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Abstract
In engineering geology, a reasonable assessment of the spatial distribution of uncertainty in a region is vital in guiding 
research, saving money, and shortening the period. However, the traditional modeling process requires a lot of manual 
interaction, and the uncertainty of the geological model cannot be accurately quantified and utilized. This paper proposes 
a novel implicit geological modeling and uncertainty analysis approach based on the triangular prism blocks, which is 
divided into data point acquisition, ensemble model with divide-and-conquer tactic (EMDCT), uncertainty analysis, and 
post-processing. By employing machine learning algorithms, the EMDCT gives superior results for implicit modeling. The 
sensitivity analysis of the prediction results is further evaluated via information entropy. According to the distribution of 
uncertainty, supplementary boreholes are selected as additional knowledge to retrain the local components of the model to 
enhance their performances. The implicit modeling method is applied to real hydraulic engineering problems by employing 
the EMDCT, and the proposed model has obvious advantages in the implicit geological characterization. The overall accuracy 
in the working area with sparse boreholes reaches 0.922, which is 0.013 higher than the traditional method. By evaluating 
the distribution of uncertainty, an accuracy of 0.962 can be achieved, which is equivalent to reducing 10 boreholes.

Keywords Geological modeling · Borehole · Implicit modeling · Uncertainty · Ensemble model · Divide-and-conquer

Introduction

3D geological modeling, which essentially relies on bore-
holes, shallow sections, in-situ test data, and geological 
outcrops, is vital for the interpretation of geological struc-
tures (Wang et al. 2020; Zhou et al. 2019), serving as a 

basis for subsequent mechanical analysis (Chen et al. 2023), 
safety assessment (Chen et al. 2021), and construction plan-
ning of engineering construction (Aghamolaie et al. 2019; 
Schaaf and Bond 2019). However, due to the complexity of 
geological conditions in most projects (Chen et al. 2022a), 
especially large-scale hydraulic engineering projects, and 
the limitation of the investigation, the process of geologi-
cal interpretation has great uncertainty. The modeling of 
ground and underground conditions is a challenging issue, 
especially in the case of complex geometries and spatially 
variable geotechnical properties (Petrone 2023; Antonielli 
2023) Hence, it is necessary to use the limited primary data 
to predict the underground space and provide an immedi-
ate preliminary geological model, especially for the dam 
site. The exploration drilling plan is further guided by the 
uncertainty analysis and then the refined implicit charac-
teristics are reconstructed. Explicit modeling mainly deals 
with deterministic methods for large-scale structures (Tian 
et al. 2023), and heavily relies on manual interpretation 
which is prone to subjective errors. Although scholars have 
proposed the semi-automated method (Song et al. 2019), it 
also has difficulties in assessing uncertainty (Ouyang et al. 
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2023), which is essential in guiding the investigation. By 
contrast, implicit modeling has the characteristics of fast 
modeling speed, less subjective interference, and a strong 
mathematical foundation. Especially in the current prosper-
ity of data science, implicit modeling has gradually received 
more and more attention and has played an important role 
in uncertainty assessment investigation, survey work guid-
ance, and decision-making (Guo et al. 2022).

Implicit modeling essentially employs the spatial interpola-
tion method (Lorensen and Cline 1987), fitting the space sur-
face function to the sampled data, resulting in visualization only 
in the final output. Implicit modeling generates a scalar field 
for the entire geological study area (Guo et al. 2021; Lipus and 
Guid 2005; Scalzo et al. 2022; Zhong et al. 2021), and common 
reconstruction techniques include, radial basis function (RBF) 
method (Macêdo et al. 2011), moving least squares (MLS) 
(Wan and Li 2022), and surface reconstruction approach based 
on the stochastic velocity fields (Yang et al. 2019). Recently, 
machine learning has been integrated into implicit modeling 
to quickly generate more accurate models. Guo et al. (2021) 
proposed a borehole-based implicit modeling approach that 
offers new possibilities for controllable 3D automated mod-
eling. Shi et al. (2021) employed the marching cubes (MC) 
method to reconstruct the interpolating implicit function sur-
face. A combination of implicit modeling and machine learn-
ing is capable of effectively enhancing the overall modeling 
accuracy by leaving the implicit surface-solving process to 
the algorithm (Hou et al. 2023; Wang et al. 2023; Yang et al. 
2022). However, there are still several challenges associated 
with implicit modeling: 1) Assessing the limited model uncer-
tainty; 2) Difficulty in providing accurate implicit specifications 
for non-renewable models. Commonly, geological conditions 
with strong anisotropy and sparse survey data make it difficult 
for experienced geological experts to infer definitive geological 
structure, uncertainty being the most acute challenge (Lindsay 
et al. 2012; Madsen et al. 2022; Ouyang et al. 2023; Zhao et al. 
2023a). Due to formation complexity, measurement uncer-
tainty, data scatter and heterogeneity (Shi et al. 2021), surface 
construction uncertainty (Schaaf and Bond 2019) and random 
error of sampling, uncertainty exists in most geologic model 
construction areas. Conventional experience is able to solve 
the formation and judgment of the surface geological structure, 
but not the deep formation and large-scale evaluation (Wang 
et al. 2022). Commonly, deterministic models are not appro-
priate for examining the uncertainty of geological structure 
and hinder model renewal evaluations. By making use of the 
implicit modeling method, the uncertainty expression (Grose 
et al. 2018; Røe et al. 2014) is appropriate based on geographic 
statistics. With the aid of quantitative simulations, it is possible 
to precisely locate the formation zone with a high degree of 
certainty. Our assessment of the level of uncertainty enables 
us to recommend supplementary boreholes, ensuring the most 
comprehensive and accurate results.

Many machine learning algorithms, such as neural networks 
(Shi and Wang 2022, 2021b; Titus et al. 2022), mixed density 
networks (Han et al. 2022), random forest, deep forest, and 
SVM are utilized to enhance accuracy in all types of lithology 
identification, geological tectonic prediction, and geological 
modeling. The formation, mineral prediction, and identifica-
tion have been extensively implemented in geological disci-
plines (Deng et al. 2022; Harris et al. 2023; Ren et al. 2022; 
Zhao et al. 2023b). While machine learning is capable of pre-
cisely identifying stratum distributions, there are several chal-
lenges that must be addressed: 1) Dependency on large training 
datasets; 2) Difficulty in generalizing a large area via a single 
model. This means that the machine learning algorithm used 
in the implicit model requires more processing of the data to 
enhance the modeling accuracy, especially the refined features.

Considering the above engineering problems, such as fre-
quent manual interaction, difficult model updating, sparse 
data, incomplete detail refinement, and difficult uncertainty 
assessment in geological modeling, an implicit modeling and 
uncertainty analysis method based on ensemble modeling is 
proposed and applied to the engineering geological explora-
tion, particularly for dam construction. The chief structure 
of the present paper is as follows: Section 2 introduces the 
detailed workflow of the implicit modeling approach and the 
main utilized research methods. Section 3 introduces the real 
case study of Yunnan Province, China. Section 4 outlines the 
prediction of the model and discusses the implicit modeling 
rules, triangular prism block method, and uncertainty analysis 
in this process. Section 5 presents the main obtained results.

Methodology

The detailed workflow

An implicit modeling method is proposed. The workflow of 
the approach is mainly divided into three parts (Fig. 1): pre-
processing, main process, and post-processing. Delaunay-tri-
angular prism, implicit modeling, and uncertainty quantiza-
tion methods mentioned in these processes are introduced in 
the following sections.

Pre‑processing on investigation data

Sample points of geological data

Assumptions and supplements to existing borehole data are 
needed to contain more formation information. Generally, 
there are two methods: (i) The profile is assumed by connect-
ing the boreholes (Fig. 2(a)). The formation can be considered 
fixed at a certain distance, so two boreholes at this distance 
can be simply connected linearly to simulate the formation 
structure between them, that is, a plane is formed in space 



Bulletin of Engineering Geology and the Environment (2024) 83:282 Page 3 of 29 282

Fig. 1  Main flowchart of the implicit modeling method
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between two vertical lines, and the samples are randomly col-
lected on this plane; (ii) Borehole information radiates around 
(Fig. 2(b)). According to the central limit theorem (Ash and 
Doleans-Dade 1999; Resnick 2013), a substantial proportion 
of measurement errors adhere to the normal distribution (Suk-
hov 1999). Similarly, it can be assumed that the geological 

structure does not mutate on a small-scale region relative to 
the understudy area; in other words, the lithology at the central 
point of the borehole radiates to the surrounding area with a 
certain probability. The closer to the center of the borehole, the 
greater the probability. The normal distribution is character-
ized by concentration near the mean, symmetry, and uniform 

Fig. 2  Schematic representation 
of the borehole data sampling: a 
Sampling on the line connect-
ing two adjacent boreholes, b 
Sampling around the borehole 
and labeling the sample points
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decline. To meet the engineering requirements in this paper, 
we use two-dimensional normal distribution here. So, normal 
distribution tries to reasonably disperse the data amount in 
space, so that the sample points carry weak information near 
the borehole locations. The existing boreholes are regarded 
as cylinders with radius N(0, σ) of normal distribution. In this 
spatial region, the vertical directions are divided into 30 parts 
on average. In each sub-cylinder space, 20 sampling points are 
randomly generated, and the strata of borehole sampling points 
are appropriately labeled according to the relationship between 
the elevations of the random sampling points and the borehole 
formation (see Fig. 2(b)). According to the normal distribution 
law, almost all sampling points are in a circle centered on the 
borehole and radius 3σ. This means that compared to the center 
of the borehole, the outside stratum category possesses a prob-
ability of being the same as that obtained at the same elevation 
of the borehole, but there is uncertainty. The sampling point 
p(x,y,z) was employed as the training input, and the formation 
number S as the label to complete the labeling of all datasets. 
In particular, in order to reflect the ground surface, it is neces-
sary to mark the cylindrical space of the part above the ground 
elevation of the borehole as S = 0.

In addition to the sampling points, we also need to con-
dense the scattered points of the mesh arrangement as much 
as possible in the space to be retrieved to form the test set of 
the classifier. In actual modeling, these scattered points are 
considered as points of unknown strata, and the classifier 
must provide its own strata to complete the construction of 
the entire geological space. Geological exploration research 
areas usually have ground surface contours that can be inte-
grated into the modeling process. When sampling points and 
grid scattered points are taken in space, it must be deter-
mined whether the location of the point is above the surface 
or not, and if so, the sampling point is removed (Fig. 2(a)). 
After filtering with prior knowledge, all the sampling points 
and grid scatter points are below the surface.

Delaunay‑triangular prism blocks

Due to the large region of engineering geology and the 
significant regional characteristics of the study area (such 
as local small strata, intrusions, or special local geological 
structures). The nonlinear fitting ability of a single machine 
learning algorithm is not enough to accurately character-
ize all the characteristics of the geological structure, and 
local special structures cannot be well fitted. Therefore, 
it is needed to divide the research area into different sec-
tions and let each algorithm learn them independently. To 
improve the training effect of classifiers for details, the 
understudy region is divided into several parts, and then 

(1)f (p) = f (x, y, z) = S

several classifiers are appropriately trained (divide-and-
conquer), whose results are combined to form prediction 
results for the final study area. Divide-and-conquer pos-
sesses some special features (Fig. 3(c)): (i) Simple clas-
sifiers predict simple regions: The ensemble model is a 
process of repeated calculation that includes a small range 
for a small triangular prism. So, we can avoid using overly 
complex classifiers and reuse many simple classifiers; 
(ii) Avoiding excessive data imbalance: Ensemble mod-
els include local geologic regions, so global space data 
imbalance has little effect on the machine learning effect 
of a single triangular prism; (iii) The preferred scheme is 
selected: Different classifiers can be selected according to 
the characteristics of different triangular prisms to achieve 
optimal prediction results, and the overall modeling accu-
racy is improved by “divide-and-conquer”. Divide-and-
conquer improves accuracy because the geology is com-
plicated, which is an “ensemble learning” strategy that we 
put forward to solve this geological problem. Common 
methods of dividing the region are the Delaunay triangle, 
general triangle, Tyson polygon (also known as the Voro-
noi diagram), and ordinary quadrilateral mesh. Different 
algorithms are applied to geological regions after region 
division (see Table 1, Fig. 3(a)). The region division mode 
must meet the project requirements: (i) The particularity 
of its engineering lies in the uneven distribution of bore-
holes. (ii) The area to be divided should be related to the 
distribution of boreholes, ensuring that there are sampling 
points in each area. (iii) Partitions need not be too dense 
or too sparse in one subblock. (iv) The time complexity 
of generating partitions is small, which is convenient for 
drilling and updating. For the above four reasons, Delaunay 
approach is chosen to divide the region with appropriate 
triangles horizontally and then stretch them vertically to 
obtain a number of Triangular prisms, the so-called Delau-
nay-triangular prism. Suppose V is a finite set of points on 
a two-dimensional field of real numbers, edge e represents 
a closed line segment consisting of points in the point set 
as endpoints, E is the set of e, and the vector stretched ver-
tically is denoted by Z. The triangular prism set G can be 
obtained from the point set V (see Fig. 3(b)). In this paper, 
the triangular prism set G is generated based on the (X, Y) 
coordinates of the existing borehole positions as point set 
V. Include all sampling points in the cylinder contained 
in the outer circle stretched on the base of the triangu-
lar prism into the training set (this circle can be enlarged 
appropriately to allow the training set of different prisms to 
intersect). All scattered grid points contained in each prism 
are then included in the test set.

All scattered grid points contained in each prism are then 
included in the test set. Delaunay-triangular prisms (Liu et al. 
2023) possess the same properties as Delaunay triangles: 
(i) A triangular prism is constructed with the locations of 
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Fig. 3  (a) Region division method; (b)Schematic representation of the Delaunay-triangular prism; (c) The special features of the Delaunay-
triangular prism block in divide-and-conquer.



Bulletin of Engineering Geology and the Environment (2024) 83:282 Page 7 of 29 282

boreholes, which guarantees that every point in the region 
belongs to a triangular prism. (ii) No two surfaces or edges 
in the triangular prism set G will ever intersect, ensuring that 
the triangular prism to which each sample point belongs is 
unique. (iii) Adding, omitting, or moving a vertex affects only 
the adjacent triangular prism, so that only a small part of the 
classifiers corresponding to the prism should be updated. 

Main process

Machine learning

Herein, the problem of implicit modeling represents a multi-
classification problem. For this purpose, the sampling points 
in the previous section are utilized as training sets to predict 
the stratigraphic classification of scattered grid points (i.e., 
test sets), restoring the strata of the entire geological space. 
The commonly used algorithms for multiple classifications 
are: deep forest (DF) (Han et al. 2023; Zhu et al. 2023), 
random forest (RF) (Chen et al. 2022b), decision tree (DT), 
extreme gradient boosting (XGB) (Shi and Wang 2021a; 
Zhang et al. 2023), categorical boosting (CB) (Prokhoren-
kova et al. 2017), support vector machines (SVM) (Abedi 
et al. 2012; Fan et al. 2023), and K-nearest neighbor (Bulle-
jos et al. 2022; Wang et al. 2018). In this paper, seven clas-
sification algorithms are aimed to be employed for implicit 
modeling. Compared with the ensemble model, an approach 
is selected from the aspects of overall accuracy, robustness, 
borehole data requirements, and uncertainty asseement. The 
selection of classifier hyperparameters is carried out in the 
form of a grid search. The optimal combination of hyperpa-
rameters selected and the prediction effect of boreholes in 
the test set are presented in Table 2.

Implicit modeling

Implicit modeling is the reconstruction of potential func-
tion. It includes Euclidean space and implicit space 
(Adzhiev et al. 2000): The real-valued function is given 

on the whole Euclidean space, and the volume object is 
defined by the inequality f(p) < 0, where f(p) = 0 represents 
the equipotential surface (i.e., the geological surface). As 
seen in Eq. (2), point pi(xi, yi, zi) can be written as a 3D 
potential field in Euclidean space ℝ3 . In addition, in a two-
dimensional implicit space, an operator G is defined to unify 
different real-valued functions f(p) into a model. As given 
in Eq. (3), the binary operator G is applied to the poten-
tial functions f1 and f2, and the two-dimensional potential 
function G(X,Y) can be written as a combination of the 3D 
potential functions f1 and f2 in the two-dimensional implicit 
space, which represents the intersection of two geological 
surfaces. The point P(f1, f2) defined in � 2 is expressed as the 
intersection line of surface f1 and f2 in ℝ3 , and the equipo-
tential line G(X,Y) = 0 defined in � 2 is expressed as the part 
of the geological surface that is extruded along the intersec-
tion lines of f1 and f2 in ℝ3 . (see Fig. 4).

We combine implicit modeling with machine learning 
to reconstruct implicit functions based on borehole data. 
The label information of the sampling points is appro-
priately learned by the machine, and then the relation-
ship is mapped and the scattered points are predicted. 
The difference with general implicit modeling is that a 
specific correspondence rule (i.e., an implicit function 
equivalent) is configured inside the classifier, and such 
correspondence rules are not analytically expressed but 
exist in the classifier at any time to call. The spatial sur-
face function f(x,y,z) = 0 is fitted based on the difference in 
the sampling data, and the formation of the spatial voxel 
is appropriately predicted. Finally, the 3D visualization 
model is generated by computer visualization technology. 
3D geological implicit modeling is based on borehole data 

(2)
fi ∶ ℝ

3
→ ℝ

p(x, y, z) → fi(p) = fi(x, y, z)

(3)
G ∶ �

2
→ �

P(f1, f2) → G(P) = G(f1, f2)

Table 1  The characteristics of different methods of dividing the region

Methods of dividing the region Delaunay triangle Tyson polygon Ordinary quadrilateral mesh

Time complexity O(n*logn) O(n2) -
Basis of dividing Borehole location and boundary 

location
Delaunay triangle Boundary only

Sub-prism Triangular prism with the smallest 
radius of the outer circle

Polygon prism. difficult to manage the 
data.

Quadrangle

Training set data Several boreholes near a sub-prism, 
which can represent the sub-prism

A sub-prism has only one borehole. The 
selection of boreholes used for modeling 
each prism is difficult.

Some sub-prisms may have many 
boreholes, and some sub-prisms 
may have no boreholes.

Stratigraphic characteristics in 
sub-prism

The stratum is simple due to the 
small partition

The stratum is relatively simple. The stratum is simple due to the 
small partition
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in the understudy area whose processes can be derived 
(see Fig. 5).

Uncertainty analysis

The expression method of geological model uncertainty 
essentially includes the geological statistical-based model 
(Dell'Arciprete et al. 2012; Madsen et al. 2022), proba-
bility-based model (Wang et al. 2017; Wang 2020), and 
weighting model(Fatehi et al. 2020). Information entropy 

is frequently implemented as a quantitative indicator of 
the information content of a probabilistic system. After 
predicting the formation result, the information entropy 
of each voxel is suitably provided to measure its uncer-
tainty quantitatively. The definition of information entropy 
(Shannon 1948) can be interpreted here as: the weight 
of the product of the natural logarithm in the predicted 
probabilities for each layer, and the corresponding formula 
reads:

where x represents the probability distribution of any ran-
dom event, X is the set of possible values of x, n denotes the 
number of layers, and p(xi) signifies the probability value of 
the i-th value type. The more average the probability distri-
bution of each value is, the greater the entropy will be, and 
the greater the uncertainty of the random variable is. The 
entropy ranges in the following form:

(4)H(x) = −

n
∑

x∈X

p(xi)lnp(xi)

(5)0 ≤ H(x) ≤ lnn

Table 2  Optimal 
hyperparameter combination

Algorithms Hyperparameter combination

SVM C = 1.0, kernel = "rbf", gamma = 0.33333; max_iter = 4000
CB iterations = 1000; learning_rate = 0.03; l2_leaf_reg = 3; depth = 6
DF n_estimators = 4, n_trees = 500, max_layers = 20
RF n_trees = 100, criterion = "gini", min_samples_split = 2, min_samples_leaf = 1
KNN leaf_size = 30, n_neighbors = 5
XGB learning_rate = 0.1, n_estimators = 450, max_depth = 5, min_child_weight = 6
DT criterion = "gini", min_samples_split = 2, min_samples_leaf = 1

2F

1

2

1 2

1= 2=

Fig. 4  The correspondence of the geometric elements between the 
implicit space and the Euclidean space

Fig. 5  The process of 3D 
implicit geological modeling

.

, 
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According to Eq. (4), we see that information entropy 
possesses the following good properties: (i) Non-negative; 
(ii) Monotonicity: the higher the probability of an event, 
the lower the information it carries; (iii) Accumulative: 
the measure of total uncertainty of multiple random events 
occurring at the same time can be expressed as the sum of 
measures of uncertainty of each event. The number of strata 
n in the geological layer is certain; moreover, to unify the 
uncertainty measure in the range of 0 to 1, multiply the coef-
ficient of 1

lnn
 in front of the formula (Eq. 6):

where H1(x) denotes the system information entropy after 
standardization.

The intuitive sense of the information entropy value is 
fuzzy, and it cannot be employed to sense the uncertainty 
of geological models like confidence. In the probability rep-
resentation of implicit modeling, the probability of a voxel 
is mostly placed between two adjacent strata, and the prob-
ability of other strata outside the two strata is almost zero. 
Therefore, we assume that each voxel is at most between two 
types of strata, and the result of Eq. (6) can be appropriately 
approximated as standardized binary information entropy 
(Wellmann 2013; Wellmann and Regenauer-Lieb 2012), so 
as to conveniently relate information entropy and confidence 
per the following relation:

where β represents the probability of the binary information 
entropy system, that is, the confidence.

(6)H1(x) = −
1

lnn

n
∑

x∈X

p(xi)lnp(xi)

(7)

H1(x) = −
1

lnn

n
∑

x∈X

p(xi)lnp(xi) ≈ −
1

ln2
(�ln� + (1 − �)ln(1 − �))

Post‑processing

Boreholes supplement

The post-processing process is mainly to improve the predic-
tion of the classifier and form the final result. In the geologi-
cal exploration process, relatively sparse data can be used to 
quickly obtain a preview of the spatial geological structure and 
analyze the uncertainty to guide the planning of subsequent 
boreholes. When there is sparse data, the intuitive reflection 
is that the information entropy in this region is large, and the 
place with large information entropy may not predict accu-
rately, expecting more borehole information. The accuracy of 
geological space can be effectively improved by adding artifi-
cial boreholes in these areas. The investigation of the effect of 
the supplementary borehole has been provided in Sect. 3.5.3.

Detail refinement

A local interpolation of the scattered grid points can be per-
formed at the predicted formation interface, which can itera-
tively approximate the actual interface. As illustrated in Fig. 6, 
the length of the first grid scatter interval is set as 5 m, and the 
sudden change of formation between the scattering points A and 
B proves that the interface passes through here. The grid was 
interpolated between A and B (the grid is divided into 10 parts, 
and the interval length is set as 0.5 m). After re-prediction, the 
formation jump occurred between C and D, and it can be con-
sidered that the interface appeared at a random location within 
0.5 m. The interpolation points can be randomly generated at 
the adjacent scattered grid points with sudden changes in layer 
types, and the scattered points located at the interface can be 
extracted (see Eq. (8)). The point cloud formed by each interface 

Fig. 6  Grid points adjacent to 
the interface
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smoothly simulates a surface, and the position of this surface 
represents the interface position of the two soil types. Therefore,

where Pin represents random interpolation points; P0 , P1 
represents the vectorial form of two adjacent scattered grid 
points of abrupt change in stratigraphic types, and r can 
be set as 0.5. After the surface generation by nonuniform 
rational B-spline (NURBS), solid cutting is performed to 
configure an appropriately complete geological model.

Case study

General description of the project

The geological model of the understudied area has been recon-
structed using measured boreholes. It is located downstream 
of the Jinsha River on the border of the Shuifu and Sichuan 
Province in Yunnan, China. The dam area can be considered 
as a cube with dimensions of 1,300 m × 1,000 m × 800 m, with 
compact boreholes. Being located in a mountainous area and 
a river valley, the land surface has many fluctuations, so its 
geological conditions affect the construction of the dam. The 
interlayer shape has been distorted, some layers are relatively 
thin, and flow erosion destroys many layers, which makes the 
modeling of the problem somewhat difficult. The understudied 
area exhibits an obvious tectonic uplift, particularly the bottom 
layer, which is a favorable structural zone for dam construction 
and river storage. The dam area is surrounded by river valleys, 
mountains, and mountains (see Fig. 7). There are a total of 131 
boreholes in the area of the dam site (1,000 m long and 800 m 
wide, averaging 163.75 borehole /  km2). There are only 63 

(8)Pin = r ⋅ P0 + (1 − r) ⋅ P1

boreholes in the entire outer enclosure area (2,353 m long and 
2,380 m wide, averaging 34.64 borehole /  km2, 13.21 borehole 
/  km2 in the overall area). On average, the less boreholes per 
unit area, the more scattered the borehole distribution, so this 
part of the borehole area is more scattered. The distribution of 
the boreholes is very limited and uneven due to the ground and 
surface conditions. In this research, the totally 194 boreholes 
have been used to finely reestablish the understudied area near 
the dam site. A model developed by explicit method based on 
boreholes, shallow sections, and geological outcrops, which 
is considered perfectly correct, is for the approach validation.

Data set preparation

The data of 149 randomly selected boreholes in the work-
ing area were sampled and 89,956 sampling points were 
obtained, which are capable of predicting the state of for-
mation of the dam site with compact boreholes. At the 
same time, 131 boreholes were sampled, and 86,843 sam-
pling points were obtained, which are aimed at reason-
ably predicting the state of the entire layer of the area 
with sparse boreholes. Obviously, it is more difficult to 
model with sparse drilling data in the overall area, which 
are basically modeled using interpolation and estimation 
methods. The trained classifier uses the test set (test set: 
100 × 130 × 80 grid points in the research area of the dam 
site + 80 × 80 × 40 grid points at the edge of the research 
area, adding previous conditions and removing points 
above the surface, a total of 876,593 grid points) for the 
validity of the accuracy of the proposed method in this 
paper. The coordinates of various boreholes often pos-
sess different numerical size scales, which could have a 
special effect on the training of models, especially those 
constructed based on distance and similarity. Therefore, 
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dam site

Jinshajiang River

Yibin, Sichuan Province

study area boundary

x_range = [39602.775, 41955.266]  #about 2350m

y_range = [68605.701, 70985.310]  #about 2400m

z_range = [-200.00, 600]  # 800m

2.5km

Xiangjiaba
dam site

Overall area

Dam site area
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Borehole
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Compact boreholes

40000

69000

41000
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Fig. 7  Map of the understudied area adjacent to the dam site
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standardization is a vital step to remove the effect of 
numerical size. After standardization, the input training 
dimensions X, Y, and Z are appropriately scaled to be close 
to zero, which is more suitable for comprehensive com-
parative evaluation. The standardized formula reads:

The research area is divided into 7 strata, from top to 
bottom, respectively numbered as 1–7. There is an obvious 
imbalance in the distribution of data among classes: Class 1, 
2, and 3 strata represent small strata that make up only less 
than 10%, Class 1 strata even account for only about 2%, 
and the number of samples of a few classes is small. The 
lithological imbalance between the classes greatly affects 
the judgment of the machine learning model. Since the bore-
hole-based sampling points are essentially concentrated in 
a cylindrical space, it is easy to risk overfitting if synthetic 
minority over-sampling technique (SMOTE) is applied to the 
relatively small formation (calculate the Euclidean distance 
and select a point among K nearest neighbors as the endpoint 
of the interpolation, as given by Eq. (10)).

The subtriangular prism block does not involve all lay-
ers, and therefore, the effect of disequilibrium between 
lithological classes is noticeably reduced. The the dataset 
has been illustrated Fig. 8.

Accuracy evaluation

Evaluating indicators

In the problem of multi-classification of strata, especially 
in the case of complex geological conditions, multiple 
interfaces, and unbalanced volume ratio between layers, 
the prediction result of unbalanced classification should be 
appropriately highlighted. To this end, herein, the following 
classification evaluation indices are utilized: accuracy, preci-
sion, recall, and F1, and the corresponding relations read the 
following formulations:

(9)Xn =
x − x

�

(10)Xn = x + random(0,1) ⋅

√

(x − xn)
2

(11)accuracy =
TP + TN

TP + TN + FP + FN

(12)precision =
TP

TP + FP

(13)recall =
TP

TP + FN

where TP (True Positive) indicates the number of positive 
classes predicted correctly; FP (False Positive) indicates the 
number of negative classes predicted as positive; TN (True 
Negative) indicates the number of negative classes predicted 
correctly; FN (False Negative) predicts the number of posi-
tive classes as negative classes.

When evaluating the detail prediction, the accuracy of the 
interface trend should be measured and the degree of corre-
lation and error between the actual surface and the predicted 
surface should be quantified. The root mean square error 
(RMSE) and the correlation coefficient (R2) were chosen to 
configure the evaluation system of the detailed prediction 
results. The formula is as follows:

where Oi represents the prediction value of z coordinates at 
the i-th interface, Ti denotes the real value of z coordinates of 
the corresponding scatter point at the i-th interface, T is the 
mean value of the true z coordinates of the entire interface, 
and n signifies the number of point pairs.

Overall degree of accuracy comparison

The geological regions are divided into 62 Delaunay-trian-
gular prism blocks, and seven classifiers are employed to 
predict each block. The maximum accuracy of each block 
is combined to configure an ensemble model, the so-called 
ensemble model with divide-and-conquer tactic (EMDCT), 
which is compared with that of the other seven separate 
classifiers. The grid points in the understudied area are able 
to represent the global prediction of the algorithm, and the 
results obtained are given in Table 3, the confusion matrix 
is illustrated in Fig. 9, and the recognition effect of each 
stratum is demonstrated in Fig. 10 on the bar chart (where 
the corresponding data are presented Table 4).

As can be seen from Table 3, most of the classifiers predict 
the dam site area with an accuracy above 0.9, and the prediction 
result is good. Meanwhile, the EMDCT exhibits the highest 
accuracy of the scattered point of the dam site, which reached 
0.973, followed by SVM and CB with an accuracy of 0.962 and 
0.953. Similarly, the EMDCT possesses the highest prediction 
accuracy for the whole area with scattered boreholes, reaching 

(14)F1 =
2 ⋅ precision ⋅ recall

precision + recall

(15)RMSE =

�

∑n

i=1
(Oi − Ti)

2

n

(16)R2 = 1 −

∑n

i=1
(Oi − Ti)

2

∑n

i=1
(T − Ti)

2
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0.922. This was followed by the SVM and CB with accuracy 
rates of 0.909 and 0.894, respectively. Obviously, the EMDCT 
has the best prediction under the conditions of various sparsity 
of boreholes, different regional sizes, and different geological 
structures. In the case of scattered boreholes, the accuracy is 
improved, which is 0.013 higher than 0.909. In compact drilling 
conditions, the accuracy improvement is limited, but it can still 
be improved by 0.011 with a higher accuracy of 0.962.

In Fig. 10 and Table 4, the predicted results of each strati-
graphic class are visually displayed. Transversely, each stra-
tum is regenerated to varying degrees. The performance of 
large strata (strata 5, 6, and 7) is generally good. Especially 
in strata 7, the indices of all algorithms are basically around 
0.95, and the F1 value of each algorithm is above 0.9. Such 
a fact reveals that all the algorithms exhibit good prediction 
on massive and large strata. The performance of small strata 

Fig. 8  Class distribution of 
samples: a Training set, b Test 
set

(a)

(b)
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not used (blue curve). As in the regional details of Fig. 11(a), 
the green curve most likely represents the trend of formation. 
Therefore, the EMDCT is capable of refining the implicit 
characteristics of the engineering geological entity in detail, 
improving the interface correlation coefficient, and reducing 
the interface error. We use existing data to model explic-
itly, resulting in detailed geological errors of the model. 
The average elevation error of the six main formations is 
11.823 m, 6.8 m more than that of EMDCT. The average 
correlation coefficient of them is 0.9806, 0.016 less than that 
of EMDCT. These shows that EMDCT is suitable for local 
detail characterization under relatively sparse boreholes, and 
is an effective method for refine modeling.

Sensitivity analysis of prediction

To examine the case of more sparse boreholes and uneven 
distribution, sensitivity analysis of the detection effect is 
required. Herein, the virtual drilling training sets are com-
bined with the EMDCT for training (see Table 7), and the 
performance in dam site of each classifier on various bore-
hole numbers and distributions is compared.

Sensitivity to number of boreholes

Training sets T1, T2, T3, and T4 represent boreholes with 
uniform grid distribution and decreasing grid rows and 
columns, and the corresponding results are illustrated in 
Fig. 13(a). As presented in the line graph, the predicted 
results by the EMDCT in this region are relatively stable 
and good, and its accuracy does not substantially reduce. 
In addition, this approach is not sensitive to the data vol-
ume, and the accuracy rate remains high (i.e., 0.969, 0.967, 
0.966, and 0.965 for T1-T4). Under different distributions 
of borehole numbers, the formation prediction effect of the 
divide-and-conquer method (EMDCT) shows significantly 
better results, compared with other single algorithms. There 
is almost the same trend between them, but the declining 
trend of EMDCT is significantly slower than that of other 
single algorithms, indicating that it is robust to the number 
of boreholes.

Sensitivity to distribution of boreholes

Training sets T1, T5, and T6 signify the same number of 
boreholes, but with dissimilar distributions. The achieved 
results are presented in Fig. 13(b). The uniformity of bore-
hole distribution is another factor in the prediction of any 
algorithm. The more chaotic the distribution, the less effec-
tive the prediction results. The EMDCT exhibits a rela-
tively stable prediction and maintains high accuracy (i.e., 
0.969, 0.968, 0.965 for the above training sets) in the case 
of uneven borehole distribution, which can be applied to the 

Table 3  Accuracy of each algorithm

Algorithm Accuracy of dam site 
area (149 boreholes)

Accuracy of the overall 
area (131 boreholes)

EMDCT 0.973 0.922
SVM 0.962 0.909
CB 0.953 0.894
DT 0.931 0.879
RF 0.919 0.866
KNN 0.917 0.868
XGB 0.901 0.858
DT 0.887 0.833

(strata 1, 2, 3, and 4) is not satisfactory: Strata 1, 2, and 3 are 
located in the valley cover, erosion, more complex structure, 
and have a border with the surface, and the DT and XGB 
algorithms are relatively poor in predicting its effect. Strata 
1 and 4 in order are a thin cover layer and an interlayer with 
a small volume, and the prediction effect is average. Com-
monly, the prediction of some types of samples is low, and the 
imbalance between layers is a factor that limits the prediction 
in common classifiers. Longitudinally, the prediction perfor-
mance of each algorithm is different. DF, RF, DT, XGB, and 
KNN have different weaknesses for different formations with 
various shapes and topological relationships, and the recall or 
accuracy is low. On the contrary, the EMDCT performance 
is relatively stable in each layer, the recall and the precision 
are similar, and the F1 value is stable and maintains a high 
level, even in small layers that are considered to be of good 
robustness followed by the SVM and CB.

Refined implicit characterization of the interface

We found that the EMDCT exhibits the best effect on the 
formation prediction, and the combination of various algo-
rithms suitably cooperates with the triangular prism segmen-
tation approach. The predicted scattered points were visual-
ized and the 3D geological structure was reproduced. The 
cross-section of the dam axis location (i.e., X = 40725.513 m) 
is calculated via the grid point mapping, and the correspond-
ing calculations are performed. The results of the root mean 
square error (RMSE) and the correlation coefficient (R2) data 
are presented in Tables 5 and 6. The cross-sectional details 
are illustrated in Fig. 11. The bar graph and line graph for 
the comparison between R2 and RMSE of the EMDCT are 
presented in Fig. 12. Compared to the ground truth (black 
curve), the EMDCT is able to reproduce the details better, 
with 6 interfaces correlation coefficients above 0.995 and 
the RMSE averaging of 5.0 m, which is remarkably supe-
rior to other algorithms without triangular prism blocks (see 
Fig. 12). Compared to the ground truth, the EMDCT is visu-
ally close, which is closer to reality than the interface that is 
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Fig. 9  Confusion matrices of 8 
classifiers: a DF, b RF, c DT, d 
XGB, e CB, f SVM, g KNN, h 
EMDCT

0.886 0.0277 0 0 0 0 0

0.114 0.92 0.0455 0 0 0 0

0 0.0527 0.913 0.0654 0 0 0

0 0 0.0418 0.884 0.0281 0 0

0 0 0 0.0508 0.943 0.0379 0

0 0 0 0 0.0287 0.94 0.0425

0 0 0 0 0 0.0223 0.957

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7

Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencyDF (0.931)

(a)

0.897 0.0458 0 0 0 0 0

0.103 0.907 0.0681 0 0 0 0

0 0.0476 0.888 0.0759 0 0 0

0 0 0.0439 0.872 0.0415 0 0

0 1.62E-5 0 0.0516 0.93 0.0484 0

0 0 0 0 0.029 0.928 0.0494

0 0 0 0 0 0.0238 0.951

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7

Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencyRF (0.919)

(b)

0.914 0.0872 0.00274 0 0 0 0

0.0862 0.848 0.0727 0.0054 1.62E-4 0 0

0 0.0653 0.841 0.0934 3.43E-4 0 0

0 0 0.084 0.839 0.0595 1.71E-5 0

0 0 0 0.062 0.858 0.0466 0

0 0 0 0 0.082 0.918 0.0547

0 0 0 0 0 0.0352 0.945

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7

Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencyDT (0.887)

(c)

0.902 0.0632 0 0 0 0 0

0.098 0.883 0.0861 0 0 0 0

0 0.0535 0.851 0.111 0 0 0

0 0 0.0632 0.819 0.051 0 0

0 0 0 0.0635 0.911 0.053 0

0 0 0 6.55E-4 0.0375 0.921 0.0482

0 0 0 0.0058 5.85E-4 0.0264 0.952

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7

Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencyXGB (0.901)

(d)

0.92 0.0173 0 0 0 0 0

0.0804 0.957 0.0386 0 0 0 0

0 0.0258 0.93 0.0407 0 0 0

0 0 0.031 0.932 0.0225 0 0

0 0 0 0.0276 0.954 0.0239 0

0 0 0 0 0.0234 0.957 0.026

0 0 0 0 0 0.0188 0.974

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7

Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencyCB (0.953)

(e)

0.949 0.00892 0 0 0 0 0

0.0509 0.964 0.0224 0 0 0 0

0 0.0268 0.944 0.0284 0 0 0

0 0 0.034 0.942 0.0244 0 0

0 0 0 0.0294 0.96 0.0226 0

0 0 0 0 0.0156 0.967 0.0186

0 0 0 0 0 0.0101 0.981

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7
Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencySVM(0.962)

(f)

0.865 0.0178 0 0 0 0 0

0.135 0.89 0.0389 0 0 0 0

0 0.092 0.885 0.0567 0 0 0

0 0 0.0759 0.864 0.0333 0 0

0 0 0 0.0791 0.933 0.0406 0

0 0 0 0 0.0336 0.925 0.0423

0 0 0 0 0 0.0345 0.958

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7

Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencyKNN (0.917)

(g)

0.954 0.00931 0 0 0 0 0

0.0458 0.968 0.0133 0 0 0 0

4.57E-4 0.0225 0.963 0.0155 0 0 0

0 0 0.0238 0.964 0.0162 0 0

0 0 0 0.0204 0.972 0.0161 0

0 0 0 0 0.0117 0.977 0.0151

0 0 0 0 0 0.00712 0.985

#1 #2 #3 #4 #5 #6 #7

#1

#2

#3

#4

#5

#6

#7

Tr
ue

str
at
a

Predicted strata
0

0.2

0.4

0.6

0.8

1
FrequencyEMDCT (0.973)

(h)



Bulletin of Engineering Geology and the Environment (2024) 83:282 Page 15 of 29 282

0.800

0.850

0.900

0.950

1.000

0.800

0.850

0.900

0.950

1.000

0.800

0.850

0.900

0.950

1.000

0.800

0.850

0.900

0.950

1.000

0.800

0.850

0.900

0.950

1.000

0.800

0.850

0.900

0.950

1.000

0.800

0.850

0.900

0.950

1.000

Fig. 10  Comparison of 8 classifiers on the identification of each class in histograms, and the seven bar charts from top to bottom in order represent strata 1 to 7
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uneven field sampling situation. However, the accuracy of 
the XGB and DT algorithms sharply lessened (0.026 and 
0.021, respectively), indicating that the algorithm is sensi-
tive to the uniform distribution of boreholes. Furthermore, 
if the distribution of boreholes grows chaotic, the prediction 
becomes unstable. The uniform equal spacing in this section 
is a relatively safe distribution method compared to random 
distribution. In practical engineering, it is valuable to find the 
location of new boreholes by uncertainty analysis method in 
existing boreholes. To enhance the accuracy of the overall 
implicit modeling, placing the most suitable position from a 
limited number of boreholes. The relationship between the 
distribution of boreholes and the accuracy of the model pro-
vides a basis for the addition and subtraction of boreholes.

Uncertainty analysis

Visualization of uncertainty

Uncertainty is inevitable in a geological model due to 
measurement error, data scatter, algorithm estimation, 
and other factors. The geological model can be under-
stood by using the uncertainty quantitative results. One 
case with the EMDCT is chosen for uncertainty analy-
sis. A 3D information entropy domain can be constructed 
by collecting the information entropy of each voxel in a 
3D space (see Fig. 14(a)). The results of the information 

entropy isogram provided by the geological model corre-
spond to the actual situation (see Fig. 7): the yellow area 
is mostly placed in the uncollected boreholes around the 
dam site. The purple area is mainly in the area of the dam 
site, which is densely drilled, and its radiation affects the 
surrounding non-dam area. There is a local maximum of 
information entropy at the boundary between two forma-
tions, which indicates that the spatial prediction results 
along stratigraphic boundaries exhibit a relatively low 
confidence level, and the model is expected to increase 
the sampling points under complex geological conditions 
and scattered boreholes.

Validation of uncertainty analysis

Uncertainty based on information entropy represents the 
degree of confidence of the classifiers for the predicted 
points. This section aims to prove the existence of a cor-
relation between the certainty and the accuracy. According 
to the plotted results in Fig. 14(b), the decreasing trend 
of information entropy is almost negative exponential. 
The points with small information entropy exhibit a large 
proportion, indicating that the prediction results of most 
sampling points are relatively reliable. The critical value 
of information entropy is denoted by h (where, 0 < h < 1), 
and the value of h can be determined according to cer-
tain conditions. The approximate corresponding relation-
ship between information entropy h and confidence β is 

Table 4  Classification 
evaluation metrics for various 
classifiers, dam site area with 
149 boreholes

Strata code DF RF DT XGB CB SVM KNN EMDCT

#1 Recall 0.886 0.897 0.914 0.902 0.920 0.949 0.865 0.954
Precision 0.926 0.884 0.797 0.848 0.954 0.976 0.950 0.976
F1 0.905 0.891 0.851 0.874 0.936 0.963 0.906 0.965

#2 Recall 0.920 0.907 0.848 0.883 0.957 0.964 0.890 0.968
Precision 0.901 0.879 0.865 0.859 0.924 0.953 0.899 0.966
F1 0.910 0.893 0.856 0.871 0.940 0.959 0.894 0.967

#3 Recall 0.913 0.888 0.841 0.851 0.930 0.944 0.944 0.963
Precision 0.884 0.874 0.837 0.830 0.931 0.945 0.945 0.963
F1 0.898 0.881 0.839 0.840 0.931 0.944 0.944 0.963

#4 Recall 0.884 0.872 0.839 0.819 0.932 0.942 0.864 0.964
Precision 0.912 0.887 0.826 0.850 0.934 0.929 0.875 0.952
F1 0.898 0.880 0.832 0.834 0.933 0.935 0.870 0.958

#5 Recall 0.943 0.930 0.858 0.911 0.954 0.960 0.933 0.972
Precision 0.931 0.919 0.909 0.907 0.958 0.959 0.913 0.971
F1 0.937 0.924 0.883 0.909 0.956 0.959 0.923 0.972

#6 Recall 0.940 0.928 0.918 0.921 0.957 0.967 0.925 0.977
Precision 0.938 0.932 0.883 0.924 0.957 0.970 0.933 0.977
F1 0.939 0.930 0.900 0.923 0.957 0.969 0.929 0.977

#7 Recall 0.957 0.951 0.945 0.952 0.974 0.981 0.958 0.985
Precision 0.973 0.971 0.957 0.964 0.978 0.988 0.959 0.991
F1 0.965 0.961 0.951 0.958 0.976 0.985 0.958 0.988
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described in Sect. 2.3.3. According to the scattered bore-
holes around the dam site, h = 0.6 is taken and the predic-
tion is considered confused (uncertain) if the information 
entropy becomes greater than 0.6 (corresponding confi-
dence is about β = 0.85). In this paper, an 85% confidence 
degree is taken as the boundary value of whether the for-
mation prediction is confident. Then, 0.6 can be determined 
as the boundary value of whether the prediction is consid-
ered to be chaotic. The relationship between the certainty 
and accuracy of the model predictions is confirmed by the 
2 × 2 contingency table chi-square calculation formula:

where i and j are two related categories, and nij , ni⋅ , n⋅j , and 
n represent their frequencies. The certainty and the correct-
ness are given in Table 8. By entering the data and after 
calculating, it is obtainable �2=57,397. Under the condi-
tion of significance level α = 0.05, the correlation between 
prediction certainty and correctness can be satisfied. The 
information entropy represents the confidence of the predic-
tion algorithm in probability, and for the points predicted 
with confidence, the prediction results are always correct 
with greater probability. The uncertainty assessment is also 
always more likely to give a conservative view of points 
even where the prediction was wrong.

The uncertainty assessment in this section is valid. There-
fore, application of the uncertainty to analyze and increase 

(17)�2 =

2
∑

i=1

2
∑

j=1

(

nij −
ni⋅n⋅j

n

)2

ni⋅n⋅j

n

∼ �2(1)

the sampling position is an effective way, and the results of 
uncertainty can be effectually utilized to express the model.

Boreholes supplement after uncertainty analysis

By mapping points with information entropy greater than 
0.95 into space, regions of low confidence can be directly 
identified (see Fig. 15). The areas of low confidence mainly 
include: (i) Stratigraphic interface; (ii) Small strata area; (iii) 
Areas with few boreholes. The region with the highest infor-
mation entropy is further screened, and the location of new 
boreholes is artificially selected (see Fig. 15), whose new 
data set is sampled in new boreholes and added to the train-
ing set. The results obtained with 10 times of retraining are 
presented in Table 9. Adding new boreholes after uncertainty 
analysis has a certain effect on improving the overall accu-
racy of the model. But in fact, adding more sampling points 
always leads to the improvement of modeling. Therefore, by 
randomly increasing the equal number of boreholes in the 
understudy area, a new dataset obtained from sampling was 
added to the training set and trained with the same method 
for 10 times. Using the T-hypothesis test (Konietschke and 
Pauly 2014), it was proved that the additional assumptions 
based on the uncertainty analysis have a substantial effect on 
improving the overall accuracy of implicit modeling.

Null hypothesis H0: Additional boreholes in uncertainty 
analysis do not have a substantial effect on enhancing the 
overall accuracy of implicit modeling. The obtained results 
after training are provided in Table 9, and the statistical cal-
culation formula reads:

Table 5  Detailed comparison of 
R2 of various algorithms, dam 
site area with 149 boreholes

Interface EMDCT SVM DF RF DT XGB CB KNN Explicit

#1-2 0.9962 0.9923 0.9757 0.9810 0.9449 0.9655 0.9872 0.9758 0.9846
#2-3 0.9979 0.9942 0.9796 0.9759 0.9646 0.9758 0.9907 0.9752 0.9908
#3-4 0.9957 0.9918 0.9829 0.9746 0.9608 0.9622 0.9867 0.9753 0.9812
#4-5 0.9972 0.9947 0.9885 0.9856 0.9809 0.9773 0.9934 0.9779 0.9948
#5-6 0.9957 0.9917 0.9867 0.9765 0.9490 0.9748 0.9909 0.9783 0.9905
#6-7 0.9961 0.9922 0.9657 0.9631 0.8759 0.9642 0.9825 0.9529 0.9414
Mean 0.9965 0.9928 0.9798 0.9761 0.9460 0.9700 0.9886 0.9726 0.9806

Table 6  Detailed comparison 
of RMSE of various algorithms 
(unit: m), dam site area with 
149 boreholes

Interface EMDCT SVM DF RF DT XGB CB KNN Explicit

#1-2 5.227 7.442 13.295 11.829 19.400 15.875 9.590 13.197 11.340
#2-3 3.799 6.283 11.742 12.825 15.493 12.859 7.961 13.078 9.103
#3-4 5.645 7.782 11.174 13.589 17.024 16.676 9.923 13.503 13.665
#4-5 5.063 6.925 10.212 11.402 13.203 14.446 7.747 13.948 7.566
#5-6 5.652 7.871 9.969 13.243 19.559 13.714 8.266 12.733 9.172
#6-7 4.707 6.699 13.849 14.311 26.251 14.122 9.886 16.408 20.089
Mean 5.016 7.167 11.707 12.866 18.488 14.615 8.896 13.811 11.823
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Fig. 11  Comparison of various 
cross-sections on the dam axis: 
a Cross-sections on the axis 
of the dam, the green ones 
are obtained via the EMDCT, 
whereas the blue ones are 
extracted in another way, b 
Implicit surface

(a)

(b)

0.973

where Z is the difference between the two samples, 
Zi = Xi − Yi , the mean value is defined by Z =

1

n

∑n

i=1
Z
i
 , and 

the standard deviation is given by S2 = 1

n−1

∑n

i=1
(Z

i
− Z)

2 . 

(18)T =
Z

S

√

n ∼ t(n − 1)
Therefore, we obtain T = 7.841. According to the signifi-
cance level α = 0.005, a unilateral test can be conducted to 
obtain t1−𝛼(n − 1) = t0.995(9) = 3.250 < T  . This indicates 
that the additional boreholes in the uncertainty analysis 
of the two algorithms exhibit a more significant effect on 
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improving the overall accuracy of implicit modeling, and 
the difference is statistically significant.

In order to compare uncertainty analysis to guide geo-
logical exploration more accurately, we look for as few 
holes as possible to match the effect of uncertainty analy-
sis when adding random holes. We find that the effect of 
randomly adding 30 holes (the last column of Table 9) is 
comparable to that of adding 20 holes after uncertainty 
analysis. Therefore, it can be figured that in the case of 
this paper, uncertainty analysis can reduce the engineering 
quantity of about 10 boreholes. After uncertainty analysis, 
the number of boreholes increased, and the information 
entropy obtained again is shown in Fig. 16. It can be seen 
that the overall information entropy decreased significantly.

Final performance

Through the above comparison, the best prediction results 
can be obtained by the EMDCT. After the uncertainty analy-
sis, point clouds are processed and surfaces and entities are 
formed (see Sect. 2.4), where the results of the final mod-
eling have been presented in Fig. 17. The implicit modeling 
accuracy can be improved at key stages of the entire process 
(see Table 10 and Fig. 18). The first line segment shows 
the ascending contribution of the EMDCT, and the second 
line segment is provided by the uncertainty analysis. The 
accuracy of the dam site reached 0.974 (the EMDCT contri-
bution increased by 0.011, the uncertainty analysis contribu-
tion increased by 0.001, and the total increased by 0.012). 

Fig. 12  The degree of detail 
fit for various interfaces fitted 
by the classifiers,  the orange 
colored bars are associated with 
the EMDCT: (a) R2, (b) RMSE 
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Additionally, the accuracy of the whole working area around 
the dam site (sparse boreholes) reached 0.962 (the EMDCT 
contribution increased by 0.013, the uncertainty analysis 
contribution increased by 0.040, and the total increase by 
0.053). Based on the same data, we built this model using 
traditional explicit workflows, and the results are shown in 
Fig. 17. This is non-automated, time-consuming, and the 
results of the modeling are different from ground truth. 
Workflows modeled explicitly do not involve machine learn-
ing, so the result "accuracy" does not exist. However, we can 
see from the final profile (Fig. 17) and detailed geological 
indicators (Fig. 12) presented by the model that its perfor-
mance is far inferior to EMDCT.

Discussion

Implicit modeling with machine learning

The discrete input of implicit modeling can be suitably 
combined with machine learning to realize automated 
modeling. After simple processing, the drilling data can 
be converted into a training set. The discretized output can 
be visualized quickly, making it easy for decision-makers 
to readjust the model. A combination of implicit modeling 
and machine learning essentially transforms a series of 
tedious processes of determining topological relationships 
and surface construction into classification algorithm selec-
tion and hyperparameter adjustment. This paper proposes a 
set of geological implicit modeling and uncertainty analy-
sis methodologies based on the triangular prism blocks 
method. The accuracies of the seven popular algorithms 
touch approximately 0.9, with an R2 value of more than 
0.95 between those of the predicted surface and the actual 
interface. This reveals that the overall model constructed 
using the implicit method meets the accuracy requirements 
of general engineering. Additionally, the local model fits 
well with the surface model of the stratigraphic interface, 
resulting in smooth surfaces.

Refined characterization of geological entity 
with divide‑and‑conquer tactic

Methods of dividing the region

The discrete points’ processing is also a major research 
problem that directly affects the classifier's prediction 
results. The divide-and-conquer tactic serves as a crucial 
preprocessing in implicit modeling. Here, we supplement 
and compare the divide-and-conquer method with different 
regional segmentation methods. Through the same process 
as Table 11, we get the results of Table 18. Several classi-
fication algorithms show different performance in different 
segmentation methods, but the Delaunay-triangular prism 
shows remarkable performance. The Delaunay-triangular 
prism presented here essentially employs the characteristics 
of the triangular Delaunay mesh and is coordinated with the 
corresponding classification algorithms to refine the local 
details. This strategy allows for capturing detailed forma-
tion situations (Ji et al. 2023), and different sub-blocks can 
be processed via various approaches. The effects of differ-
ent sampling point patterns are different in classifiers. The 
divide-and-conquer tactic is capable of reducing the data 
volume and classification dimension and avoiding the short-
comings of the classification algorithm. Hence, the algo-
rithm is able to readily identify the optimal classification 
in the feature space, and the simple and repetitive operation 
ensures both the automaticity and accuracy of the modeling.

The modeling performance of EMDCT

By employing the EMDCT, the accuracy of the algorithm 
is substantially improved in the region of sparse data (the 
overall accuracy is improved by 0.013). Breakthroughs 
can be made based on the effect of better modeling effect 
in data-intensive areas (the accuracy of the dam site area 
is enhanced by 0.011, the correlation coefficient of each 
interface increases by an average of 0.002, and the RMSE 
reduces by approximately 1 m). The average layer error of 

Table 7  Data set setup Data set Number of 
boreholes

Distribution

Training set T1 110 Virtual boreholes are drilled every approximately 210 m in the 
horizontal range of the understudy area; Evenly distributed 
according to the shape of squares: 11 × 10 = 110

Training set T2 90 Evenly distributed according to the shape of squares: 10 × 9 = 90
Training set T3 72 Evenly distributed according to the shape of squares: 9 × 8 = 72
Training set T4 56 Evenly distributed according to the shape of squares: 8 × 7 = 56
Training set T5 110 Unevenly spaced according to the square shape: 11 × 10 = 110
Training set T6 110 Virtual boreholes are drilled randomly in the horizontal range
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Fig. 13  Sensitivity analysis 
of the prediction results: (a) 
The effect of borehole number 
on the implicit modeling, (b)
The effect of the uniformity of 
borehole distribution on implicit 
modeling

(a)

(b)
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Table 8  Contingency table for prediction confidence and accuracy

Prediction of 
incorrect points

Prediction of 
correct points

Total

Prediction of 
uncertain points 
(entropy > 0.6)

24,538 49,039 73,577

Prediction of 
certain points 
(entropy ≤ 0.6)

54,981 748,035 803,016

Total 79,519 797,074 876,593

(a)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

In
fo
rm

at
io
n
en
tr
o
p
y

Grid points (×105)

(b)

Fig. 14  Information entropy: (a)Isogram of 131 boreholes; (b)Ranking chart of information entropy

EMDCT compared to the general explicit modeling method 
improved by 6.8 m,  R2 improved by 0.016 (see Tables 5 and 
6). The modeling effect of EMDCT is better than that of 
traditional methods, from our supplementary experiments. 
Although not all classifiers are perfect for each data situation 
and geological structure, using appropriate algorithms in dif-
ferent blocks can result in achieving better results. From 
the perspective of uncertainty, we calculate the information 
entropy of two models using SVM alone and EMDCT. The 
average information entropy of the former model is 0.119 
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Fig. 15  Uncertainty analysis 
result

(corresponding to 98.4% confidence), and that of the latter is 
0.096 (corresponding to 98.8% confidence), which indicates 
that the prediction of the model by EMDCT is more stable. 
EMDCT not only has improved accuracy in the model, but 
also has higher modeling confidence.

Uncertainties in the geological model

When dealing with sparse data, complex structures, and 
random sampling, uncertainty quantification is necessary 
to assess overall geological conditions. The classifica-
tion of voxel classes is the certainty expression of implicit 
modeling; in contrast, the probability of each stratum and 
the entropy information of each voxel are the uncertainty 

expression of implicit modeling. When we assume that the 
geological space resembles a binary information entropy 
system, this expression can be roughly matched to the con-
fidence level. Through cloud maps and confidence levels, 
people can intuitively grasp the understanding of geological 
conditions.

Uncertainty analysis provides two advantages for 
implicit geological modeling: (i) Enabling the geological 
model to accommodate different possibilities; for instance, 
in Fig. 14(a), the interface is almost confined to this light 
blue space at the dam location, but it can occur anywhere 
in this narrow space, meaning many possibilities for the 
implicit renewable geological model in the form of scatter; 
(ii) Guiding geological discoveries; actually, uncertainty 

Table 9  The results of the boreholes increasing

Number of the tests The accuracy before 
adding boreholes

The accuracy after adding 
20 boreholes according to 
uncertain analysis

The accuracy after 
adding 20 random 
boreholes

The previous two 
columns of  
difference

The accuracy after 
adding 30 random 
boreholes

1 0.9093 0.9624 0.9479 0.0145 0.9560
2 0.9093 0.9619 0.9449 0.0170 0.9635
3 0.9093 0.9623 0.9552 0.0071 0.9638
4 0.9093 0.9622 0.9467 0.0155 0.9602
5 0.9093 0.9622 0.9577 0.0045 0.9619
6 0.9093 0.9622 0.9489 0.0133 0.9568
7 0.9093 0.9619 0.9497 0.0122 0.9638
8 0.9093 0.9618 0.9526 0.0092 0.9659
9 0.9093 0.9626 0.9591 0.0035 0.9583
10 0.9093 0.9620 0.9492 0.0128 0.9642
Mean 0.9093 0.9622 0.9512 0.0110 0.9621
Std(×  10–3) 0.0000 0.2377 4.5276 4.4205 3.2653
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analysis assistances in locating new boreholes that effec-
tively augment the implicit modeling algorithm, as it reflects 
the information that is expected to be added in the algo-
rithm. Boreholes around the dam site are very few. Without 
uncertainty analysis, adding boreholes randomly, and the 
overall working area accuracy rate is only 0.951. By add-
ing boreholes based on uncertainty analysis, the accuracy 
of the whole working area reached 0.962 (see Table 10, 
0.011 higher), and the visualization effect of the formation 
structure is significantly closer to the actual situation than 
without uncertainty analysis (see Fig. 17), which can reduce 
the quantity of about 10 boreholes, equivalently.

Limitations

The examples throughout this paper are real engineering 
cases with good results in hydraulic engineering. This 
case has the following characteristics to fit into this pro-
cess: (i) The distribution of boreholes is uneven, and in 
some areas is very sparse. (ii) The layered structure is 
obvious. (iii) The stratigraphic scale does not cross orders 
of magnitude.

Given the scalability and applicability of the method, 
this section analyzes the limitations of the workflow 
based on the address characteristics of engineering cases. 
The method in this paper has limitations in dealing with 
different practical cases. (i) Data fusion needs to be stud-
ied. Borehole is the most commonly used modeling data 
in geological engineering, which has been proved by 
most engineering practices. Profiles, geological exposure 

lines, physical data, etc., can also be used, and many 
geological modeling methods use the fusion of multi-
source data. The proposed approach provides valuable 
insights for data fusion. The study used only borehole 
data, not profiles or other geological data. According 
to our proposed method, the profile data can also be 
included by the sampling method, which can be pro-
cessed into "location(x, y, z), attribute(S)" sample points 
for machine learning. After the boundaries on the profile 
are interpreted based on their spatial positions, they are 
divided into sampling points and added to the training 
set. The integration of multi-source data can strengthen 
the present approach in the near future. (ii) The modeling 
effect of structural lens needs to be improved. Structural 
lenses, denoting solids characterized by a thick mid-
dle and thin periphery, typically signify compressive 
stress-induced structural fracture zones. These features, 
although smaller in size relative to formation struc-
tures, possess complex shapes. When the borehole does 
not contain any lens information totally, the proposed 
method cannot infer it, even if the lens exists between 
the boreholes. When the borehole contains less of it, 
we want to accurately restore it by implicit modeling 
method, which involves how determining the voxel size 
of the grid model. In this context, detailed structures 
require smaller voxels to represent the boundary. If a 
finer grid is selected, more voxels are needed to form 
the grid model and uncertainty model for the same area 
of work, and the amount of computation will increase 

Fig. 16  The information 
entropy after uncertainty 
analysis
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(b)
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Fig. 17  The visualization results obtained by the implicit modeling: (a) Ground truth; (b) Points visualization results before uncertainty analysis; 
(c) The final geology model; (d) Traditional explicit workflows
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exponentially. We try a site-specific hierarchical grid 
approach in the future.

Conclusions

The 3D geological model provides the basis for the subse-
quent analysis of the engineering construction of the dam 
site. In view of current geological modeling problems, such 
as low local accuracy, difficulty in quantifying uncertainties, 
and difficulty in guiding model updates, a geological implicit 
modeling and uncertainty analysis approach is proposed in 
this study. The contributions include:

 (i). Implicit modeling with machine learning. A com-
bination of implicit modeling and machine learning 
is classification algorithm selection and hyperpa-
rameter adjustment, which is more convenient than 
reconstructing the potential functions.

 (ii). Application of the EMDCT. EMDCT is able to read-
ily identify the optimal classification in the feature 
space, which can enhance the reproduction effect of 
model details.

 (iii). Uncertainty analysis. It quantifies the uncertainty of 
the whole geological model and guides the further 
development of geological exploration and model 
updating. The implementation of uncertainty analy-
sis can reduce the number of boreholes by 10 in this 
study approximately.

The implicit modeling via machine learning techniques is a 
relatively novel approach in this field. The EMDCT and uncer-
tainty analysis are two critical processes aimed at improving 
modeling effectiveness. In this paper, data sets consisting of 
real boreholes and sampling points within the area are collected 
by a divide-and-conquer tactic. Commonly, the overall predic-
tive accuracy of the EMDCT, which refines implicit features, is 
higher. Specifically, the overall accuracy of the working area is 
0.922 and the accuracy of the dam site is obtained as 0.973. The 
EMDCT-based analysis indicates less sensitivity to the number 
and distribution of boreholes and generally exhibits robustness. 
Uncertainty assessment is appropriately conducted using infor-
mation entropy, and a correlation test of the contingency table 
is adopted to establish a vital relationship between the size of 
uncertainty and the accuracy of formation prediction. The T-test 
confirms that the given supplementary borehole is capable of 
noticeably improving the modeling effect according to the uncer-
tainty assessment, and the significance level reaches 0.005. Based 
on the results of uncertainty analysis, the overall accuracy of the 
working area is 0.962 and the accuracy of the dam site is 0.974.

The study used only borehole data, not profiles or other 
geological data. According to our proposed method, in 
fact, the profile data can also be included by the sampling 
method. After the boundaries on the profile are interpreted 
based on their spatial positions, they are equally divided into 

Fig. 18  Accuracy of vari-
ous processes in the proposed 
approach

Table 10  Performance of each process in this approach

Process Accuracy of dam 
site area with 149 
boreholes

Accuracy of the 
overall area with 131 
boreholes

The SVM algorithm 
without EMDCT

0.962 0.909

EMDCT 0.973 0.922
Uncertainty analysis 0.974 0.962
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sampling points and added to the training set. The integra-
tion of multi-source data is able to strengthen the present 
approach in the near future. The proposed approach, com-
bining the background of geological implicit modeling with 
the triangulation ensemble model and uncertainty analysis, 
provides valuable insights for the rapid generation of mod-
els, borehole layout, and uncertainty assessment in the early 
stages of hydraulic engineering geological explorations. The 
inspiration to engineering practitioners is as follows. (i) The 
main significance of this research is that it can help engi-
neers understand geological conditions more deeply and 
guide geological exploration work. Engineers can clearly 
locate areas with complex geological structures through 
uncertainty analysis, so as to find the space where most wor-
thy of investigation, rationally arrange the following inves-
tigation work, and improve productivity. For example, in 
the example given in Section 3.5.3, our method can reduce 
the effort of 10 boreholes (Table 9). Through our method, 
the accuracy of the whole working area can be improved 
from 0.909 to 0.962 (Table 10). The modeling process of 
the divide-and-conquer method and implicit modeling is 
beneficial to the uncertainty analysis and the layout of new 
boreholes. In the preliminary planning stage, the general 
geological structure of the study area can be obtained with 
few boreholes. (ii) The method takes the uncertainty infor-
mation of the model into account. The general relationship 
established between information entropy and confidence 
allows engineers to have a deeper understanding of the grid 
model. The uncertainty analysis method in this paper is not 
only an evaluation of the confidence level of the modeling 
effect but also a new expression of geological uncertainty. 
Furthermore, the reasonable integration of uncertainty is 
conducive to the quantitative evaluation of the reliability of 
the calculation results in the numerical simulation of geo-
logical safety and stability. (iii) Implicit modeling has an 
inspiration for geological engineers and is a novel workflow 
for forming geological models automatically and finely.
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