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Abstract— Recently, deep learning has been demonstrated to
be feasible in eliminating the use of gadolinium-based contrast
agents (GBCAs) through synthesizing gadolinium-free contrast-
enhanced MRI (GFCE-MRI) from contrast-free MRI sequences, pro-
viding the community with an alternative to get rid of GBCAs-
associated safety issues in patients. Nevertheless, generalizability
assessment of the GFCE-MRI model has been largely challenged
by the high inter-institutional heterogeneity of MRI data, on top
of the scarcity of multi-institutional data itself. Although various
data normalization methods have been adopted in previous studies
to address the heterogeneity issue, it has been limited to single-
institutional investigation and there is no standard normalization
approach presently. In this study, we aimed at investigating gener-
alizability of GFCE-MRI model using data from seven institutions
by manipulating heterogeneity of training MRI data under five
popular normalization approaches. Three state-of-the-art neural
networks were applied to map from T1-weighted and T2-weighted
MRI to contrast-enhanced MRI (CE-MRI) for GFCE-MRI synthesis
in patients with nasopharyngeal carcinoma. MRI data from three
institutions were used separately to generate three uni-institution
models and jointly for a tri-institution model. The five normalization
methods were applied to normalize the training and testing data
of each model. MRI data from the remaining four institutions
served as external cohorts for model generalizability assessment.
Quality of GFCE-MRI was quantitatively evaluated against ground-
truth CE-MRI using mean absolute error (MAE) and peak signal-
to-noise ratio (PSNR). Results showed that performance of all uni-
institution models remarkably dropped on the external cohorts. By
contrast, model trained using multi-institutional data with Z-Score
normalization yielded the best model generalizability improvement.

Index Terms— Contrast enhanced MRI, data nor-
malization, nasopharyngeal carcinoma
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I. INTRODUCTION

Nasopharyngeal carcinoma (NPC), a highly aggressive ep-
ithelial carcinoma originating in the mucosal lining of the
nasopharynx, has long been a notorious malignancy in the
population of East and Southeast Asia [1]. Radiotherapy (RT)
is currently the mainstay treatment modality for NPC, which
achieved 66%-83% 5-year survival rate with RT alone [2].
Precise tumor delineation is the most critical prerequisite for
a successful RT treatment, therefore, contrast-enhanced MRI
(CE-MRI), using gadolinium-based contrast agents (GBCAs),
has become an indispensable part in accurate NPC tumor
delineation [3] in routine RT treatment planning practice.
Nevertheless, emerging evidence has shown that nephrogenic
systemic fibrosis (NSF), a severe disease that can lead to joint
contractures and immobility, has been strongly linked with
the administration of GBCAs in renal failure patients [4].
Further evidence has shown that gadolinium accumulation in
the dentate nucleus and globus pallidus has been observed in
paediatric patients [5]. Apart from this, gadolinium deposition
was also observed in patients with normal renal function [6].
The mechanism of gadolinium deposition in patients has not
been fully elucidated, and the underlying long-term effects
remain unclear. Therefore, there is a global consensus to min-
imize or avoid GBCA exposure to patients whenever possible
[4]. Considering this, a GBCA-based CE-MRI alternative is
desperately demanded.

Numerous efforts have been made to address the GBCA-
associated safety issues. Worldwide interests have sparked re-
cently in synthesizing gadolinium-free contrast-enhanced MRI
(GFCE-MRI), which serves similar purposes as the CE-MRI,
through deep learning approaches [7]–[15]. However, current
works have focused on model development or feasibility
studies at different tumor sites using in-house datasets. It has
been reported that the models trained with in-house dataset
may perform poorly on datasets from external institutions
[16]–[18], which largely limits the wide application of the
proposed approaches. Therefore, a generalizable GFCE-MRI
model is highly demanded in clinical practice, which extends
the GFCE-MRI technique to a considerably wider range of
hospitals for use.

Despite the urgent need for generalizable models, limited
research has been conducted to investigate the underlying
mechanism of model generalizability and the methods to
improve the model generalizability, especially for the multi-
parametric MRI images, presumably due to two key chal-
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Fig. 1. Visualization of MRI data heterogeneity among the 7 institutions,
in aspects of intensity distribution.

lenges: 1) high inter-institutional heterogeneity of MRI data;
2) scarcity of multi-institutional MRI data. The MRI images
from different institutions often suffer from large domain
shifts due to the use of diverse scanning parameters, scan-
ners of different field strengths, as well as different patient
demographics, leading to large distribution divergences such
as means, standard deviations, and intensity ranges (Fig. 1).
These challenges have raised a growing concern of model
generalizability developed using deep learning algorithms,
which strongly relies on the assumption that the training data
and testing data are independent and identically distributed
(i.i.d.) [19]. In reality, however, the external MRI datasets are
typically out-of-distribution (OOD) due to the abovementioned
domain shift, incurring tremendous performance degradation
of the trained models on external datasets [19]. To tackle this,
one of the potential remedies to improve model generaliz-
ability is to integrate multi-institutional MRI images during
model training to enlarge the view of deep learning models
[20], [21], which has been rarely reported in the literature,
probably due to the scarcity of multi-institutional data for
patient privacy protection. Another potential solution is to
develop a generalizable network architecture by mapping data
distributions from source domain to target domain [19], [22],
while these approaches are limited to specific domain datasets.
As such, data normalization techniques have been widely used
to improve the model performances in a range of application
areas. Various normalization methods have been applied to
normalize data, which can be broadly categorized into linear
normalization and nonlinear normalization techniques. The
linear normalization linearly maps the MRI pixel intensities
from original space to a target space, typically with a far
smaller data range, such as Min-Max normalization [23], Z-
Score normalization [24], and Decimal normalization [25],
etc., while the nonlinear normalization maps the MRI pixel
intensities in a nonlinear manner, such as Sigmoid normaliza-
tion [26] and Tanh normalization [27]. Nevertheless, related
research in multi-institutional setting that contain various real-
world distributions of MRI data is severely scarce in the body
of literature.

We hypothesize that minimizing the distribution variations
between training and external testing MRI data by applying

various data normalization techniques would improve the
model generalizability. This approach is deemed practical as it
waives the requirements of model architecture refinement and
model training. In this study, we included MRI data from seven
medical institutions, aiming at investigating the GFCE-MRI
model generalizability influenced by distribution difference
between training and external testing data. Specially, we
investigated: (i) how significant is the influence of different
data normalization methods on the model generalizability; (ii)
how significant is the degradation of external performance
for models trained with single-institution MRI; and (iii) how
significant is the improvement of external performance when
using multi-institutional MRI for model development.

Compared to other tumor types such as brain and liver
tumors, NPC is highly infiltrative with ill-defined tumor-to-
normal tissue interface, which presents challenges to oncolo-
gists in delineating the authentic morphology of NPC tumors
for precise radiation delivery. Hence, the success of this study
may not only provide the medical community with valuable
insights into the issue of GFCE-MRI model generalizability of
NPC patients, but also may potentially be translated to other
cancer types as well. To the best of our knowledge, this is the
first multi-institutional investigation for GFCE-MRI synthesis.
As a result, this study may have a far-reaching impact on the
medical community to better understand the issue of model
generalizability, establish a standard multi-institutional data
normalization method, and further facilitate the development
of generalizable GFCE-MRI models in the future.

II. METHODS AND MATERIALS

A. Patient Data
A total of 256 NPC patients from seven medical in-

stitutions were retrospectively collected in this study. For
fair comparisons, identical amount of patients (n=71) were
retrieved from Institution-1, Institution-2, and Institution-3,
respectively for uni-institution and tri-institution model devel-
opment. Institution-4 (n=18), Institution-5 (n=9), Institution-
6 (n=9), and Institution-7 (n=7) were adopted as external
datasets for evaluating generalizability of the developed mod-
els. T1-weighted (T1w) MRI, T2-weighted (T2w) MRI, and
CE-MRI were collected for each patient. This study was
approved by the Institutional Review Board of the University
of Hong Kong/Hospital Authority Hong Kong West Cluster
(HKU/HA HKW IRB, reference number: UW21-412) and the
Research Ethics Committee (Kowloon Central/Kowloon East,
reference number: KC/KE-18-0085/ER-1). Due to the retro-
spective nature of this study, patient consent was waived. All
images were acquired in the same position and automatically
aligned. For model training, all images were resampled to the
size of 256*224 using bilinear interpolation [28]. For each
of the Institution-1, Institution-2, and Institution-3, all the
patients (n=71) were randomly divided into training (n=53)
and internal evaluation (n=18), respectively.

B. Study Design
The overall idea of this study was firstly to apply the

data collected from three different institutions (i.e., Institution-
1, Institution-2, and Institution-3) to develop a series of



wen li et al.: MULTI-INSTITUTIONAL INVESTIGATION OF MODEL GENERALIZABILITY USING DATA NORMALIZATION 3

separately and jointly trained models using different data
normalization methods for investigating the GFCE-MRI model
generalizability. Three state-of-the-art (SOTA) neural networks
were used to assess the consistency of the results. The sep-
arately and jointly trained models were referred to as uni-
institution models and tri-institution models, respectively. In
total, 60 models were trained. Fig. 2 illustrated the overall
study design.

1) Neural Networks:
MMgSN-Net: The MMgSN-Net is a 2D deep learning

algorithm [15], which consists of five key modules: multi-
modality learning module, synthesis network, self-attention
module, multi-level module, and a discriminator. The struc-
ture of the MMgSN-Net is illustrated in Fig. 3a. The T1w
and T2w MRI were put into the multimodality learning
module separately. The multimodality learning module was
used to extract the modality-specific features. The extracted
modality-specific features were subsequently transferred to the
synergistic guidance system (SGS) in synthesis network for
complementary feature selection and fusion. In the decoder of
synthesis network, the fused features and the learned features
from multimodality learning modules were concatenated to
different channels. The size of NPC tumor can be remarkably
different between patients, some patients (especially advanced
T-stage patients) exhibit bulky tumor phenotypes, which may
exist across different regions in image. Without application of
the self-attention module, it may be technically difficult for
the algorithms to effectively capture anatomical information
of such large-sized tumor (e.g., morphology of the infiltrative
tumor) due to the limited size of convolutional kernels. Hence,
the self-attention module was added to capture anatomical
information of large-sized NPC tumor, therefore enabling
the MMgSN-Net to preserve the morphology of large-sized
anatomic structures. NPC tumors are also highly infiltrative
and polymorphic in shape, thus the contrast enhancement
of tumor edge is critical for discriminating the tumor from
surrounding normal tissues. Several studies [29]–[31] have
shown that integrating features from multiple deep layers can
improve the performance in image segmentation and, more
remarkably, in tumor edge detection. Therefore, the multi-
level module was used to aggregate the multi-level features for
edge detection of NPC tumor. The discriminator was utilized
to distinguish the synthetic GFCE-MRI from ground-truth CE-
MRI, thus encouraging the synthesis network to generate more
realistic GFCE-MRI.

Hi-Net: Hi-Net [32] (illustrated in Fig. 3b) was proposed
for multi-modal MRI synthesis, with the aim of learning
a mapping from multi-modal source images (i.e., existing
modalities) to a target image modality. Hi-Net consists of
four main components: a modality-specific network, a multi-
modal fusion network, a multi-model synthesis network, and
a discriminator. The modality-specific network was utilized
to learn representations for each individual modality, while
the fusion network was employed to learn the common latent
representation of multi-modal data. The multi-modal synthesis
network was designed to densely combine the latent represen-
tation with hierarchical features from each modality, acting
as a generator to synthesize the target images. Additionally,

a layer-wise multi-modal fusion strategy was presented to
effectively exploit the correlations among multiple modalities.
For this purpose, a Mixed Fusion Block (MFB) was proposed
to adaptively weight different fusion strategies, including
element-wise summation, product, and maximization.

ResViT: ResViT [33] (illustrated in Fig. 3c) is a novel gen-
erative adversarial approach used for MRI synthesis. Unlike
traditional convolutional neural networks, ResViT combined
the contextual sensitivity of vision transformers with the pre-
cision of convolution operators and the realism of adversarial
learning. The ResViT generator featured a central bottleneck
comprising novel Aggregated Residual Transformer (ART)
blocks that synergistically combined residual convolutional
and transformer modules to capture diverse representations.
Additionally, a channel compression module was used to distill
task-relevant information. To mitigate computational burden,
ART blocks employed a weight sharing strategy. ResViT also
introduced a unified implementation that eliminated the need
to rebuild separate synthesis models for varying source-target
modality configurations.

2) Data Normalization: Data normalization plays a pivotal
role in model development [34]. It minimizes feature bias
by transforming the features into a common space so that
larger numeric feature values cannot dominate smaller numeric
feature values [35]. Currently different data normalization
methods have been applied in medical image translation tasks,
such as Min-Max (also called scaling) [23] and Z-Score
[24], Decimal [25], Sigmoid [26], and Tanh [27] etc. These
normalization methods have also been applied to different
objects prior to training, i.e., dataset-based, patient-based,and
single-image based normalization. In natural image tasks,
most studies adopted 2D networks, which typically used the
statistical values of each single image or the entire dataset
for data normalization [18]. For medical images, however,
image and dataset-based normalization may not be appropriate
for clinical applications, especially for 3D volumes since the
image-based normalization ignores the inter-slice adjacent in-
formation within a volume, which leads to contrast bias of the
generated images between two nearby-slices, while dataset-
based normalization brings challenge during model inference
for a new patient as only statistical values of this specific pa-
tient could be used for data normalization. Herein, we consider
that patient-based normalization is proper in medical image
studies, which is more applicable to clinical setting. In this
study, five patient-based normalization methods (Min-Max,
Z-Score, Decimal, Sigmoid, Tanh) were applied to mitigate
the data distribution variations among training datasets and
external unseen datasets using the statistical values of each
patient. Subsequently, impacts of different data normalization
techniques on model generalizability were evaluated. The five
normalization methods can be mathematically described as

xmin max =
x− xmin

xmax − xmin
. (1)

xz score =
x− µx

δx
. (2)

xdecimal =
x

10j
, j = log

max(x)
10 . (3)
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Fig. 2. Overall Study Design. To investigate the model generalizability, three networks, five normalization methods, as well as four training datasets
were used to train different models. The solid red lines show the three uni-institution models and one tri-institution model that trained using MMgSN-
Net and normalized with Min-Max normalization. Each model was evaluated using both the internal and four external datasets.

Fig. 3. Architecture of the three studied neural networks (a: MMgSN-Net; b: Hi-Net; c: ResViT). T1-weighted MRI and T2-weight MRI were used as
inputs, while the gadolinium-based contrast-enhanced MRI was used as the learning target. SGS, synergistic guidance system; Conv, convolutional
layers; MFB, mixed fusion block.

xsigmoid =
1

1 + e
−(

x− µx

δx
)

. (4)

xtanh =
1

2
{tanh(0.01(x− µx

δx
) + 1}. (5)

Where x represents the intensities of each patient volume,
while xmin, xmax, µx, and δx are minimum value, maximum

value, mean value and standard deviation of the patient.
xmin max, xz score, xdecimal, xsigmoid, and xtanh represent
the corresponding values of patient data after Min-Max, Z-
Score, Decimal, Sigmoid, and Tanh normalization methods,
respectively.

The Min-Max normalization rescales the intensity range to
[0, 1] and preserves the relationship among the original data
distributions due to its linear transformation nature. The Z-
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Fig. 4. Variations of data distribution among the 7 institutions, before
and after application of various patient-based normalization methods.

Score method normalizes the mean value and standardization
of the patient to 0 and 1 respectively, which enables the
comparison of two datasets with different distributions. Similar
to Mix-Max normalization, the Decimal normalization also
rescales the pixel intensity range to [0, 1], which is achieved
by shifting the decimal point of the pixel intensities, and the
amount of shifting depends mainly on the maximum pixel
value of the patient. Unlike Min-Max, Z-Score, and Decimal
normalization methods, the Sigmoid and Tanh techniques are
two nonlinear normalization methods. Sigmoid is typically
used when data is not evenly distributed around its mean.
Outliers that lie far from the mean are exponentially squashed,
resulting in a more balanced distribution of pixel intensities
[36]. The Tanh method was introduced by Hample and has
been considered as an efficient normalization technique. It is
not as sensitive to outliers as other normalization methods,
making it a useful choice for datasets with extreme values [27].
As shown in Fig. 4, prior to data normalization, severe inter-
institutional distribution discrepancy exists. The distribution
discrepancy was mitigated after application of data normal-
ization, especially after the Z-Score normalization method.

3) Comparison Models: To investigate how significant is the
external performance degradation for the GFCE-MRI models
that were trained with single-institution MRI data, we first
trained three uni-institution models using data from Institution-
1, Institution-2, and Institution-3 separately for each of the
studied normalization methods. A total of 53 patients were
used for training of each uni-institution model and 18 pa-
tients were used for internal testing to evaluate the internal
performance. Each of the five normalization methods were
separately applied prior to model training. The three uni-
institution models were labeled as Uni-”xy”, where ”x” repre-
sents the first lowercase letter of the normalization method,
and ”y” represents the institution number of the training
dataset. For example, Uni-z1 refers to the uni-institution model
trained with institution-1 dataset and normalized using Z-
Score normalization. The generalizability of these models was
evaluated using four external datasets (i.e., Institution-4 to
Institution-7).

To investigate how significant is the external performance
improvement for models that were trained with diversified
multi-institution MRI data, we trained the GFCE-MRI model

using jointed with data from Institution-1 to Institution-3.
Considering that the number of training samples may influence
assessment of the tri-institution model as it could be practi-
cally difficult to analyze whether the model generalizability
improvement is caused by adoption of a diverse dataset or by
increasement of the training samples. Therefore, 18 patients
were randonly assigned from each institution’s training dataset.
Then randomly discarded one patient sample to ensure training
samples were the same as the number for uni-institution mod-
els. Each of the five normalization methods was also applied
to develop the tri-institution models prior to training. The tri-
institution models with different normalization methods were
labeled as Tri-”X”, where ”X” represents the first uppercase
letter of the normalization method. The four datasets from
Institution-4 to Institution-7 were used for external testing to
evaluate the model generalizability.

C. Evaluations

1) Quantitative Evaluation: To quantitatively evaluate the
performance of uni- and tri-institution models, mean absolute
error (MAE) and peak signal-to-noise ratio (PSNR) between
the synthetic GFCE-MRI and ground-truth CE-MRI were
calculated. The MAE and PSNR have been widely employed
for medical image analysis tasks. MAE measures pixel-wise
differences while PSNR measures the ratio between the maxi-
mum power of a signal and the power of noise [15], [37], [38].
Smaller MAE and larger PSNR values indicate better quanti-
tative results. Prior to quantitative evaluation, we rescaled the
intensities of the CE-MRI and the predicted GFCE-MRI data
to [0, 1] for computing the underlying percentage differences
for multi-institutional data comparison, taking into account
the intensity distribution variations. Paired two-tailed t-test
(significance level, p=0.05) was performed to analyze if there
was statistically significant difference between results from
different models.

MAE =

∑N
i=1 |yi − f(xi)|

n
. (6)

PSNR = 20 · lg max(yx) ·
√
n

∥yi − f(xi)∥2
. (7)

Where yi and f(xi) are intensities of real CE-MRI and
GFCE-MRI, n is the number of intensities. Here max(yi)
is 1 as we have rescaled the intensities of the CE-MRI and
GFCE-MRI data to [0, 1].

2) Qualitative Evaluation: To visually assess the perfor-
mance of the developed models on external datasets, the
trained uni- and tri-institution models were directly applied
to the external datasets without fine-tuning. Prior to results
inference, the five patient-based normalization methods were
applied to uni-institution models and tri-institution models
for comparisons of results between external datasets. The
input T1w, T2w MRI and ground-truth CE-MRI were shown
alongside the GFCE-MRI generated from different models.

III. RESULTS
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A. Quantitative Results

The quantitative results of the 60 uni-institution and tri-
institution models are illustrated in Fig. 5. MAE values beyond
100 on external datasets and those exceed 80 on the internal
datasets were truncated for the sake of highlighting more
useful information. The first and the second rows in Fig.
5 show the external and internal results, respectively, for
MMgSN-Net (left), ResViT (middle) and Hi-Net (right). Each
bar represents the result from a model that was trained with a
specific network and normalization method. For example, the
four red bars from left to right in Fig. 5(a) represent the results
from the MMgSN-Net model, which was trained with data
from Institution-1, Institution-2, Institution-3, and Institution-
123 using Z-Score normalization, and tested directly on the
four external datasets. All numeric quantitative results are
supplemented in Sup. Table I.

1) Generalizability of single-institution models: All uni-
institution models suffered from severe performance drop
on external MRI datasets across all normalization methods,
despite the use of neural networks. Table I presents the
percentage performance drop of synthetic GFCE-MRI for the
uni-institution models on the four external datasets, as com-
pared to the internal results. As MAE and PSNR had similar
trends, MAE was used here as an indicator to illustrate the
results. Among the five normalization methods, the Decimal
normalization obtained the greatest performance drop, with
percentage MAE drop ranging from 76.63% to 287.18% across
the three neural networks. The Tanh model obtained a relative
lower external performance drop (15.94% using ResViT and
19.81% using Hi-Net), while the internal results of the uni-
institution models using Tanh normalization are dissatisfactory
(as shown in Fig. 5 (e) and (f)), with a MAE of 37.59 ±
4.68, 43.75 ± 11.08, 36.84 ± 5.67 for uni-t1, uni-t2, and uni-
t3 respectively using ResViT, and 24.95 ± 2.72, 128.49 ±
11.24, 78.2 ± 11.33 for uni-t1, uni-t2, and uni-t3 respectively
using Hi-Net, please refer to Sup. Table I for more details.
For a comparison, Z-Score normalization achieved the best
internal results, with a MAE of 23.87 ± 3.39, 24.98 ± 4.78,
and 26.99 ± 6.24 for uni-z1, uni-z2, and uni-z3 respectively
using ResViT, and 23.23 ± 2.97, 27.47 ± 4.5, and 28.29 ±
6.19 for uni-z1, uni-z2, and uni-z3 respectively using Hi-Net,
please refer to Sup. Table I for more details. As shown in
Fig. 5(a)-(c), the Z-Score normalization also achieved the best
external performance on all (no significant difference with
Uni-t1 using Hi-Net) uni-institution models across the three
neural networks with the lowest MAE between GFCE-MRI
and real CE-MRI, suggesting that the model trained with
Z-Score normalization could attain superior generalizability
when trained using single-institution MRI data.

2) Generalizability of tri-institution models: The model gen-
eralizability was improved when training the model with more
diverse MRI data for majority of the all comparing normaliza-
tion methods except Decimal normalization on MMgSN-Net
and ResViT, as shown in Table II. Besides the Decimal nor-
malization, the overall external performance obtained 7.34%-
16.21%, 10.82%-21.41%, and 5.37%-25.01% improvement for
MMgSN-Net, ResViT, and Hi-Net respectively across different

normalization methods, suggesting that increasing the diversity
of training data helps improving the model generalizability.

Apart from the external performance improvement of tri-
institution models, it was also observed that tri-institution
models obtained comparable internal results when compared
with its single-institution counterparts, as shown in Fig. 5(d)-
(f). The bars in Fig. 5(d)-(f) with the same color show the
models trained using the same normalization method but with
different datasets. For example, the Uni-z1, Uni-z2 and Uni-z3
using MMgSN-Net obtained a MAE of 23.03 ± 3.18, 24.87 ±
4.64 and 26.84 ± 6.17 respectively on their respective intra-
institution testing set, while Tri-Z obtained an average MAE
of 25.60 ± 4.91 on all of the three testing datasets. It should
be noted that unlike the uni-institution models, the internal
testing results of tri-institution models are average of the three
internal testing datasets (Institution-1, 2, and 3) instead of a
single testing dataset, since the data from all three institutions
(1/3 of each) were involved in the tri-institution model training.
As shown in Fig. 5(d)-(f), the average internal results of tri-
institution models does not indicate a remarkable performance
degradation when compared with the three uni-institution
models (indicated by black dashed lines). In contrast, the uni-
institution models suffered from substantial performance drops
when tested on MRI data from other institutions, highlighting
the advantages of incorporating a more diverse MRI data for
model development.

3) Influence of normalization methods to model generaliz-
ability: The quantitative results from Fig. 5 indicate that Z-
Score normalization outperformed all comparing normaliza-
tion methods on external datasets across three neural networks,
with the lowest MAE of 32.45 ± 6.22, 32.53 ± 7.27 and 33.43
± 7.26 for MMgSN-Net, ResViT and Hi-Net, respectively.
The Tanh normalization is network-dependent. The models
trained with the Tanh normalization using MMgSN-Net and
ResViT outperformed Decimal, Sigmoid and Min-Max, but
obtained inferior performance on Uni-t2, Uni-t3 and Tri-T
when trained using Hi-Net. This may be attributed to the
compression of effective image information to a small pixel
intensity scale (1e-7) after application of the Tanh normal-
ization, as illustrated in Fig. 4. This compression renders the
effective information unrecognizable by Hi-Net. Among the
five normalization methods, Decimal normalization obtained
the worst external results across the three neural networks,
with the highest MAE of 358.05 ± 210.14 for Uni-d2 that
was trained using Hi-Net. This may partly be explained by
the difference of pixel range of T1w MRI, T2w MRI, and
CE-MRI for some patients in our datasets. For example, the
maximum values of T1w MRI and CE-MRI for one patient
in institution-2 are 813 and 403 respectively (less than 1000),
while the maximum value of T2w MRI is 1105 (larger than
1000), after Decimal normalization, the range of T1w MRI and
CE-MRI becomes [0-0.813] and [0-0.403] respectively, while
the range for T2w MRI becomes [0-0.1105], which may in
turn interfere the model training procedure, suggesting that
Decimal normalization may not be suitable for our GFCE-
MRI synthesis task or other MRI-related task considering the
diverse MRI pixel intensity ranges. In this study, different
normalization methods produced varying degrees of impact
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Fig. 5. Quantitative results of the 60 models on the external test datasets (a-c) and internal test datasets (d-f). Each bar represents the MAE
result of a model that was trained with a specific network (left-most column: MMgSN-Net; middle column: ResViT; right-most column: Hi-Net) and
normalization method.

TABLE I
EXTERNAL PERFORMANCE DROP OF UNI-INSTITUTION MODELS, FROM TOP TO BOTTOM ARE RESULTS FROM MMGSN-NET,

RESVIT AND HI-NET, RESPECTIVELY

Min-Max Z-Score Decimal Sigmoid Tanh

Model MAE PSNR Model MAE PSNR Model MAE PSNR Model MAE PSNR Model MAE PSNR
Uni-m1 60.42% 12.32% Uni-z1 58.62% 10.70% Uni-d1 119.11% 16.58% Uni-s1 50.85% 10.56% Uni-t1 48.23% 8.48%
Uni-m2 110.67% 13.89% Uni-z2 51.15% 6.75% Uni-d2 211.55% 38.83% Uni-s2 54.09% 8.57% Uni-t2 83.03% 6.34%
Uni-m3 34.37% 5.18% Uni-z3 25.30% 3.00% Uni-d3 71.52% 9.42% Uni-s3 31.65% 4.39% Uni-t3 22.55% 2.13%
Overall 68.49% 10.46% Overall 44.42% 6.82% Overall 134.06% 21.61% Overall 45.53% 7.84% Overall 51.27% 5.65%
Uni-m1 65.50% 11.08% Uni-z1 62.51% 11.11% Uni-d1 460.31% 20.09% Uni-s1 50.45% 9.92% Uni-t1 23.89% 5.54%
Uni-m2 116.84% 13.37% Uni-z2 51.44% 5.91% Uni-d2 292.45% 41.36% Uni-s2 69.56% 9.31% Uni-t2 14.63% 2.37%
Uni-m3 52.22% 6.85% Uni-z3 25.97% 0.99% Uni-d3 108.79% 11.06% Uni-s3 34.60% 4.85% Uni-t3 9.31% 1.12%
Overall 78.19% 10.43% Overall 46.64% 6.00% Overall 287.18% 24.17% Overall 51.54% 8.03% Overall 15.94% 3.01%
Uni-m1 60.34% 11.01% Uni-z1 60.44% 11.97% Uni-d1 106.05% 15.06% Uni-s1 36.16% 8.17% Uni-t1 47.82% 3.79%
Uni-m2 80.02% 10.22% Uni-z2 45.14% 6.19% Uni-d2 59.60% 32.21% Uni-s2 45.47% 7.37% Uni-t2 10.24% -0.09%
Uni-m3 21.28% 3.71% Uni-z3 19.69% 2.67% Uni-d3 64.24% 9.03% Uni-s3 26.20% 4.81% Uni-t3 1.36% 0.50%
Overall 53.88% 8.31% Overall 41.76% 6.94% Overall 76.63% 18.77% Overall 35.94% 6.78% Overall 19.81% 1.40%

TABLE II
EXTERNAL PERFORMANCE IMPROVEMENT OF TRI-INSTITUTION MODELS, FROM TOP TO BOTTOM ARE RESULTS FROM

MMGSN-NET, RESVIT AND HI-NET, RESPECTIVELY

Min-Max Z-Score Decimal Sigmoid Tanh

Model MAE PSNR Model MAE PSNR Model MAE PSNR Model MAE PSNR Model MAE PSNR
Tri-M 7.34% 1.57% Tri-Z 9.66% 2.36% Tri-D -9.01% -1.54% Tri-S 7.89% 2.28% Tri-T 16.21% 6.17%
Tri-M 10.82% 1.56% Tri-Z 11.78% 2.40% Tri-D -0.92% -6.49% Tri-S 21.41% 4.57% Tri-T 15.23% 3.51%
Tri-M 5.37% 1.48% Tri-Z 9.65% 2.99% Tri-D 58.44% 17.13% Tri-S 10.48% 3.21% Tri-T 25.01% 13.76%

on model external performance, indicating that normalization
methods exerted tremendous influence on the model gen-
eralizability, even when the models were trained with the
same MRI data. The consistent results of the three neural

networks demonstrated that the multi-institution MRI data
normalized with Z-Score normalization achieved an improved
model generalizability, which outperformed other comparing
normalization methods.
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Fig. 6. Illustration of GFCE-MRI generated from uni-institution and tri-institution models using different normalization methods.

B. Qualitative Results
To visually evaluate the external generalization performance

of uni-institution and tri-institution models with different
normalization methods, we illustrated the external results of
different models in Fig. 6. The first column from top to bottom
are input T1w MRI, T2w MRI and real CE-MRI respectively.
Other columns from top to bottom are synthetic GFCE-MRI
from three uni-institution models and the tri-institution model
using the five normalization methods, respectively. The red
images are difference maps between synthetic GFCE-MRI and
real CE-MRI. The NPC tumors were zoomed in using yellow
boxes for better visualization of region of interest. As shown
in Fig. 6, the GFCE-MRI generated from the model that was
trained using multi-institution MRI data and normalized with
Z-Score normalization outperformed other models, resulting
in a better approximation of the real CE-MRI reflected by a
darker appearance of the difference map for both tumor region
and the entire image.

The uni-institution models suffered from varying degrees
of performance degradation on external MRI data with diverse
contrast enhancement failures in tumor and tumor surrounding
areas (indicated with red arrows), especially in the models
trained with Institution-1 and Institution-2 data (with overall
image contrast difference and blurring anatomic structure).
The five tri-institution models obtained improved generaliz-
ability on external data, which achieved an improved visual
approximation of tumor contrast enhancement compared to
their uni-institution counterparts. Compared with Tri-Z model
that was normalized with Z-Score normalization, Tri-M model
and Tri-S model that were normalized with Min-Max nor-
malization and Sigmoid normalization, respectively, obtained
an inferior enhancement of tumor surrounding structures (as
indicated with yellow arrows in Fig. 6).

IV. DISCUSSION

In RT, CE-MRI is commonly used for accurate tumor
delineation, especially for the highly infiltrative NPC [15].
However, GBCAs-associated safety issues have stimulated the
medical community to eliminate the use of GBCAs. Recently,
a worldwide interest has been promoted to synthesize the
GFCE-MRI for providing a gadolinium-free alternative for
precision tumor delineation [7]–[15]. Nevertheless, the model
generalizability on external institution data remains unexplored
and there is no standard multi-institutional MRI normalization
method has been established. Herein, for the first time, we
retrieved MRI data from seven institutions and investigated the
model generalizability using five different data normalization
techniques for GFCE-MRI synthesis in NPC patients. In this
discussion, we attempted to summarize our key findings,
discuss the potential underlying mechanisms, and provide the
research community with our perspectives in future directions.

The models trained with single-institution MRI data suffered
from various degrees of performance drop on external MRI
datasets. As shown in Fig. 5 and Table I, the quantitative
results show that the uni-institution models performed well
on internal testing datasets with lower MAE while they
failed to generalize to external unseen data (i.e., with greater
MAE and lower PSNR on external datasets). The visual
comparisons (Fig. 6) of synthetic GFCE-MRI among different
models also underscored that the uni-institution models failed
to predict the correct contrast enhancement, both in tumor
and surrounding structures. These results suggest that there
exist significant MRI data bias across institutions, resulting
in a phenomenon that performance of well-trained in-house
models fail to generalize to external MRI datasets. As shown
in Table I, uni-instiution models trained with different intra-
institution dataset obtained varied performance drop on the
same external dataset (e.g., the percentage MAE drop of
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MMgSN-Net normalized with Min-Max normalization ranged
from 34.37% to 110.67%), this may also be caused by the MRI
data bias among the three training datasets. These data biases
may result from variations in MRI data characteristics, such
as image contrast, resolution, texture, artifacts, etc., as well
as differences in imaging scanners and scanning parameters
across different institutions. (as shown in Fig. 1). In addition,
with the same training data and network structure (e.g., Fig.
5(a)),the external performance of the models trained with
different normalization methods are were markedly different
(with the MAE values ranging from 36.53 ± 6.5 to 55.72 ±
22.91), indicating that normalization methods do influence the
model generalizability. A possible reason might be that differ-
ent normalization methods mitigate the variations between the
training dataset and the external dataset to different extent.

By involving diverse MRI data from multiple institutions,
the overall external performance of tri-institution models have
been improved compared to uni-institution models, even with
the same number of training samples (as shown in Table II).
This result indicates that involving diverse MRI from multiple
institutions is more capable of achieving a better model gen-
eralizability, possibly due to the enlarged view of the model.
By training the model with diverse MRI data, the external
testing data may have a higher chance to match the training
data distribution, thus improving the external performance.
On the other hand, the tri-institution models did not obtain
obvious performance degradation on the three internal testing
datasets (as demonstrated in section Results A. 2)), indicating
that involving diverse MRI data from multiple institutions for
model development is also capable of maintaining the intra-
institution accuracy, though the five tri-institution models were
trained with only 1/3 number of samples from each individual
institution.

Z-Score normalization outperformed other comparison nor-
malization methods in improving the model generalizability,
for both uni-institution models and the tri-institution model.
As shown in Fig. 5, Z-Score normalization achieved the best
performance, compared to other normalization methods, with
the lowest MAE of 32.45 ± 6.22, 32.53 ± 7.27 and 33.43 ±
7.26 for MMgSN-Net, ResViT and Hi-Net respectively. This
is possibly attributed to the fact that the Z-Score method
normalizes all the patients’ mean and standard deviation to
the same value (0 and 1, respectively), which effectively min-
imized the distribution variations among all training patients
and external testing patients (as shown in Fig. 4). Decimal
normalization and Tanh normalization may not suitable for
our GFCE-MRI synthesis task due to the diversity of original
pixel intensity ranges across patients and the messy pixel
ranges after Decimal normalization. It is worth noting that
the Tanh normalization is network-dependent with unstable
results using Hi-Net, this is possibly due to the small effective
pixel intensity scale after application of Tanh normalization (as
shown in Fig. 4 and equation (5)). For other two normalization
methods, Min-Max outperformed Sigmoid in both internal
and external evaluation, with lower MAE and higher PSNR
for both uni-institution models and tri-institution models, as
shown in Fig. 5.

Intriguingly, the three studied neural networks demonstrated

the consistency of our findings. As shown in Fig. 5 (a-c),
the external performance of Z-Score normalization consis-
tently outperformed other comparing normalization methods
on all the three studied networks (MMgSN-Net, Hi-Net, and
ResViT). Apart from this, Table I also demonstrated that all the
uni-institution models of the three studied networks suffered
from tremendous performance drop on external datasets, in
terms of MAE and PSNR. By contrast, the model trained with
multi-institution MRI data produced improved performance
on the external dataset across the three studied networks,
irrespective of the normalization methods used (as shown in
Table II, here the Decimal normalization is not considered due
to the inappropriate application scenario).

In this study, we used percentage values instead of actual
values to interpret the results obtained from different normal-
ization methods. This is because the MRI distributions across
institutions are not identical with different mean values and
standard deviations, making the results not comparable. As
demonstrated in [21], the model trained with data of smaller
mean intensity data lead to significantly better intra-institution
quantitative results, even with the same number of training
samples. Application of different normalization methods will
further normalize the multi-institutional data to different dis-
tributions, making the normalized results uninterpretable. To
quantitatively evaluate the results generated from different
normalization methods, we used normalized values (to [0-
1]) to compute the percentage difference and supplemented
with percentage external drop and improvement results (as
shown in Table I and Table II) instead of the absolute values
for the sake of comparing the model performance. For the
multi-institutional setting, the Z-Score normalization may be a
promising method for results interpretation compared to other
normalizations. For instance, Min-Max and Decimal preserves
the original data distribution across institutions, while the Z-
Score method normalizes the mean intensities and standard
deviations of multi-institutional datasets to the same value and
minimized the multi-institutional distribution diversity, making
the normalized multi-institutional results comparable.

Our study has several limitations. Firstly, as the scope
of this work was centered on the GFCE-MRI synthesis for
NPC patients, applicability of our findings in other tasks
deserves future investigation considering the scarcity of the
multi-institutional data. Secondly, this work takes into account
the diversity of MRI pixel intensities across institutions, as
shown in Fig. 4, after application of data normalization, small
distribution variations still exist among different institutional
data, these variations may be caused by the image-based
factors such as image texture, artifacts, and tumor size etc.
As demonstrated in [39], MRI-specific data augmentation
provides a promising solution to further enhance the model
generalizability in aspect of training image, which will be
considered in future work to further improve the model
generalizability.

V. CONCLUSION

In this study, we investigated the model generalizability
for GFCE-MRI synthesis in NPC patients using data from
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seven institutions, and explored potential model generaliz-
ability influencing factors of diversity of training data and
application of different normalization methods. Results of the
present work showed that the tri-instituion models developed
from multi-institutional MRI data generally resulted in higher
generalizability on external unseen data than the uni-institution
models developed from single-institution datasets. Application
of the Z-Score normalization was capable of improving the
model generalizability and results interpretability in a multi-
institutional MRI setting, which outperformed other comparing
normalization methods.
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