for charging schedule, i.e., if , 1tt

l ju

=  if a bus in line l  is 

charged during time period  ,t t  at the j -th station, and , 0tt

l ju

= , 

otherwise. 

, ,l j sv  Binary variable for battery state, i.e., if , , 1l j sv =  if the SOC of a bus in l  is 

s  when departing from the j -th station; and , , 0l j sv = , otherwise.  
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3 Mathematical formulation 

At the network level, the bus charging scheduling problem becomes a system-wide problem 

that requires the coordination between the charging and operational schedules. Due to the fact that 

the electricity price is usually flat in the daytime, the influence of TOU electricity price on the 

scheduling problem is not considered. Hence, the proposed scheduling model only aims to find an 

optimal charging strategy to improve the system operational efficiency, e.g., reducing the waiting 

time at a station, increasing the service reliability with the given bus line itinerary and schedule, 

among others.  

Consider an electric transit network defined on a connected graph ( ),G N L= , where N  and 

L  are sets of charging stations and bus lines, respectively. The itinerary of each bus line is divided 

into trips between charging stations included in the line. And all lines originate and terminate at 

the same bus terminal. Let 
lN  denote the total number of stations contained in bus line l , l L . 

Let ( ) ( ), : , ln l j n l j N  denote the index of the j -th station of bus l  in the station set 
lN . Denote 

the scheduled arrival and departure times of bus line l  at the j -th station as ,l ja  and ,l jd , 

respectively.  

 

Figure 3. Discretization of the nonlinear charging function. 

As mentioned earlier, the battery’s charging behavior in terms of the charging power and the 

SOC is usually described by a nonlinear function (see Fig. 3(a)). In this regard, the resulting bus 

charging scheduling problem is usually formulated in the nonlinear and nonconvex programs, 

which is difficult to be solved by conventional exact solution methods. To obtain the exact solution 

efficiently, linearization techniques, such as piecewise linearization, are widely used to 

approximate the nonlinear charging function (Montoya et al., 2017; Pelletier et al., 2019). But the 
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number of variables and constraints would inevitably increase, resulting in a more complex 

formulation. To avoid the nonlinear components, the SOC of a vehicle can be discretized with 

respect to the nonlinear charging function. Note that batteries of all EBs are assumed to be 

homogeneous in terms of battery size, power consumption, and aging degree, and they have the 

same charging function.  

Let ( )  denote the nonlinear charging function, and  0, H  , where H  (hours) is the 

battery charging time duration from empty state (SOC=0%) to the fully charged state (SOC=100%). 

As illustrated in Fig. 3(b), ( )  can be divided into a number of equal intervals. Assume that the 

length of each time interval is  . The total number of time intervals, , can be obtained by 

60 H =   . Accordingly, the battery charging duration can be represented by a set of discrete 

time intervals. Let τ  denote the set of timestamps at the end of each time interval, i.e., 

 0 1 2, , ,...,   =τ . In this regard, the battery charging function is then transformed into a 

discrete mapping between charging time and battery’s SOC, that is, each timestamp corresponds 

to a battery state s . Let S  denote the set of states for the battery power,  0,1,2,...,S s s= = , 

and = . In sum, each state represents the number of time interval a vehicle is charged from 

the state with zero battery power, i.e., 0s =  indicates that the vehicle’s SOC is zero; 1s =  

represents the amount of battery power charged by one time interval from 0s = ; and 2s =  

charged by two time intervals. Considering the nonlinearity of the charging function, the increment 

of the battery power between each state is inconsistent, i.e., the battery charged between s  and 

1s +  is not necessarily equal to that between 1s −  and s . With a little abuse of notation, we let 

( )   represent the mapping between timestamps and battery states, and ( )s  = . The inverse 

mapping is denoted as ( )1 s  −= . 

The number of chargers at station n  is denoted by nM . As presented in the example above, 

in the proposed coordinated bus charging scheme, when the scheduled charging periods of two 

buses are overlapped, the charging process of the bus which has already started charging could be 

interrupted. The bus with an urgent trip is allowed to be charged in a prior order. Hence, the 

charging process of a bus is allowed to be inconsistent and could be divided into disjunctive periods. 

In this regard, a parameter lU  is introduced to regulate the maximum number of periods of buses 
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in line l  is allowed to be charged at each station until the expected SOC is reached. Additionally, 

the entire planning horizon is also discretized equally with interval  . The set of timestamps 

with respect to the planning horizon is denoted by T .  

The charging schedule of each bus is described by the binary variable ,

tt

l ju

, where , 1tt

l ju

=  if 

the bus in line l  is charged during the time period  ,t t  at the j -th station. Hence, the proposed 

network-based bus charging scheduling problem can thus be formulated as follows. For each 

1,..., lj N= , define the binary variable , , 1l j sv =  if the battery state of the bus in l  is s  when 

departing from the j -th station; and , , 0l j sv = , otherwise.  

[ P ] 

 ( )
, ,

,

1

,

1 1

min  
l j l jl

l j

d dN
tt

l j

l L j t a t t

t t u

−



 = = = +

 −    (1) 

subject to 

  , , 1,  , 1,...,l j s l

s S

v l L j N


=   ,  (2) 

  , , , ,  , 1,..., 1l j s l j l l

s S

v D G l L j N


−    − ,  (3) 

 ,1, 1,  l Qv l L=  ,  (4) 

  
, ,

,

1

1

, 1, , , , , , , 1

1

+ ,  , 2,...,
l j l j

l j

d d

tt

l j s l j l j s l j s l j l

s S t a t t s S s S

v s u v s t t v s D l L j N 
−

 −

− −
 = = +  

  
 +   − −  =    

  
     , 

 (5) 

    
,

,

, , ,

1

1,  , 2,..., , ,..., 1
l j

l j

dt
t t

l j l l j l j

t a t t

u l L j N t a d
 

 = = +

    −  ,  (6) 

  
, ,

,

1

,

1

,  , 1,...,
l j l j

l j

d d

tt

l j l l

t a t t

u U l L j N

−



= = +

    , (7) 

 
( )

,

,1, , 1

,  ,
l jl

l j

dN t
t t

lj n

l L j n l j n t a t t

u M n N t T
 

  = = = = +

      ,  (8) 

    , , 0,1 ,  , 1,..., ,l j s lv l L j N s S    ,  (9) 

        , , , , ,0,1 ,  , 1,..., , ,..., 1 , 1,...,tt

l j l l j l j l j l ju l L j N t a d t a d
     −  + ,  (10) 
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The objective function (1) minimizes the total charging time of transit system. Constraint (2) 

assigns a battery state to each bus that leaves a station. Constraint (3) ensures that each bus has a 

certain battery state when arriving at a station. Note that by assigning non-negative values to 
lG , 

constraint (3) ensures that each bus in line l  will have sufficient battery power to arrive at the j -

th station when it departs from ( )1j − -th station. Constraint (4) ensures that the battery state of 

each bus is Q  when the bus departs from the first station. Constraint (5) establishes the 

relationship between the battery state of a bus when arriving at a station and the battery state of 

the bus when departing from the station. Constraint (6) ensures that the charging periods of each 

bus at each station do not overlap. Constraint (7) imposes an upper limit on the number of charging 

periods of each bus at each station. Constraint (8) imposes an upper limit on the number of buses 

charged simultaneously at each station. Constraints (9) and (10) assign binary values to the 

decision variables.  

4 Solution method 

It has been well discussed that the classical multiple-station vehicle scheduling problem is 

NP-hard, which is computationally challenging to be solved to optimality (Li and Head, 2009). 

This study develops a Lagrangian relaxation-based solution algorithm (Niu et al., 2018; Huang et 

al., 2021). To reduce the searching space for large-scale problems, the primal model ( P ) is 

decomposed into subproblems with respect to individual buses. An enhancement to the regular 

Lagrangian relaxation algorithm is proposed to accelerate the convergence of the algorithm. 

4.1 Lagrangian relaxation 

Observe that the primal problem P  has two types of decisions: 1) the charging schedule of a 

bus and 2) the optimal battery state when a bus departs from the station. One important point of 

this observation is that constraints in P  can also be classified into categories with respect to 

decision variables, namely, constraints associated with the bus schedule, battery state, and 

coupling constraints. It can be seen that the objective function of P  only contains the variables 

concerning the bus’s charging schedule. Hence, the constraints containing only the bus schedule 

variables, i.e., constraints (7) and (8), can be dualized into the objective function, by introducing 

multipliers ,l j  and ,k t , and , 0l j  , , 0k t  . Then, the Lagrangian relaxation problem can be 

decomposed into L  subproblems, each of which involves only the decision of charging planning 

for one bus. 
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Therefore, the Lagrangian relaxation problem can be constructed as follows. 

[ ( )LR ,P μ λ ] 

 

( )

( )

, , , ,

, ,

,

,

1 1

, , , ,

1 1 1 1 1

, , ,

1, , 1

min  +

        +

l j l j l j l jl l l

l j l j

l jl

l j

d d d dN N N
tt tt

l j l j l j l j l

l L j t a t t l L j t a t t l L j

dN t
t t

n t l n n t k

l L n N j n l j n t T t a t t n N t T

t t u u U

u M

 

 

− −

 

  = = = +  = = = +  =

 

   = =  = = +  

 − −

−

    

     

  (11) 

subject to constraints (2)-(6), (9), (10). 

In the above model, μ  and λ  are vectors of Lagrangian multipliers. Let ( ),L μ λ  denote the 

optimal objective value of problem ( )LR ,P μ λ . The goal of the Lagrangian relaxation algorithm is 

to solve the following Lagrangian dual problem: 

[
LDP ] 

 ( )
,

max  ,L
μ λ

μ λ   (12) 

The optimal values of μ  and λ  can be searched and updated using a subgradient optimization 

procedure (Fisher, 2004), which would be presented in detail in the next section.  

After removing the constant term , ,

1

lN

l j l n t k

l L j n N t T

U M 
 =  

− −   from the objective function 

(11), the relaxed problem will decompose into L  subproblems. The mathematical formulation of 

the l -th subproblem is presented below: 

[
l
P ] 

 ( )
( )

, , , , ,

, , ,

1 1

, , , , ,

1 1 1 1 1, , 1

min  + +
l j l j l j l j l jl l l

l j l j l j

d d d d dN N N t
tt tt t t

l j l j l j n t l n

j t a t t j t a t t n N j n l j n t T t a t t

t t u u u 
− −

   

   = = = + = = = +  = =  = = +

 −           (13) 

subject to 

  , , 1,  1,...,l j s l

s S

v j N


=  ,  (14) 

  , , , ,  1,..., 1l j s l j l l

s S

v D G j N


−   − ,  (15) 

 ,1, 1l sv = ,  (16) 

  
, ,

,

,

1

1

, 1, , , , , , , 1

1

+ ,  2,...,
l j l j

l j

l j

d d

tt

l j s l n l j s l j s l j l

s S t a t t s S s S

v s u v s t t v s D j N 
−

 −

− −
 = = +  

  
 +   − −  =   

  
     ,  (17) 
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    
,

,

, , ,

1

1,  2,..., , ,..., 1
l j

l j

dt
t t

l j l l j l j

t a t t

u j N t a d
 

 = = +

   −  ,  (18) 

    , , 0,1 ,  1,..., ,l j s lv j N s S   ,  (19) 

        , , , , ,0,1  1,..., , ,..., 1 , 1,...,tt

l j l l j l j l j l ju j N t a d t a d
    −  +， .  (20) 

It can be observed that the subproblem 
l
P  is a 0-1 integer program with 

( )
2

, ,

l

l l n l n

n N

N S d a


+ −  binary variables and ( ), ,3 1
l

l l n l n

n N

N d a


− + −  constraints. When 

( ), ,l n l nd a−  is large for each 
ln N , solving the problem by commercial integer program solvers 

would be impossible due to the enormous number of variables. In the following, we will reduce 

the problem size by transforming problem 
l
P  into a compact form. We introduce new decision 

variables as follows. For each 1,..., lj N=  and  , ,,...,l j l jt a d , let , , 1l j tu =  if the bus in line l  is 

being charged a the j -th station during time period  , 1t t + ; and , , 0l j tu = , otherwise. For each 

1,..., lj N= , let ,l jv  denote the battery state of bus l  when departing from the j -th station. 

Consider the integer program: 

[
l
P ] 

 ( )
( )

, ,

, ,

, , , , ,

1 1, ,

min  1+ +
l j l jl l

l j l j

d dN N

l j t n t l j t

j t a n N j n l j n t a

u u 
= =  = = =

      (21) 

subject to  

 ,1lv = ,  (22) 

  
,

, 1

1

, 1 , 1, , , 1,  2,...,
l j

l j

d

l j l j t l j l j l

t a

v u v D j N
−

−

− − −

=

+ − =  ,  (23) 

      , , 0,1 ,  1,..., , ,...,l j t l lj lju j K t a d   ,  (24) 

    , ,..., ,  1,...,l j l lv G S j K  .  (25) 

The following proposition states that the optimal objective value of problem l
P  can be 

obtained by solving problem l
P : 

Proposition 1: Solving problem l
P  yields the optimal objective value of problem l

P . 
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Proof. It is clear that the optimal solution of 
l
P , , ,l j tu , gives the exact time periods that a bus 

is being charged. Let ,l jU  denote the total charging time of the bus in line l  at its j -th station. The 

number of buses that are charging simultaneously at station n  during time period t  is denoted by 

,n tm . Given the optimal charging schedule of bus l  at its j -th station, , ,l j tu , ,l jU  and ,n tm  can be 

obtained as follows: 1) let , 0l jU =  and , 0n tm = ; 2) for t  in 
, ,1,l j l ja d +  , if , , 1 1l j tu − =  and 

, , 0l j tu = , then , , 1l j l jU U= + ; 3) for t  in 
, ,,l j l ja d   , then , , , ,n t n t l j tm m u= + . Thus, 

( )
, ,

,

1

, ,

1 1 1

l j l jl l

l j

d dN N
tt

l j l j

l L j t a t t l L j

t t u U

−



 = = = +  =

 −  =    and 
( )

,

,

,

1, , 1

l jl

l j

dN t
t t

lj n t

l L j n l j n t a t t

v m
 

  = = = = +

=    , n N , t T .  

Instead of solving the 0-1 integer program of 
l
P  directly, it suffices to solve the compact 

formulation of l
P , which has much fewer variables and constraints. 

4.2 Solving the Lagrangian decomposition problem 

For any value of the Lagrangian multipliers ,l j  and ,n t , the sum of the optimal value of 

each subproblem l
P  gives a lower bound for the primal problem P . Note that the optimal solution 

of the Lagrangian dual problem 
LDP  may or may not be feasible for the primal problem P . If not, 

a heuristic algorithm is usually applied to find a feasible solution and to obtain an upper bound for 

the primal problem. In this subsection, a constructive greedy heuristic approach to the problem is 

developed, which is embedded in an iterative algorithm based on the Lagrangian decomposition. 

A subgradient updating scheme is used to determine the Lagrangian multipliers at each iteration.  

4.2.1 k-greedy heuristic algorithm  

The k-greedy heuristic algorithm is a kind of constructive heuristic algorithm that utilizes the 

k-nearest neighbor search technique when selecting the feasible charging period between EB’s 

arrival and departure times. Different from Paul and Yamada (2014), which is among the first to 

apply the k-greedy-based approach to obtain proper EB charging schedules, vehicle deployment 

among different lines is not allowed in our study. The operation diagram of an illustrated bus line 

is shown in Fig. 4. The feasible charging periods are generated and selected according to the 

itinerary of a bus line. At each station, k candidate charging plans that guarantee the next trip’s 

energy are generated, and then the feasibility conditions would be checked. Note that if the 

available charging period of a station cannot guarantee the next trip’s energy consumption, the last 
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station is revisited, the current charging plan of which is then adjusted by generating new candidate 

charging plans which could guarantee the energy consumption of the next two trips. The detailed 

algorithm is presented using a flow chart illustrated in Fig. 5.  

 

Figure 4. Illustration of the selection feasible charging process. 

 

 

Figure 5. Flow chart of the k-greedy algorithm.  

4.2.2 Subgradient Lagrangian search algorithm 

In literature, there exists a wide variety of search methods which at least approximately find 

the best possible lower bound of the primal problem P  (Rardin, 2017). In this section, we apply 

the most popular search method, i.e., the subgradient search, which utilizes a generalized steepest 



18 
 

gradient search mechanism. The full statement of the subgradient search over Lagrangian duals is 

provided in Algorithm 1 as follows.  

Algorithm 1: Subgradient Lagrangian search algorithm 

Step 0: Initialization 

 Set iteration 0i  . 

 Initialize the set of Lagrangian multipliers 
(0)

, 0l j  , 
(0)

, 0n t  . 

 Set the best lower bound *lb − , the best upper bound *ub + . 

Step 1: Solve the decomposed subproblems 

 Solve the decomposed subproblems 
l
P , and obtain the optimal solution 

( )

, ,

i

l j tu  and 
( )

,

i

l jv . 

 Solve the Lagrangian relaxation problem 
l
P . 

 Based on Proposition 1, obtain 
( )

,

i

l jU  and 
( )

,

i

n tm . 

Step 2: Generate the lower bound 

 Calculate the values of the objective functions in P  and l
P , ( )iobj  and 

( )i

LRobj . 

 

If all the relaxed constraints are satisfied, i.e., 
( )

,

i

l j lU U  for every station in each bus line 

and 
( )

,

i

n t nm M  for each station during each period, update the lower bound 

 * * ( )max , i

LRobjlb lb= . 

Step 3: Generate the upper bound 

 

Use the k-greedy heuristic algorithm to generate a feasible charging plan using the 

current 
( )

,

i

l jU  and 
( )

,

i

n tm , and obtain the value of objective function, 
( )i

k greedyobj − . 

Update the upper bound  ( )* *max , i

k greedyobb ju ub −= . 

Step 4: Compute the optimal gap 

 ( )* * *ub lb ubgap −= . 

Step 5: Update Lagrangian relaxation multipliers using subgradient search 

 Determine the step size  , 1 2( 1)n = + . 

 

Update Lagrangian multipliers:  ( 1) ( ) ( )

, , ,max , 0i i i

l j l j l j   + = +  , 

 ( 1) ( ) ( )

, , ,max , 0i i i

n t n t n t   + = +  , where ( ) ( )( ) ( )

,

1 2
2

)

,

1

,

(
lN

i

lj

i i

l j l l j j l

l L j

lU UU U 
 =

 
 = − − 

 
 
 , 

and ( ) ( )( ) (

1 2
2

( ) )

,, ,

i ii

n t n n

n N t

n t n t

T

m mM M
 

 
 = − − 

 
 . 

Step 6: Termination condition test 

 If optimal gap is less than the pre-determined value  , i.e., gap  , then stop; 

 

else if the iteration number i  is larger than the maximum iteration number maxI , then 

stop; 

 else, let 1i i= + , and go to Step 2. 
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4.3 Algorithm enhancements 

In this section, we present an algorithmic enhancement to accelerate the convergence of the 

Lagrangian relaxation algorithm. 

4.3.1 Constraint generation in Lagrangian relaxation 

It can be observed that when the number of the Lagrangian multipliers is large, the 

computation burden of solving the Lagrangian dual problem 
LDP  increases because of the high 

occurrence of degeneracy, i.e., different values of ( ),μ λ  can lead to the same value of the 

objective ( ),L μ λ . The convergence speed of the subgradient optimization method would 

inevitably slow down because of this degeneracy effect. For instance, it can be observed that 

constraint (8) is imposed for each n N , t T . It is obvious that the charging function can be 

approximated closely if it is divided into more time intervals, resulting in a large set of T  and a 

large number of the Lagrangian multipliers ,n t  which decreases the convergence speed of the 

subgradient optimization method.  

To overcome this deficiency, a constraint generation strategy is proposed to reduce the 

number of Lagrangian multipliers. The basic idea of this strategy is to eliminate constraint (8) from 

the primal problem P , and then add this constraint iteratively back as needed. Specifically, 

initialize all the Lagrangian multipliers ,n t  to zero. At the i -th iteration in Algorithm 1, consider 

the solution generated by solving the Lagrangian relaxation LDP . If this solution violates constraint 

(8) for certain n N  or t T , the violated constraint can then be added to P  (if this constraint 

has not been imposed yet). Note that the violations of constraint (8) can be easily identified by a 

complete enumeration.  

Let ( )i  be the set of ( ),n t  pairs for which constraint (8) is added to P . Instead of updating 

all the Lagrangian multipliers ,n t  in the i -th iteration of the i -th iteration, it is sufficient to update 

the multipliers ,n t  for each ( ) ( ), in t  . The constraint generation is performed iteratively until 

the subgradient updating scheme is terminated.  

4.3.2 An efficient algorithm for solving l
P  

In each iteration in Algorithm 1 for solving the Lagrangian decomposition problem, problem 

l
P  for each l L is solvable to commercial solvers. The computational performance of 
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Algorithm 1 depends largely on the efficiency of solving 
l
P . Instead of using the commercial 

solver directly, an efficient algorithm for solving 
l
P  is proposed in this subsection.  

For each l L ,  1,., , , lj N , and , ,,...,l j l jt a d , define 

 
( ),

, ,

,  , ,

0, .

n t

l j t

if n N n l j n

otherwise




   =
 = 


  (26) 

Furthermore, define  

 , , , , , 1l j t l j t l jC  = + + .  (27) 

Then, for each l L , 
l
P  can be reformulated as follows: 

[
l
P ] 

 
,

,

, , , ,

1

min  
l jl

l j

dN

l j t l j t

j t a

C u
= =

 .  (28) 

subject to constraints (22)-(25) 

In 
l
P , , ,l j tC  can be interpreted as the charging cost incurred by buses in l  during time period 

t  at the j -th station. Problem 
l
P  assigns time periods to buses in l  for charging to ensure that 

the vehicle’s battery state is within  ,lG S  when arriving at each station, while the total charging 

cost is thus minimized. Consider the moment at which a bus in line l  departs from the j -th 

(1 lj N  ) station with battery state ,l jv . For each  1,...,j j , let ,
ˆ
l jT   denote the set of time 

periods during which a bus in line l  is charged at the j -th station. If the battery state of this bus 

is insufficient to arrive at the ( )1j + -th station (i.e., , ,l j l j lv L G−  ), additional time periods should 

be assigned to this bus for charging before departing from the j -th station, which can be realized 

by assigning , ,l l j l jG L v+ −  additional time periods that incur the minimum charging cost to the 

bus from the set  ( )1 , , ,
ˆ,..., \j

j l j l j l ja d T   = . Based on this observation, a tailored iterative algorithm 

is proposed to solve problem l
P  instead of using the commercial solver.  

Specifically, if the battery power of a bus is not sufficient to travel to the next station, 

additional charging time periods would be assigned to the bus. The pseudo-code of this algorithm 
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is presented in Algorithm 2. Note that in this algorithm, ( )j t  is the index of the station such that 

( ) ( ) , ,
,...,

l j t l j t
t a d , and each  1 , ,,...,lN

j l j l jt a d=  corresponds to a unique ( )j t . 

Algorithm 2: The improved algorithm for solving 
l
P  

1: Set , , 0l j tu  ,  1,..., lj N  ,  , ,,...,l j l jt a d , 

2:       , 0l jv  ,  2,..., lj N  , ,1lv S  and 1i   

3: while 
li N  do 

4:       Set  , 1 , ,,...,i

l i j l j l jT a d=  

5:       while , ,il j l lv L G−   do 

6:             Set  
, , ( ),

*

: 0 , ( ),arg min
l i l j t tt T u l j t tt C =  

7:             if , 1l jv S+   for all  *( ),...,j j t i  then 

8:                   Set , , 1l j l jv v +  for each  ( ),...,j j t i  

9:                   Set * *, ( ),
1

l j t t
u   

10:             end if 

11:             Set  *

, , \l i l iT T t  

12:       end while 

13:       Set 1i i +  

14: end while 

The aim of Algorithm 2 is to assign time periods to the bus in line l  for charging to guarantee 

that the battery state of bus l  is at least lG  when it arrives at each station, which incurs the 

minimum charging cost. It can be observed that Algorithm 2 is a polynomial algorithm with a 

complexity of ( )lO H , and  , ,1
,...,

lN

l l j l jj
H a d

=
= . 

4.3.3 The enhanced Lagrangian relaxation algorithm 

Combining the constraint generation technique and the tailored iterative algorithm, a novel 

solution algorithm for the Lagrangian relaxation problem is constructed in Algorithm 3. The 

pseudo-code of Algorithm 3 is presented as follows: 

Algorithm 3: The enhanced Lagrangian relaxation algorithm 

1: Set 0Z  , Z + , . 0l ju  , l L  ,  1,..., lj N , 

2:       , 0n t  , n N  , t T ,   

3: while termination conditions are not satisfied do 

4: 
      Solve the problem lP  for each l L  using Algorithm 2 to obtain the 

solution 
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        ,u v  and the lower bound ( ),Z μ λ  

5:       if ( ),Z Zμ λ  then  

6:             Set ( ),Z Z μ λ  

7:       end if 

8:       Based on Proposition 1, obtain the solution of 
lP ,  ,u v  

9:       Identify the set of  ,n t  pairs for which constraint (20) is violated by u  

10:       Let   denote the identified set of  ,n t  pairs  

11:       Set ( ) ( ) , ,n t n t    

12:       Generate the upper bound of problem P , ( ),Z μ λ  

13:       if ( ),Z Zμ λ  then  

14:             Set ( ),Z Z μ λ  

15:       end if 

16:       for l L ,  1,..., lj N  do  

17:             Update ,n t  

18:       end for 

19: End while 

Note that the updating scheme of ,l ju  and ,n t  in lines 17 and 20 of Algorithm 3 is same as 

Step 4 of Algorithm 1. 

5 Numerical experiments 

In this section, we conducted numerical experiments to evaluate the proposed model and 

algorithm in this study. The algorithm was coded in python, and 
l
P  was solved by Gurobi 9.0. 

All computational experiments were conducted on an Intel Core i7-9750H CPU at 2.60 GHz with 

16 GB RAM. 

5.1 Experimental setup 

We tested the proposed model and algorithms with random instances including 40-300 

stations. The original data, including the location of stations and corresponding trip schedule, can 

be retrieved from the online dataset (NEO, 2013). The planning horizon is divided into 600-time 

intervals, each of which represents one minute. The minimum required SOC, lG , is set to 5%. The 

real battery charging profile is adopted from the work of Zündorf (2014), which is then discretized 

by the method presented in Section 3. 
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5.2 Optimal results 

To better evaluate the performances of the proposed algorithms, the following four solution 

strategies are applied and compared: 1) using Gurobi to solve the primal problem P  directly 

without any reformulation procedures; 2) using Algorithm 1 to solve P  based on the Lagrangian 

decomposition; 3) using Gurobi to solve the Lagrangian relaxation problem and updating the 

multipliers by Algorithm 2; and 4) using the enhanced Lagrangian relaxation method, i.e., 

Algorithm 3. Table 3 summarizes the computational results for random instances.  

Table 3 Performances of the proposed model and algorithms. 

Instances 

Gurobi Algorithm 1 Gurobi + 

Algorithm 2 

Algorithm 3 

Obj Running 

time 

Obj Running 

time 

Obj Running 

time 

Obj Running 

time 

40/8/3/3 124 1.65 124 0.20 124 0.18 124 0.07 

40/10/3/3 279 1.99 279 0.22 279 0.19 279 0.07 

40/12/3/3 294 2.13 294 0.25 294 0.24 294 0.11 

50/10/3/3 302 2.22 302 0.21 302 0.22 302 0.16 

50/12/3/3 339 2.55 339 0.25 339 0.23 339 0.17 

50/15/3/3 550 3.46 550 0.39 550 0.28 550 0.27 

80/15/3/3 482 5.39 482 0.35 482 0.86 482 0.51 

80/30/3/3 721 9.73 721 0.48 721 5.28 721 1.14 

80/40/3/3 996 9.43 996 0.62 996 1.54 996 1.08 

150/30/3/3 1,019 17.58 1,019 0.69 1,019 0.62 1,019 0.89 

150/50/3/3 1,189 28.49 1,189 1.10 1,189 1.06 1,189 0.93 

150/70/3/3 1,498 54.96 1,498 2.89 1,498 2.64 1,498 2.08 

300/70/3/3 1,373 118.84 1,373 3.47 1,373 4.75 1,373 1.69 

300/70/4/3 1,373 118.84 1,373 1.62 1,373 1.57 1,373 1.61 

300/70/5/3 1,373 118.84 1,373 1.58 1,373 1.59 1,373 1.56 

300/150/3/3 - - 3,481 9.67 3,481 7.48 3,481 17.82 

300/150/4/3 - - 3,481 7.09 3,481 6.76 3,481 3.61 

300/150/5/3 - - 3,481 6.17 3,481 6.42 3,481 3.31 

 

Each instance is named after N / L / kM / lU . Table 3 presents the average of 20 runs for all 

instances of each data set of each algorithm. Column “Obj” reports the average solution values of 

our implemented algorithms. Column “Running time” presents the computational time measured 

in CPU seconds. The results indicate that our proposed enhanced Lagrangian relaxation algorithm 

outperforms the solution strategies of using the solver directly or the standard subgradient method. 

When the scale of instances gets larger in terms of the number of stations and lines, our enhanced 

algorithms are more stable and more efficient than the standard algorithms. 
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The dominant influencing factor on the computing efficiency can be attributed to the 

operation on the “tight” constraint. Comparing the results of solution strategies of 2) and 3), it can 

be observed that reducing the number of updating multipliers can indeed speed up the convergence 

speed of the algorithm if the constraint (16) is relaxed, which is considered as a tight one in the 

original problem. 

5.3 Comparison between charging strategies  

In practice, if no bus charging scheduling strategy is applied, the EBs’ charging processes are 

usually disorganized and difficult to describe mathematically. For tractability reasons, we further 

assume that, without any coordinated measurements, EBs are charged in a first-in-first-out (FIFO) 

order (the bus which arrives earlier will be charged first, and the later buses are charged 

immediately afterward) (Qin et al., 2016). Moreover, each bus is allowed to charge at a single 

station for only one time, and the charging process would not be interrupted. In line with the 

proposed coordinated charging (CC) scheme, the charging process is completed if the current SOC 

is enough for the next trip. 

 

 

Figure 6. Charging files of four typical lines.  

The charging files of four bus lines in the group of instances 40/12/3/3 in three different 

charging schemes (CC, FIFO, and k-greedy) are shown in Fig. 6, from which the following 

observations can be made: 1) In the CC scheme, most of the charging processes are completed at 
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the previous stations of bus itineraries, which indicates that vehicles are likely to charge additional 

energy at the first several stations and reduce the charging time at latter stations; 2) In the k-greedy 

scheme, which has an opposite result, vehicles are more likely to charge at latter stations rather the 

previous stations of their itineraries. It can be attributed to the fact that the k-greedy heuristic 

algorithm tends to minimize the total charging time by decreasing the number of charging 

processes, where vehicles only need to be charged when the remaining SOC is not enough for the 

next trip; and 3) In the FIFO scheme, the distribution of charging processes seems to be even 

among bus’s itinerary.  

Table 4 presents the comparison of the system performance between the proposed CC and 

FIFO charging scheme in the case of 50N = , 20L = . Note that the number of charging times of 

a bus in the same station lU  in CC is set to 1 arbitrarily in line with FIFO. It can be observed that 

the total charging times of both schemes are the same because both these two schemes aim to 

minimize the total charging time under the constraint of guaranteeing the service trips in the first 

place. In the case that each bus station only has one charger, the FIFO outperforms the CC in 

queueing time but causes more schedule delay. That is because, in the CC scheme, buses could be 

charged with additional battery power instead of just satisfying the battery requirement of the next 

trip (see Fig. 7). While the FIFO is a greedy heuristic which only takes the required batter power 

of the next trip instead of optimizing its charging behavior at a system level. Another observation 

is that, when lU  is determined, increasing the number of chargers at each station would not 

improve the system performances, i.e., decreasing the queueing time or the schedule delay. 

Table 4 The comparison between the proposed CC and FIFO charging scheme. 

No. of 

chargers 

Queueing time Charging time Schedule delay 

FIFO CC FIFO CC FIFO CC 

1 14 72 443 443 38 0 

2 10 17 443 443 32 0 

3 10 17 443 443 32 0 

4 10 17 443 443 32 0 

5 10 17 443 443 32 0 
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Figure 7. The illustration of the additional charging time. 

In Fig. 8, three indicators are used to evaluate the impacts of the number of chargers on the 

system performance with respect to the different number of bus lines in the transit system. The 

experiments are conducted on the instance with 50N =  and 3lU = . Note that in Fig. 8(a), the 

total queueing cost is not presented because no feasible solution is found with only one charger at 

each station. The results show that, in the FIFO scheme, both queueing and delay costs are 

positively correlated with the number of lines. When the number of chargers is given, the increase 

of bus lines will result in an increase of queueing and delay costs due to the high level of schedule 

overlap among different bus lines. In the CC scheme, the delay cost is eliminated because of the 

strict constraint of schedule adherence. However, the queueing cost increases dramatically because 

some vehicles must wait in lines even though they arrive earlier, which is in accordance with the 

basic assumption of the CC scheme that the vehicle with a tighter schedule has a higher priority to 

charge first compared with those which arrives earlier but with loose schedule constraint.  
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Figure 8. The impacts of the number of chargers on the system performance. 

6 Conclusions 

In this paper, a Lagrangian relaxation approach for the electric bus charging scheduling 

optimization problem has been proposed. Due to the limited resources concerning the charging 

facility, it is essential to design a cost-effective and coordinated charging scheduling strategy. An 

ILP is proposed to design the optimal EB charging schedule to minimize the total charging time 

of the entire electric transit network. To tackle the nonlinearity caused by the charging function, 

this paper discretizes the decision variables for the charging schedule into time intervals. Both two 

models are formulated in linear integer programs. A Lagrangian relaxation-based solution 

algorithm. To reduce the searching space for large-scale problems, the network-based model is 

decomposed into subproblems with respect to one bus. An enhancement to the basic Lagrangian 

relaxation algorithm is proposed to accelerate the convergence of the algorithm. The results show 

that: 1) our proposed enhanced Lagrangian relaxation algorithm outperforms the solution strategies 

of using the solver directly or the standard subgradient method; 2) the limited capacity constraint 

is considered as the “tight” constraint in the proposed model.  

The optimal result of the charging strategy provides guidance for the transit operator to design 

a charging schedule and improve the system’s operational efficiency accordingly. Two key 

insights that we can deduce from these results are as follows. First, the optimal distribution of 

charging location varies in different charging schemes. In the proposed CC, EBs are more likely 

to charge for a short period in the previous stations of itineraries; while, in greedy strategies 

(including both k-greedy and FIFO), EBs only charge when the remaining battery energy is not 
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enough for the next trip. The strategy of CC outperforms k-greedy and FIFO especially in the case 

of limited charging capacity. For instance, EBs in the CC scheme intend to charge for additional 

energy once there exists available chargers and would not violate the predetermined schedule as 

well. However, in greedy schemes, EBs have to charge at a certain station otherwise the remaining 

battery power cannot guarantee the service of the next trip. Hence, they have to wait for charging 

even though the schedule is violated. Second, there is a large body of research on optimization 

models of charging station deployment including location and capacity. The expansion of the 

existing charging facility is inevitable when the charging demand increases. However, the 

unbalance between charging demand and supply can first be addressed from the operational level 

in a more cost-effective way by coordinating the EBs’ charging schedule, e.g., allowing the EB 

with an urgent and scheduled trip to be charged in a prior order.  

Several potential enhancements could be considered in future works: 1) integrate the 

coordinated charging scheme in the charging facility location and EB network design problem to 

develop a systematic EB planning and operation approach; 2) take into account more external 

factors concerning the city’s power grid; and 3) investigate the bus charging scheme in a complex 

and realistic environment, such as the stochastic trip time, battery aging, schedule reliability, 

among many others. 
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