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Abstract 

Purpose: To develop a respiratory-correlated four-dimensional imaging technique based on 

magnetic resonance fingerprinting (MRF), i.e., RC-4DMRF, for liver tumor motion management 

in radiotherapy.  

Methods: Thirteen liver cancer patients were prospectively enrolled in this study. k-space MRF 

signals of the liver were acquired during free-breathing using the FISP sequence on a 3T scanner. 

The signals were binned into eight respiratory phases based on respiratory surrogates, and inter-

phase displacement vector fields (DVFs) were estimated using a phase-specific low-rank 

optimization method. Hereafter, the tissue property maps, including T1 and T2 relaxation times, 

and proton density (PD), were reconstructed using a pyramid motion-compensated method that 

alternatively optimized inter-phase DVFs and subspace images. To evaluate the efficacy of RC-

4DMRF, amplitude motion differences (AMDs) and Pearson correlation coefficients (PCCs) were 

determined to assess measurement agreement in tumor motion between RC-4DMRF and cine MRI; 

mean absolute percentage errors (MAPEs) of the RC-4DMRF-derived tissue maps were calculated 

to reveal tissue quantification accuracy using digital human phantom; tumor-to-liver contrast-to-

noise ratio (CNR) of RC-4DMRF images was compared with that of planning CT and contrast-

enhanced MRI (CE-MRI) images. Paired Student’s t-test was used for statistical significance 

analysis with a p-value threshold of 0.05. 

Results: RC-4DMRF achieved excellent agreement in motion measurement with cine MRI, 

yielding the mean (± standard deviation) PCCs of 0.95±0.05 and 0.93±0.09 and AMDs of 

1.48±1.06 mm and 0.81±0.64 mm in the superior-inferior and anterior-posterior directions, 

respectively. Moreover, RC-4DMRF achieved high accuracy in tissue property quantification, 

with MAPEs of 8.8%, 9.6%, and 5.0% for T1, T2, and PD, respectively. Notably, the tumor CNR 



in RC-4DMRI-derived T1 maps (6.41±3.37) was found to be the highest among all tissue property 

maps, approximately equal to that of CE-MRI (6.96±1.01, p-value=0.862), and substantially 

higher than that of planning CT (2.91±1.97, p-value=0.048).  

Conclusion: RC-4DMRF demonstrated high accuracy in respiratory motion measurement and 

tissue properties quantification, potentially facilitating tumor motion management in liver 

radiotherapy.



1 Introduction 

Liver cancer is a devastating malignancy threatening millions of lives worldwide [1, 2]. 

Radiotherapy (RT) is an indispensable therapeutic modality in the treatment of liver cancer. 

However, achieving precise radiation dose coverage to liver tumors is practically challenging 

because of respiratory motion, where the liver may move up to 40-50 mm during normal breathing 

[3, 4]. If not properly managed, the respiratory motion may incur unnecessary radiation-induced 

liver toxicity and treatment failure [5]. In recent years, four-dimentional magnetic resonance 

imaging (4DMRI) has emerged as a promising technique for respiratory motion management. This 

non-invasive imaging method provides comprehensive tumor/organ motion information 

throughout the breathing cycle, with excellent discrimination between tumor and healthy tissues 

[6-10]. Despite its potential benefits, current 4DMRI techniques have several limitations, 

especially the inter-patient tumor contrast inconsistency and insufficient temporal resolution, 

which can compromise the accuracy of motion management and limit its widespread clinical 

application. 

+ 

Several preliminary 4DMRF methods have been developed using retrospective 

reconstruction [11-15]. In these methods, free-breathing MRF signals are correlated with 

respiratory surrogates and are retrospectively binned into multiple respiratory motion phases. 

Hereafter, the MRF images of each phase are independently reconstructed. The retrospective 

reconstruction may lead to a deterioration in image quality due to a reduction in the number of k-

space signals available per motion phase. Li et al. addressed this problem by using 10 repeated 

MRF scans to acquire sufficient MRF signals for each motion phase [11]. However, the scan time 

is prohibitively long (~3 mins for a two-dimensional (2D) slice), diminishing the popularity of this 



approach in clinical applications. Huang et al. devised a comparable approach that bins signals 

into only two phases, resulting in a reduced scan time but at the cost of compromised temporal 

resolution [13]. Recently, motion compensation (MC) has been used to substantially decrease scan 

time in 4DMRF by more than fivefold [14, 15]. Following retrospective binning, MC methods 

calculate the displacement vector fields (DVFs) to capture the inter-phase motion pattern between 

each pair of respiratory phases. These MC methods obtain sufficient data by deforming MRF 

dynamics from the other phases to the target phase, rather than by conducting repeated MRF scans. 

Building on this approach, Cruz et al. [14] used the alternating direction method of multipliers to 

reconstruct motion-resolved tissue maps, while Cao et al. [15] developed a sliding-window 

approach to calculate inter-phase DVFs. 

Despite the abovementioned efforts to develop the 4DMRF technique, it remains unready 

for clinical implementation in RT because of the following limitations. First, the temporal 

resolutions of current 4DMRF methods are insufficient to enable their application in RT. For 

instance, only two [13] and three [14] respiratory phases have been reported, whereas eight to ten 

phases are commonly required for RT in clinical practice. Second, the accuracy of quantitative 

tissue mapping offered by current 4DMRF methods is suboptimal. This occurs because reference 

images used for motion calculation have significant under-sampling artifacts, which decreases the 

accuracy of DVF calculations, leading to inaccurate tissue mapping [15]. Third, current 4DMRF 

methods were developed and tested on healthy volunteers, and the clinical validation of these 

methods for patients with liver cancer remains unanswered. 

Accordingly, in the present study, a novel respiratory-correlated 4DMRF (RC-4DMRF) 

technique was developed for tumor motion management in liver cancer RT. This technique 

innovatively integrates a pyramid motion-compensation design that substantially increases the 



accuracy of 4DMRF reconstruction. Notably, this study represents the first-of-its-kind to 

demonstrate the 4DMRF performance on liver cancer patients. The effectiveness of this technique 

was evaluated in aspects of tumor motion measurement accuracy, tissue quantification accuracy, 

and tumor-to-liver contrast-noise-ratio (CNR) in order to demonstrate its feasibility for clinical 

implementation, for the first time, for liver cancer. Results of the present work would lay a 

foundation for applying RC-4DMRF in RT of liver cancer, including but not limited to accurate 

target volume determination and inter-fraction motion assessment. 

 

2 Methods and Materials 

2.1 RC-4DMRF image reconstruction  

The MRF reconstruction pipeline process typically involves three key stages, namely, 

signal acquisition, dictionary simulation, and pattern matching, which have been explicitly 

introduced in previous studies [16-19]. The signal acquisition stage involves acquiring k-space 

signals at each TR (i.e., each time position) and reconstructing the corresponding MRF dynamics 

using Fourier transform. In the dictionary simulation stage, a lookup table is constructed based on 

MRF scan parameters (e.g., FAs and TRs) using a Bloch equation [20], which contains the 

theoretical fingerprints of various tissue types and their respective tissue property values (e.g., T1, 

T2, and PD). Finally, in the pattern matching stage, the reconstructed MRF dynamics are compared 

voxel-by-voxel with the lookup table to determine the tissue values. Dot-product is performed 

between measured fingerprints with theoretical fingerprints, and the best-fitting tissue property 

values are retrieved by exhaustively searching the maximum dot-product values [19]. Furthermore, 

the time-series MRF dynamics demonstrate low-rank compressibility in the time dimension [21]. 

This property facilitates the derivation of a low-rank subspace basis from the dictionary, leading 



to the creation of a low-rank dictionary. By projecting the full-rank MRF dynamics onto the 

subspace basis, the MRF dynamics are transformed into multiple subspace images. The pattern 

matching process is then performed between the low-rank subspace images and the low-rank 

dictionary. The utilization of the low-rank property of MRF in reconstruction has been shown to 

effectively reduce computational burdens and improve reconstruction accuracies [17, 18]. 

RC-4DMRF integrates two novel components, namely initial inter-phase motion 

estimation and pyramid motion-compensated optimization, into the MRF reconstruction pipeline 

to address the challenge of respiratory motion. A schematic illustration of the RC-4DMRF 

algorithm is shown in Figure 1. Initial inter-phase motion estimation utilizes a phase-specific low-

rank optimization (PS-LR-O) method to estimate inter-phase DVFs from k-space MRF signals 

corrupted by motion artifacts (Figure 1(a)). The second component, pyramid motion-compensated 

optimization, optimizes the subspace images and inter-phase DVFs using an alternative 

minimization strategy, with the estimated inter-phase DVFs from the former component as input 

(Figure 1(b)). A final pattern matching step is performed on the optimized subspace images to 

produce the tissue maps of each phase. Details of initial inter-phase motion estimation and pyramid 

motion-compensated optimization are described in the following subsections. 

2.1.1 Initial inter-phase motion estimation  

Free-breathing MRF signals are first binned into eight motion phases based on respiratory 

surrogates (Figure 1(a), left), and inter-phase DVFs are then estimated from the subspace images 

derived from PS-LR-O (Figure 1(a), right).  

PS-LR-O is a low-rank-based method that employs total variation (TV) regularization to 

reduce under-sampling artifacts and noise of subspaces images. The PS-LR-O method projects 



binned raw k-space signals to subspace images by singular value decomposition and optimizes the 

subspace images of each phase i independently using the l2-norm function defined in Equation 

(1),  

  𝑎𝑟𝑔min
𝑥𝑖

‖ℱ𝑖𝑥 𝑖 − 𝒫𝑖𝑦‖2
2 + 𝜆‖𝑇𝑉‖1, for 𝑖 = 1, … , 8     (1) 

where ℱ𝑖 is the low-rank non-uniform fast Fourier transform (NUFFT) operator of phase i [18], 

which combines the Fourier transform matrix and the low-rank projection matrix into a single 

matrix to reduce the computational burden [17], and is constructed based on the k-space trajectory 

at the dynamic position of phase i; 𝑥 𝑖  is the low-rank subspace image of phase i; 𝑦 is the raw k-

space data; and 𝒫𝑖 is a phase-binning operator that retains only the k-space data belonging to phase 

i. Five ranks are used in the optimization, and the TV regularization is applied to the spatial 

dimension to enforce the sparsity of the subspace images. Equation (1) is solved by non-linear 

conjugate gradient (CG) descent [22] with a regularization weight (𝜆) of 0.002 and a fixed iteration 

step of 10. 

The main subspace images represent the principal anatomical structure of each phase, and 

the inter-phase DVFs are calculated based on them. Because the contrast of the main subspace 

images varies between phases, DVFs are calculated using a free-form registration algorithm that 

employs mutual information as a cost function [23-25]. This algorithm calculates B-spline 

deformation at various image resolutions using the following parameters: histogram bins of 50, a 

gridding size of 15 pixels, and a maximum of 1,000 iterations at each resolution level.  

The respiratory signals of MRF data are determined from MRF dynamics using a sliding-

window approach [26]. Specifically, a series of sliding-window images are obtained by combining 

consecutive MRF dynamics within a finite acquisition time window (~0.01 s). The respiratory 



amplitudes are determined by the diaphragm positions from the sliding window images by a self-

developed edge-detection algorithm. 

2.1.2 Pyramid motion-compensated optimization  

Section 2.1.1 describes the utilization of phase-specific k-space signals for optimizing the 

subspace images of each phase. However, despite their sufficiency for inter-phase motion 

estimation, these subspace images do not contain adequate information for pattern matching 

because of phase sorting-induced reduction in MRF dynamics. Therefore, to improve the subspace 

images of each phase, pyramid motion-compensated optimization was developed, as illustrated in 

Figure 1(b), consisting of a subspace image optimization branch (indicated by the blue arrows) 

and a DVF optimization branch (indicated by the yellow arrows). 

The optimization of subspace images is achieved via a motion compensation design, with 

the assistance of the calculated DVFs, as formulated in Equation (2),  

 𝑎𝑟𝑔min
𝑥𝑖

‖∑ 𝒜𝑝ℱ8
𝑝=1 ℳ𝑖

𝑝𝑥𝑖 − 𝑦‖
2

2
+ 𝜆‖𝑇𝑉‖1, for 𝑖 = 1, … , 8    (2) 

where 𝒜𝑝 is the k-space sampling operator and represents a list of binary masks that equal 1 when 

the TR position belongs to phase p and 0 otherwise; ℱ is the low-rank NUFFT operator constructed 

based on the k-space trajectory from all of the dynamics, which is different from the ℱ𝑖 used in 

Equation (1) that utilizes phase-specific k-space trajectory; ℳ𝑖
𝑝
 is the DVF between the phase 𝑝 

and the target phase 𝑖; and 𝑥𝑖 represents the subspace images of the target phase i. Equation (2) is 

solved iteratively using non-linear CG descent. As shown in Figure 1(b), the forward iteration can 

be regarded as an approximation of the k-space MRF data (𝑦) from the subspace images of the 

target phase (𝑥𝑖) and the DVFs between the target phase and other phases (ℳ𝑖
1,…, ℳ𝑖

8). First, the 

subspace images of the target phase (𝑥𝑖) are deformed to other phases using the calculated DVFs, 



thereby obtaining subspace images of all eight phases. Subsequently, a forward low-rank NUFFT 

operation (ℱ) is implemented on these deformed subspace images to obtain k-space data for each 

phase. The generated k-space data are subjected to k-space sampling (𝒜1, … , 𝒜8) to mask the k-

space data that do not belong to the deformed phases. The generated k-space signals of each phase 

are then combined via a summation operation, and the resulting combined k-space data are 

compared with the raw MRF signals (𝑦). The backward process, on the other hand, performs the 

calculation in the opposite direction, i.e., deforms the k-space residual back to the subspace images 

[27]. The initial inputs of Equation (2) include the DVFs estimated in Section 2.1.1 (ℳ [0] ) and 

zeros-valued subspace images (𝑥𝑖
[0]

). The error between the calculated k-space data and raw data 

is iteratively minimized using a fixed iteration of 20. An early-stopping criterion is used if the 

optimization converges. Equation (2) applies a TV constraint in the spatial dimension with a 

regularization weight of 0.002.  

 The optimization of the DVFs is performed on the optimized subspace images and is 

repeated three times via an alternative optimization approach. The optimized subspace images 

mitigate under-sampling artifacts and noises, providing an improved image quality for inter-phase 

DVF calculation. Therefore, after the subspace images are optimized for all of the motion phases, 

the inter-phase DVFs are recalculated using the registration algorithm described in Section 2.1.1. 

The resulting updated DVFs, in return, improve the spatial accuracy in the subspace image. A 

pyramid registration method was developed for the three DVF optimization iteration steps: the 

initial iterations focus on large-scale motion, whereas the later iterations focus on refined structures. 

Specifically, the gridding size is reduced from 15 to 10 pixels and from 10 to 5 pixels in the second 

and third iteration steps, respectively, to obtain a refined DVF motion pattern.  

2.2 RC-4DMRF experiment 



 The MRF fast acquisition with steady-state precession (MRF-FISP) sequence was utilized 

for MRF data acquisition in RC-4DMRF experiments [26, 28], which were performed on digital 

human phantoms and on in vivo patients diagnosed with liver cancer.  

2.2.1 MRF sequence 

 The MRF-FISP sequence employs an inversion recovery pulse with an inversion time (TI) 

of 18 ms, followed by 1,000 consecutive radiofrequency (RF) pulses with an echo time (TE) of 

1.77 ms. The FAs and TRs are designed with a “half-sine” style, ranging from 0° to 70° and 11.7 

to 14.3 ms, respectively. The MRF-FISP sequence acquires k-space data using a 2D spiral readout 

trajectory in the sagittal plane, which is repeated in the medial-lateral (ML) direction to cover the 

volumes of interest (VOIs) with a slice thickness of 5 mm. Additional MRF-FISP sequence 

parameters include an in-plane resolution of 256 × 256, a field of view (FOV) of 300 × 300 mm2, 

and a scan time of 13 s per slice. An MRF dictionary comprising 8,000 elements was simulated 

using the extended phase graph algorithm [20] based on the MRF-FISP parameters. The dictionary 

includes T1 relaxation times ranging from 10 to 4,000 ms and T2 relaxation times ranging from 

10 to 1,000 ms.  

2.2.2 Digital human phantom experiment 

A digital human phantom experiment was performed on 10 whole-body motion phantoms 

simulated by the extended cardiac-torso phantom [29-31]. The T1, T2, and PD values of multiple 

organs (e.g., the liver, tumor, and kidney) were determined according to in vivo measurements 

obtained in a 3T scanner [32, 33] (see Appendix 1). The 10 motion phantoms were characterized 

by unique irregular breathing patterns, each with a maximum diaphragm motion of 2.0 cm in the 

superior-inferior (SI) direction and 1.2 cm in the anterior-posterior (AP) direction. The numerical 



k-space data were simulated by the extended phase graph algorithm and NUFFT algorithm based 

on the MRF sequence parameters in Section 2.2.1 [20, 34].  

2.2.3 In vivo patient experiment 

A cohort of 13 patients with hepatocellular carcinoma (HCC) was enrolled for the in vivo 

patient experiment, consisting of three female patients (mean age: 64.7 ± 1.2 years) and ten male 

patients (mean age: 58.9 ± 8.7 years). The study protocol was approved by the institutional review 

board. Free-breathing MRF scans were conducted using a 3T scanner (SIGNA Premier, GE 

Healthcare) and 50 body coils were utilized for signal reception. VOIs were determined based on 

the planning target volume (PTV) and the number of sagittal slices varied from 10 to 20, depending 

on the length of the PTV in the ML direction. All patients underwent routine clinical computed 

tomography (CT) and contrast-enhanced magnetic resonance imaging (CE-MRI) scans for RT 

treatment planning. Besides, a cine MRI scan was performed on each patient, after MRF scans, for 

measurement of tumor motion.  

2.3 Evaluation metrics 

The fidelity of RC-4DMRF was assessed using three evaluation metrics: motion 

measurement accuracy, tissue quantification accuracy, and tumor-to-liver contrast. All of the 

statistical results were reported by the mean value with variability measured in standard deviation 

(mean ± standard deviation). The statistical significance of the results was ascertained through the 

application of a paired Student’s t-test, and a p-value of less than 0.05 was considered statistically 

significant. 

Motion measurement accuracy was quantified by measuring inter-phase tumor motion 

trajectories. The localization of tumors was performed manually on the T1 map for each phase, 



and the trajectories of tumor motion were calculated in both SI and AP directions [35]. The motion 

trajectory of the tumor as observed in cine MRI served as the reference. To minimize variation in 

respiratory motion across different breathing cycles, an average cine MRI method was employed 

to derive the average breathing pattern of the patient. This involved sorting the real-time cine MRI 

images into eight phases based on the respiratory signal and then reconstructing averaged cine 

MRI images that contained only a single breathing cycle [7, 36]. Amplitude motion differences 

(AMDs) and Pearson correlation coefficients (PCCs) were used as metrics to determine the level 

of agreement between the motion trajectories obtained by RC-4DMRF and those derived from the 

averaged cine MRI.  

Tissue quantification accuracy was assessed by comparing the RC-4DMRF-derived T1, 

T2, and PD maps with their corresponding ground-truth maps in the digital human phantom 

experiment, as well as by comparing the measured tissue values with the reference values in the in 

vivo experiment. The VOIs in the digital human phantom experiment were liver, tumor, and total 

body area. The mean absolute percentage errors (MAPEs) of the VOIs for the eight-phase tissue 

maps were calculated using Equation (3),  

 
𝑀𝐴𝑃𝐸 =

100%

𝑛
∑ |

𝑃𝑖 − 𝑇𝑖

𝑇𝑖
|

𝑛

𝑖=1

 (3) 

where 𝑛 is the total number of voxels in the VOIs, and 𝑃 and 𝑇 are the predicted and ground-truth 

VOI, respectively. The tissue quantification accuracy of RC-4DMRF was compared with that of 

other state-of-the-art baseline methods, namely, the methods of Li et al. [11], Cruz et al. [14], and 

Cao et al. [15]. As the method of Li et al. [11] uses 10 MRF scan repetitions (denoted a “10 rep” 

setting) and the other methods use only one MRF scan (denoted a “1 rep” setting), the results of 

both 1 rep and 10 rep settings for the method of Li et al. are reported to enable a fair between-



method comparison. In the in vivo patient experiment, the T1 and T2 values of multiple tissue 

types (tumor, liver, muscle, fat, and kidney) were measured and compared with reference values 

retrieved from previous quantitative MRI studies [32, 33].  

 The tumor-to-liver contrast was evaluated by determining the contrast-to-noise ratio (CNR) 

within the patient cohort. The regions of interest (ROIs) utilized for the CNR computation were 

identified based on the gross target volume (GTV) derived from the RT treatment planning CT. 

The tumor-to-liver CNR of RC-4DMRF was compared with those of the planning CT and CE-

MRI scans.  

3 Results 

3.1 Motion measurement accuracy 

RC-4DMRF demonstrated a high capability to accurately resolve respiratory motion and 

characterize liver motion patterns. The results of a representative patient are shown in Figure 2. 

The T1, T2, and PD maps of eight respiratory phases derived from RC-4DMRF are presented in 

sagittal planes (Figure 2(a)), transverse planes (Figure 2(b)), and coronal planes (Figure 2(c)), 

respectively. The lung-liver boundaries were clearly reconstructed at each phase, and the tumor 

and normal tissue had clear discriminations. The cine MRI images acquired in the corresponding 

motion phases are shown in Figure 2(a). The tissue maps demonstrated respiratory motion similar 

to that seen in cine MRI. An animation of respiratory motion obtained from RC-4DMRF and cine 

MRI is shown in Appendix 2. Figure 2(d) demonstrates the tumor motion trajectories of the 

presented patient. The trajectories measured in RC-4DMRF yielded similar amplitude and motion 

patterns to those measured in cine MRI.  



Amongst all the patients, the average AMD between RC-4DMRF and cine MRI was 1.48 

± 1.06 mm in the SI direction and 0.81 ± 0.64 mm in the AP direction, and the average PCC 

between RC-4DMRF and cine MRI was 0.95 ± 0.05 in the SI direction and 0.93 ± 0.09 in the AP 

direction.  

3.2 Tissue quantification accuracy 

RC-4DMRF also achieved high accuracy in tissue property quantification. Figure 3 

demonstrates the results of the digital human phantom experiment. The error maps show minimal 

tissue property quantification errors (a narrow color window is used in error maps for better 

visualization of error regions). Appendix 3 presents the animation of respiratory motion obtained 

by RC-4DMRF and the corresponding ground truth. The MAPEs of VOIs in the T1, T2, and PD 

maps generated by RC-4DMRF and other reconstruction methods are presented in Table 1. RC-

4DMRF achieved the lowest MAPE for all VOIs (all p-values < 0.05). Among different tissue 

properties, the lowest MAPE was achieved in PD, whereas the highest MAPE was found in T2. 

Table 2 lists the T1 and T2 values of different organs obtained in the in vivo patient experiment, 

as well as the corresponding reference values. The measured values are in good agreement with 

the reference values. In particular, the measured T1 values demonstrate higher correlation than T2 

values.  

3.3 Tumor-to-liver contrast 

A comparison of the RC-4DMRF tissue maps with clinical scans (CE-MRI and planning 

CT scans) is shown in Figure 4. The average tumor-to-liver CNRs in the T1, T2, and PD maps 

were 7.27 ± 2.06, 3.81 ± 5.52, and 3.20 ± 4.62, respectively, and those in the CE-MRI and planning 

CT scans were 6.96 ± 1.01 and 2.91 ± 1.97, respectively. Among different quantitative tissue maps, 



the T1 map had the highest tumor contrast; it was significantly greater than that of the planning 

CT scan (p-value = 0.048) and was comparable with that of the CE-MRI scan (p-value = 0.862). 

In addition, as shown in the expanded images, the T1 map demonstrated clearer tumor boundaries 

than the CE-MRI scan.  

4 Discussion  

This study has successfully developed a novel technique, RC-4DMRF, for improving the 

management of tumor motion in liver cancer RT. To the best of our knowledge, this is the first 

investigation to explore the feasibility of using 4DMRF for imaging liver cancer patients. The 

superiority and robustness of RC-4DMRF were verified through experiments on digital human 

phantoms and 13 patients with HCC, respectively. RC-4DMRF attained voxel-level precision in 

measuring respiratory motion with high temporal resolution, demonstrated superior performance 

in tissue property quantification compared to state-of-the-art baseline methods [11-15], and 

exhibited excellent tumor-to-liver CNRs compared to those achievable with standard clinical 

scanning methods (planning CT and CE-MRI). These promising results lay a solid foundation for 

the application of RC-4DMRF for tumor motion management in liver cancer RT, including precise 

target volume determination and inter-fraction motion assessment. Moreover, RC-4DMRF could 

be effectively integrated into magnetic resonance-linear accelerator (MR-LINAC) for online 

adaptive RT, given that successful implementation of MRF has already been demonstrated in both 

1.5T and 0.35T MR-LINAC [37, 38]. Ultimately, the use of RC-4DMRF has the potential to 

enhance the precision of radiation dose coverage for tumor eradication and alleviate the liver 

toxicity profile for normal function preservation.  

RC-4DMRF successfully generates motion-free tissue property maps across eight 

respiratory phases with accurate motion measurement and consistent contrast. Respiratory motion 



was resolved from free-breathing k-space raw data, which enabled clear visualization of diaphragm 

positions and tumor boundaries in the tissue maps. The tumor motion trajectories measured by 

RC-4DMRF were in excellent agreement with those obtained from cine MRI (PCC > 0.9). The 

AMDs in both SI and AP directions were approximately to the length of one pixel, and the 

trajectories gave rise to a higher AMD in the SI direction than in the AP direction. In this study, 

the 2D MRF-FISP sequence was used as the base sequence for 4DMRF acquisition because of its 

rapid k-space data acquisition speed (~13 s per slice), which provided higher temporal resolution 

in retrospective phase sorting compared to the 3D sequence. Volumetric MRF tissue maps were 

generated by sequentially acquiring multiple sagittal planes to cover the entire VOI. The T1 and 

T2 tissue maps of the coronal and transverse planes demonstrated consistent in-plane contrast, 

owing to the quantitative nature of MRF acquisition. In contrast, conventional multi-slice 4DMRI 

may exhibit inconsistent in-plane contrast if two slices are acquired at different times.  

The RC-4DMRF method demonstrated the highest accuracy in tissue property 

quantification than other comparing 4DMRF methods. Moreover, the motion compensation design 

of RC-4DMRF resulted in its scan time being 90% shorter than that in the method of Li et al. The 

RC-4DMRF only requires one MRF scan (1,000 dynamics; ~13 s per slice) to reconstruct accurate 

tissue maps. In contrast, the method of Li et al. requires nine more scan repetitions (10,000 

dynamics; ~3 mins per slice) to achieve accurate tissue maps and has the lowest performance when 

data from only 1 repetition are used. The lengthy acquisition time of the method proposed by Li et 

al. could be burdensome for patients during scanning and is inefficient in clinical practice. Among 

the three MC-based methods, the method of Cao et al. has a higher mapping error than that of Cruz 

et al. and RC-4DMRF, which may be attributable to the low accuracy of Demons registration [39]. 

RC-4DMRF employs the same registration algorithm as the method of Cruz et al. in the initial 



inter-phase motion estimation step. However, the pyramid motion-compensation design of the RC-

4DMRF updates the inter-phase motion during optimization, thereby reducing motion errors and 

improving the accuracy of tissue mapping.  

The RC-4DMRF T1 maps showed tumor contrast comparable to that of CE-MRI scans. It 

is worth noting that RC-4DMRF tissue maps were obtained without the use of contrast agent. As 

the high intensity of the T1 maps might be due to micro-structural changes in the tumor regions, 

such quantitative tissue maps could be used for assessing intra-tumoral heterogeneity and 

longitudinal tumor response. CE-MRI scans were obtained in free-breathing mode in the clinic, 

resulting in images with blurred tumor boundaries. In contrast, motion-resolved RC-4DMRF T1 

maps had sharp tumor boundaries, which could improve the accuracy of GTV determination. A 

comparison of the three quantitative maps (T1, T2, and PD) from RC-4DMRF revealed 

significantly lower tumor contrast in T2 and PD maps than in T1 maps. Nevertheless, co-registered 

T2 and PD maps can provide additional anatomical information for tumor determination. For 

instance, both the tumor and vessels exhibited high intensity in the T1 map of Patient B (Figure 

4), whereas only the vessels exhibited high intensity in the PD map. Therefore, combining the T1 

and PD maps could precisely determine the tumor region. Overall, quantitative 4D tissue maps 

might present superior advantages over CE-MRI scans in determining target volume, owing to the 

simultaneous assessment of tumor regions and their motion ranges, which cannot be practically 

achieved by CE-MRI scans. 

There are several future directions to explore for enhancing the performance of RC-

4DMRF. Firstly, the development of a more efficient RC-4DMRF approach is warranted given 

the time-consuming nature of the current iterative-based method, which on average takes 18 

minutes to reconstruct tissue maps for one slice and up to 180-360 minutes to reconstruct a 4D 



volume depending on the patient's imaging volume. The utilization of deep learning techniques, 

such as deep learning-based low-rank NUFFT [40, 41] and deep learning-based inter-phase motion 

estimation [42], may significantly decrease the reconstruction time and should be considered for 

future investigation. Secondly, despite being the first study of its kind to evaluate the use of 

4DMRF for imaging liver cancer patients, a more comprehensive clinical evaluation of RC-

4DMRF is necessary. Specifically, the accuracy of internal target volume (ITV) determination, a 

crucial step in motion management and treatment planning, needs to be assessed and compared to 

those generated from 4DCT and 4DMRI. Finally, a dosimetric evaluation of the treatment plan 

would be valuable in assessing the clinical benefits of RC-4DMRF in terms of tumor control and 

preservation of normal liver tissue. While this aspect is beyond the scope of the present study, it 

presents an exciting avenue for future research. 

5 Conclusions 

 RC-4DMRF has been successfully developed and validated in a prospective cohort of liver 

cancer patients, demonstrating high accuracy in simultaneous respiratory motion measurement and 

tissue property quantification. This novel 4D imaging technique holds great promise in improving 

the motion management of liver cancer RT. Further clinical investigations in aspects of target 

determination and dosimetry will be of great interest when it comes to contextualizing the 

applicability of RC-4DMRF. Ultimately, the use of RC-4DMRF may improve the treatment 

outcomes of countless liver cancer sufferers around the world by strengthening radiation dose 

coverage for tumor eradication and mitigating the risk of unnecessary radiation-induced liver 

complications.  
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Figure 1. Schematic illustration of respiratory-correlated four-dimensional magnetic resonance 

fingerprinting (RC-4DMRF) (a) Initial inter-phase motion estimation. The inter-phase motion is 

estimated by projecting the phase-specific data onto a low-rank subspace. Specifically, the free-

breathing MRF signals are first phase-sorted into different respiratory phases. The motion 

reference images are the rank-1 subspace images obtained by a phase-specific low-rank 

optimization (PS-LR-O) method. The deformation vector fields (DVFs) between every two motion 

phases are estimated using a free-form registration algorithm. (b) Pyramid motion-compensated 

optimization. The inter-phase DVFs ( ℳ ) and the phase-specific subspace images ( 𝑥 ) are 

iteratively reconstructed with a total iteration step of three. The DVFs estimated in (a) are used as 



the initial assignment in the reconstruction. At the end of the reconstruction, the optimized 

subspace images are used for pattern matching to obtain high-quality four-dimensional tissue maps. 

  



 

Figure 2. Respiratory-correlated four-dimensional magnetic resonance fingerprinting (RC-

4DMRF) reconstruction result of a representative patient. T1, T2, and proton density (PD) tissue 

maps of eight respiratory phases are shown in the sagittal plane (a), transverse plane (b), and 



coronal plane (c), respectively. The locations of the transverse and coronal planes are indicated by 

the white dotted lines in (a) (T1 map, phase 1). The tumor is indicated by the blue arrows, and the 

white dashed lines are added to facilitate the visualization of diaphragm motion. The cine MRI 

images acquired in the corresponding motion phases are shown in the fourth row of (a). In addition, 

the tumor motion trajectories of the presented patient in the superior-inferior (SI) and anterior-

posterior (AP) directions are shown in (d).  

  



 

Figure 3. Respiratory-correlated four-dimensional magnetic resonance fingerprinting (RC-

4DMRF) reconstruction result of a digital human phantom. T1, T2, and proton density (PD) tissue 

maps of eight respiratory phases are shown in the first, third, and fifth rows, and the corresponding 

absolute error maps are shown in the second, fourth, and sixth rows. The tumor is indicated by the 

blue arrow, and the white dashed lines are added to facilitate the visualization of diaphragm motion. 

The color window of the error maps is narrower compared to that of the tissue maps to improve 

the visualization of the error region. An animation of respiratory motion is given in Appendix 3. 

 

  



 

Figure 4. Comparison of respiratory-correlated four-dimensional magnetic resonance 

fingerprinting (RC-4DMRF) tissue maps with clinical scans (contrast-enhanced magnetic 

resonance imaging (CE-MRI) and planning computed tomography (CT) scans). The tumor regions 

are expanded in the yellow boxes, and the gross target volumes are contoured by the red lines in 

the CT images. The tumor contrast-to-noise ratio is presented under each yellow box. 

 

 



 

Table 1. Results of quantitative evaluation of different reconstruction methods for the accuracy of 

tissue property quantification. The accuracy of respiratory-correlated four-dimensional magnetic 

resonance fingerprinting (RC-4DMRF) was compared with the accuracies of three other 4DMRF 

methods: those of Li et al. [15], Cruz et al. [18], and Cao et al. [19]. The evaluation was performed 

on digital human phantoms (n = 10). The results are reported as mean absolute percentage errors 

with variability measured in standard deviations (MAPEs ± SDs) for volumes of interest (VOIs) 

in the tumor, liver, and total phantom body region.  

T1 MAPE ± SD (%) 
 Tumor Liver Total 

Li et al. (1 rep) * [15] 70.91 ± 3.19 148.02 ± 13.56 149.25 ± 26.29 

Li et al. (10 rep) * [15] 13.65 ± 2.07 19.38 ± 2.60 20.34 ± 1.86 

Cao et al. [19] 14.40 ± 2.92 14.72 ± 1.99 16.83 ± 1.92 

Cruz et. al. [18] 9.22 ± 2.73 9.53 ± 1.39 13.18 ± 1.73 

RC-4DMRF 7.03 ± 2.88 4.67 ± 1.32 8.84 ± 1.63 

    

 

T2 MAPE ± SD (%) 
 Tumor Liver Total 

Li et al. (1 rep) * [15] 647.48 ± 195.72 937.72 ± 130.14 645.02 ± 55.30 

Li et al. (10 rep) * [15] 16.93 ± 1.57 26.43 ± 2.19 25.03 ± 1.95 

Cao et al. [19] 18.98 ± 3.77 33.70 ± 5.30 29.25 ± 3.68 

Cruz et. al. [18] 10.58 ± 1.09 19.62 ± 9.48 20.64 ± 9.01 

RC-4DMRF 4.61 ± 1.19 6.87 ± 1.44 9.65 ± 2.08 

 

 

PD MAPE ± SD (%) 
 Tumor Liver Total 

Li et al. (1 rep) * [15] 52.14 ± 4.24 65.69 ± 5.48 59.58 ± 6.34 

Li et al. (10 rep) * [15] 12.11 ± 1.61 14.03 ± 1.38 11.60 ± 0.79 

Cao et al. [19] 12.22 ± 1.49 12.44 ± 0.57 11.94 ± 0.24 

Cruz et. al. [18] 6.81 ± 2.22 6.63 ± 0.62 7.01 ± 0.57 

RC-4DMRF 4.54 ± 2.12 3.09 ± 0.68 5.00 ± 0.72 

 

Abbreviations: PD = proton density 



*“1 rep” indicates a result obtained from data acquired in a single MRF scan, whereas “10 rep” 

indicates a result obtained from data acquired in 10 repeated MRF scans. 

  



Table 2. Quantitative results of the measured T1 and T2 relaxation time for multiple tissue types 

in an in vivo patient experiment. The measurement was performed on hepatocellular carcinoma 

(HCC) patients (n = 13) in a 3T scanner. The measured T1 and T2 values were compared with 

reference T1 and T2 values retrieved from previously published quantitative MRI studies [34, 35]. 

Results are reported as mean values in milliseconds (ms) with variability measured in standard 

deviations (Mean ± SD).  

Organs 

T1 Relaxation time (ms) T2 Relaxation time (ms) 

Measurement Reference Difference Measurement Reference Difference 

Liver 757 ± 78 809 ± 71 52 43 ± 13 34 ± 4 9 

Fat 261 ± 53 253 ± 42 8 71 ± 11 68 ± 4 3 

Muscle 1248 ± 70 1295 ± 83 47 55 ± 15 44 ± 9 11 

Kidney 

(Cortex) 
1453 ± 310 1314 ± 77 139 63 ±13 76 ± 7 13 

Kidney 

(Medulla) 
1863 ± 120 1702 ± 205 161 82 ± 15 81 ± 8 1 

Tumor 1427 ± 435 N/A N/A 208 ± 364 N/A N/A 

N/A: not applicable  

 

 




