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Abstract—For intelligent reflecting surface (IRS) based com-
munication, channel estimation methods have predominantly fo-
cused on low-mobility and static scenarios. However, in dynamic
scenarios where mobility and channel variations take place,
accurate channel estimation becomes a challenging task. To
address this limitation, this paper proposes a novel approach
for channel estimation in dynamic IRS-aided communication
scenarios by leveraging the advantages of orthogonal time-
frequency space (OTFS) modulation. The proposed approach
converts the time-frequency domain channel representation into
the delay-Doppler (DD) domain using OTFS modulation. By
doing so, the channel estimation problem is transformed into
estimating the DD channel, which is more suitable for dynamic
scenarios. To estimate the DD channel, a residual attention-based
channel estimation (RACE) model is proposed. The RACE model
outperforms existing deep learning methods and conventional
approaches. It achieves a lower normalized mean square error
compared to other methods.

Index Terms—Residual attention channel estimation (RACE),
intelligent reflecting surface (IRS), orthogonal time-frequency
space (OTFS).

I. INTRODUCTION

Intelligent reflecting surface (IRS) has gained significant
attention for improving spectrum and energy efficiency in
wireless communication. IRS is a planar metasurface equipped
with cost-effective reflective elements that can dynamically
modulate the phase and amplitude of incoming signals [1]. By
optimizing the reflection coefficients of IRS, it becomes pos-
sible to steer the incident signal toward the desired direction,
resulting in enhanced received signal power at the destination.
In contrast to conventional active relays, IRS presents notable
benefits, including minimized power consumption and reduced
hardware expenses, achieved through the passive reflection of
signals [2]. Due to these benefits, IRS has attracted significant
attention in various wireless systems, including MIMO, cog-
nitive radio, NOMA, and OFDM.
The precise and real-time channel state information (CSI) is
essential for the effective design of IRS reflection [3]. Due
to the numerous reflecting components and limited signal
processing abilities, collecting this information is extremely
difficult. Several successful channel estimation strategies have
been put forth in the literature to address these problems. For
estimating the cascaded IRS channel, the least squares (LS)-
based estimator was presented in [4]. High pilot overhead,

which worsens with the quantity of reflecting parts, is the main
drawback of this strategy. To solve this problem, [5] suggested
a method that clusters nearby elements and gives them the
same reflection pattern, hence lowering pilot overhead.
To immediately estimate spatial angle information at both the
base station (BS) and IRS, [6] and [7] created a one-stage
channel prediction method for IRS-assisted millimeter wave
(mmWave) systems. In addition, [8], [9] developed a two-
stage cascaded channel estimation method where the BS angle
information is calculated in the first stage and the cascaded
channel coefficients and IRS angle information are estimated
in the second stage.
IRS research has largely concentrated on static and low-
mobility situations with quasi-static channels, which limits
its applicability in real-world scenarios involving user move-
ments, like vehicle-to-vehicle communication (V2V) and high-
speed trains (HST). Due to a decreased channel coherence time
and changes in the scattering environment, traditional static
channel designs perform poorly in these dynamic situations.
A new paradigm for communication, orthogonal time fre-
quency space (OTFS) modulation has been presented as a
solution to this problem [10]. OTFS multiplexes symbols in the
delay-Doppler (DD) domain rather than the conventional time-
frequency (TF) domain. This imparts remarkable resilience to
Doppler shifts and delays spread, rendering it suited for highly
dynamic environments. Unlike traditional modulation schemes
where the channel gain may vary across different frequency
and time bins, OTFS spreads the signal energy across the DD
domain uniformly. This uniform spreading ensures that each
multipath component receives equal energy, resulting in equal
channel gains. As a result, the channel estimation task becomes
easier because there is no need to estimate and compensate
for varying channel gains across different subcarriers or time
slots. The combination of IRS and OTFS presents a promising
opportunity to leverage the advantages of both flexible channel
configurations provided by the IRS and the resilience of OTFS
in high-mobility communications.
In the study presented by authors of [11], a pilot transmis-
sion approach was employed where an entire OTFS frame
was dedicated solely to pilot transmission. The estimated
channel information obtained from this pilot transmission
was subsequently utilized for data detection in the following
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frame. However, this method faces limitations if the channel
estimation becomes outdated in the subsequent frame. To
address this limitation, an OTFS channel prediction scheme
for a single-input single-output (SISO) system is proposed
in [12]. In this scheme, within each OTFS frame, a single
pilot symbol is embedded along with guard symbols and data
symbols to minimize interference and predict the channel
using a threshold-based method.
The research presented in [13] introduces structured orthogo-
nal matching pursuit (OMP) for three-dimensional space. This
approach effectively leverages the block sparsity observed in
the Doppler domain, the burst sparsity in the angle domain,
and the regular sparsity in the delay domain. By consid-
ering the unique sparsity characteristics across these three
dimensions, the proposed algorithm offers promising results
for channel estimation in complex scenarios. Different from
the model-based approaches, authors in [14] proposed a data-
driven method for estimating channels in the IRS-OTFS sys-
tem. The channel estimation is framed as a denoising problem
and a residual neural network (ResNet) is applied to estimate
the channel. ResNet has shown remarkable performance in
various tasks, including image classification and denoising.
However, when applied directly to channel estimation, ResNet
may not fully capture the specific characteristics of the channel
and could be limited in their generalizability.
To address this limitation and enhance the accuracy of channel
estimation, we propose the residual attention-based channel
estimation (RACE) model. The RACE model introduces at-
tention mechanisms after the residual network, enabling the
model to selectively focus on important channel features while
suppressing noise. The RACE model consists of residual
blocks with an attention module. The attention module enables
the network to learn to focus on informative features while
attenuating the impact of noise. By adaptively weighting the
feature maps, the attention mechanism incorporated in the
RACE model helps to improve the denoising performance.
The main contributions of this work are listed as follows:

1) We initially estimate the DD channel with a conventional
estimation method [15]. Further to improve the estima-
tion accuracy and to eliminate noise in the estimated
channel, a residual attention-based model is proposed.

2) To evaluate the performance of the proposed RACE
model for channel estimation, we conducted experiments
using the normalized mean square error (NMSE) as
the performance metric. We investigated the impact of
varying Signal-to-Noise Ratio (SNR), the number of IRS
elements, and the number of DD paths on the model’s
performance.

The subsequent sections of the paper are structured as follows:
Section II provides a description of the system model The
proposed channel estimation method is explained in Section
III. Experimental settings and results are presented in Section
IV. The conclusion of the paper can be found in Section V.
Notations: Real numbers and complex numbers are denoted
with the notations R and C, respectively. The superscripts
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Fig. 1. IRS-aided Wireless Network

T and H indicate the transpose and conjugate transpose
operations, respectively. The vector and matrix are represented
by bold symbols, namely v for a vector and V for a matrix.
Moreover, the Frobenius norm of a matrix is expressed as |·|F .

II. SYSTEM MODEL

We consider a scenario consisting of an IRS with I passive
elements, BS, and a user with a single antenna, where a direct
link between the user and the BS is blocked, as depicted
in Fig. 1. The DD channel from BS-IRS and IRS-user are
given as: f(τi, ρi) =

∑Qf

q=1 fi,qδ(τ
f
i − τfi,q)δ(ρ

f
i − ρfi,q) and

h(τi, ρi) =
∑Qh

q=1 hi,qδ(τ
h
i −τhi,q)δ(ρ

h
i −ρhi,q)), respectively. A

time division duplexing (TDD) protocol is considered, where
the channel can be estimated in the uplink, and channel
reciprocity is assumed.
The incident signal on the i-th element of the IRS from the
user is given as:

ri(t) =

Qh∑
q=1

hi,qe
j2πρhi,q(t−τ

h
i,q)s(t− τhi,q), (1)

where hi,q , ρhi,q , and τhi.q , are the coefficients of the channel,
the Doppler, and delay of the qth path of the user to the ith IRS
element. s(t) is the time-domain signal obtained by performing
Heisenberg’s Transform [16].
The signal received at the BS after reflection from the ith IRS
with βie

jψi being the reflection coefficient is represented as:

riout =

Qf∑
p=1

fi,pβie
jψi

Qh∑
q=1

ej2πρ
f
i,p(t−τ

h
i,p−τ

f
i,p)hi,q

ej2πρ
h
i,q(t−τ

h
i,q−τ

f
i,p)s(t− τhi,p − τfi,q),

(2)

where fi,p, ρfi,p, and ρfi,p, are the channel coefficient, the
Doppler, and delay value of the ith IRS element to the BS
for pth path. The signal received at the BS from the user via
I elements of the IRS can be obtained as:

rout(t) =

I∑
i=1

βie
jψi

Qf∑
q=1

Qh∑
p=1

gi,qpe
j2πρi,qp(t−τi,qp)s(t− τi,qp),

(3)



where ρi,qp = (ρfi,p+ρhi,q) is the Doppler shift, τi,qp = (τfi,p+

τhi,q) is the delay of the cascaded channel, and gi,qp = fi,phi,q
is the effective channel gain of the cascaded DD channel.
The discrete-time representation of (3) is obtained as:

r[n] = =

I∑
i=1

βie
jψi

Qf∑
p=1

Qh∑
q=1

gi,qpe
j2π

ki,qp(n−li,qp)

NM

s[[n− li,qp]NM ],

(4)

where n = 1, ..., NM. In the matrix form, (4) can be expressed
as:

r =

I∑
i=1

βie
jψiG̃is+ z = G̃s+w, (5)

where w ∈ CNM×1 is the additive white Gaussian noise
(AWGN) vector. The transmitted data vector from the user
and the received data vector at the BS are given as s ∈
CNM×1 and r ∈ CNM×1. When the ideal-pulse shaping is
employed in OTFS, and after applying the ISFFT/SFFT and
Heisenberg/Wigner transforms, equation (12) can be restated
as follows:

y =

I∑
i=1

βie
jψiGix+w. (6)

The received symbol in the [u, v] bin is expressed as:

y[u, v] =

(
M∑
u′=1

N∑
v′=1

I∑
i=1

βie
jψqgi[u

′, v′]

)
x[[u− u′]M , [u− v′]N ]. (7)

After limiting the (7) to maximum delay and the Doppler tap
present in the channel, we can obtain the relation as:

y[u, v] =

vρ∑
v′=−vρ

uτ∑
u′=0

geff[u
′, v′]x[[u−u′]M , [v−v′]N ]+z[u, v].

(8)
geff [u

′, v′] is the element at the [u′, v′] tap of the M × N
grid of the effective channel. By taking into account all the
IRS elements, the variables uτ and vρ represent the maximum
delay and Doppler taps, respectively.

III. CHANNEL ESTIMATION USING PROPOSED METHOD

A. Initial channel estimation

We consider a pilot embedded in data to perform an initial
estimation of the cascaded channel. The channel for a particu-
lar DD tap [u′, v′] is estimated as geff [u′,v′] = y[u, v]/xp. Let
Q be the total number of DD paths that need to be estimated,
then, we have ĝeff = [gi,1...gi,Q]

T for i = 1, 2, ..., I . Thus,
ĝeff can be represented as:

ĝeff = [g1 . . .gI ]

e
jψ1

...
ejψI

 = Gψ, (9)

where G ∈ CQ×I is the channel matrix for IRS elements. We
can estimate the G as:

=[ĝ
(1)
eff ĝ

(2)
eff . . . ĝ

(I)
eff ][ψ

(1) ψ(2) . . . ψ(I)]−1

=ĜeffΨ
−1. (10)

The scheme utilized in the estimation process has the presence
of additive white Gaussian noise. However, in order to enhance
the accuracy of channel estimation in more complex noise
scenarios, we introduce a data-driven approach that eradicates
the noise from the initial estimate of the channel by combining
the residual network and attention module.

B. Residual attention-based channel estimation

The architecture of the RACE model is depicted in Fig.
2. The RACE combines the residual blocks and attention
module to create the complete residual attention architecture.
The following operations are involved:

1) Residual Network: Noisy observation X ∈ RQ×I is
provided to the residual network. The residual network
incorporates multiple residual blocks for eliminating
noise from the noisy observation. Each residual block
has three layers, the initial two layers perform Convo-
lution (Conv) (with 64 filters of kernel size (3, 3)) +
Batch Normalization (BN) + ReLU operations. The last
layer of the residual block performs the Conv operation
with (2 filters). The output of the b-th residual block is
denoted as:

X′
b = Xb−1 − F (Xb−1). (11)

The output of the last residual block X′ is the noiseless
observation, which is given to the attention block for
further processing.

2) Attention block: In the attention block, the relationship
between X′ and X is calculated, to figure out the
important features in the noisy observation. Further,
attention weights are calculated to identify the important
features in the noisy observation for accurately estimat-
ing channels. The attention weights are calculated from
the following steps:

a) We compute key K = Conv(X), query Q =
Conv(X′), and value V= Conv(X) matrix.

b) By applying the Softmax function to the dot prod-
uct of K and Q, attention weights A are calculated
as

A = Softmax(KTQ). (12)

The obtained attention weights are then multiplied to
the V to obtain the noise-free observation X̂. The Conv
layer is applied at the end to X̂ to obtain the original
shape as X̂ ∈ RQ×I×2.

To train the RACE model for channel estimation, the following
loss function is minimized

1

S

S∑
s=1

∥∥∥Xs − X̂s
∥∥∥2
F
, (13)
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Fig. 2. Architecture of the RACE Model.

where Xs is the sth ground truth sample in the training dataset
and X̂s is the predicted sample by the RACE model. For
training the model Adam optimizer is used with total training
samples S = 1000. At inference time, the RACE model takes
a noisy channel estimate as an input and applies the learned
RACE model to enhance the channel estimation accuracy.

IV. EXPERIMENTAL SETTINGS AND RESULTS

We consider an OTFS grid with M = N= 32, fc = 4
GHz, and ∆f = 15 KHz. The Doppler and delay taps are
randomly selected, and Rayleigh fading is used to model user-
IRS and IRS-BS channels. The phase shift of IRS with I =
16 is obtained from the DFT matrix. The value of Qf , Qh

= 2, is selected. Lastly, QAM modulation is adopted for bit
mapping. We adopt the normalized mean square error (NMSE)
to evaluate channel estimation performance. It is defined as

NMSE =
E∥Ĝ − G∥2F

E∥G∥2F
, (6)

where Ĝ is the estimated channel matrix and G is the true
channel matrix.
We compare the proposed method with threshold-based [15]
and residual network (ResNet) [14] that are adopted in the
literature for OTFS channel estimation.
In Fig. 3, we compare the NMSE of the proposed method
with the other methods against a range of SNR. It is clear
from Fig. 3 that the ResNet with an attention model outper-
forms the ResNet alone in effectively eliminating noise from
observations. Moreover, the integration of the attention module
into the ResNet significantly enhances the accuracy of channel
estimation, even under low SNR conditions. These results
highlight the benefits of incorporating an attention mechanism
into deep residual networks, as it leads to improved noise
reduction and more accurate channel estimation, particularly
in challenging SNR scenarios.
To assess the scalability of our proposed model, we conducted

experiments to investigate the impact of varying the number
of DD paths, denoted as Q = Qf +Qh, on the NMSE. This
analysis enables us to evaluate the performance of our method
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across different channel conditions. As shown in Fig. 4, our
method consistently outperforms other existing methods in
terms of NMSE, even as the number of DD paths increases.
The trend is evident: as we increase the number of DD
paths, the NMSE remains significantly lower for our method
compared to alternative approaches.
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Fig. 5 illustrates the impact of varying the number of elements
of the IRS on the NMSE. By increasing the number of
elements, we observe a decrease in NMSE. This improvement
can be attributed to the adaptability of the RACE model to
handle complex inputs.
To show the robustness of the RACE model, we vary the
SNR value in the test dataset while keeping the SNR in
the train data fixed at 5 dB. Fig. 6 shows that, when there
is a significant gap between the SNR of the training and
test data, ResNet may struggle to generalize well. This is
because ResNet relies on the underlying patterns and features
in the training data to make predictions. If the test data
has a different SNR distribution or characteristics, ResNet’s
performance may deteriorate. However, our method, which
incorporates an attention mechanism, can still perform well
even in the presence of such gaps between the SNR of the
training and test data. The attention mechanism allows the
model to selectively focus on relevant information and adapt
to varying SNR levels.

V. CONCLUSION

Our proposed approach offers an effective solution for
channel estimation in dynamic scenarios of IRS-aided commu-

nication systems. By leveraging OTFS modulation, we convert
the channel representation from the time-frequency domain to
the DD domain, which is better suited for dynamic scenarios.
Through the utilization of a RACE model, we achieve superior
performance compared to existing deep learning methods and
conventional approaches. The RACE model demonstrates its
capability to accurately estimate the DD channel, resulting
in a significantly lower NMSE when compared to alternative
methods.
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