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A B S T R A C T

Dynamic analysis of forced-vibration systems in civil engineering could be computationally inefficient or even
hard to converge if the systems are stiff or highly complicated. Rapid advances in machine learning make
it possible to formulate surrogate models for forced-vibration systems using neural networks. The widely
used neural networks such as the convolutional neural network (CNN), recurrent neural network (RNN),
etc., usually require a constant sampling rate and data length, thus they are difficult to be implemented
for real-time calculation of the dynamic system with varying sampling rates. Recently, the continuous-time
state-space neural network (CSNN) has shown the capability to lift these restrictions and has been drawing
growing attention from the community. In this paper, we propose a generalized CSNN model for various
forced-vibration systems (linear and nonlinear). The CSNN model comprises two sets of independent neural
networks aiming to compute the state derivative and system response, respectively. Both neural networks
adopt linear and nonlinear layers in parallel, instead of only fully connected nonlinear layers as adopted in
the literature. This configuration is aimed to enhance the CSNN model with its capability to recognize the
linear and nonlinear behaviors of systems. Additionally, the bias options in the CSNN model are all turned
off to improve the stability of the model in the long-term time-series forecast, premised on the assumption
that the forced-vibration systems are dissipative systems without drift, which is the most common case in
civil engineering. Integration on the state derivative at the current time step is executed to obtain the state
at the next time step using the explicit 4th-order Runge–Kutta method. Both numerical and experimental
illustrative examples are provided, demonstrating that the CSNN model can achieve high performance and
training efficiency with a few hyper-parameters, and thus is highly promising for engineering applications.
. Introduction

Dynamic systems in engineering fields might be intricate and ex-
ibit significant nonlinearities [1,2]. Traditional approaches for system
dentification and evaluation often require us to gain as much as we
an about the physical knowledge of the system. For example, the
hysical model of a hydraulic actuator-specimen system should reflect
he dynamics of the servo-valve, actuator, specimen, and the control–
tructure interaction [3–5], leading to at least a fifth-order linear or
onlinear model, depending on the complexity of the specimen [6–8].
nother example is that the memory effect of some materials could be
ell interpreted by the fractional derivative order model, while solving
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it in the time domain is challenging [9,10]. Such physical models need
to be carefully dealt with using sophisticated mathematical tools and
thereby are not attractive to engineers. Furthermore, accurate physical
models are typically not available. Although the finite element (FE)
updating method could be utilized to generate a FE model as close
as possible to the true physical system by fitting the measured system
responses [11–13], excessive computational resources are needed to
update the parameters and produce a high-fidelity FE model.

In order to improve the computing efficiency and reduce the cost to
construct the physical models, extensive studies have been carried out
vailable online 23 December 2023
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on building data-driven non-physical (i.e., ‘‘black-box’’) models, such as
fuzzy rule-based models [14–16], Bayesian models [17–21], etc. Apart
from these classical approaches, the research community has gained
great progress in leveraging neural networks to identify or represent
forced-vibration systems. For example, the state-space neural network
which is essentially a particular version of the recurrent neural network
(RNN) has been developed to represent forced-vibration systems in the
discrete-time domain [22–25]. Long short-term memory (LSTM) neural
network which is another version of RNN has been adopted to predict
the dynamic responses of nonlinear systems [26–29]. Convolutional
neural network (CNN) has been used for structural black-box modeling,
damage detection, and loss data reconstruction [30–33]. Additionally,
by adding essential physical information about the systems to LSTM and
CNN, the enhanced neural networks PhyLSTM [34] and PhyCNN [35]
have been formed for structural seismic response modeling. In the
above studies, the neural networks only function at a specific sampling
rate after they are trained because they were all constructed in the
discrete-time domain. However, the non-uniform sampling strategy
has often been required in some engineering problems to release the
sensing/data processing burden [36,37] or comply with the physical
requirements of the systems in concern [38,39]. Although resampling
techniques can be adopted to unify the sampling rate, other chal-
lenges such as stability and precision issues may arise in this process.
Therefore, making neural network models work independent of the
sampling rate has practical significance. Recently, neural ordinary dif-
ferential equations (NODE) for the formulation of continuous-time
neural network models have been widely investigated [40,41]. The
NODE method works regardless of the change of sampling rate and
has exhibited high performance in learning the unmodeled nonlinear
dynamics of systems [42–45]. Furthermore, the continuous-time state-
space neural network (CSNN) has been developed based on the idea of
the NODE method and has shown improved performance and efficiency
in the identification of nonlinear systems [46,47], therefore has enor-
mous potential for applications in modeling and response prediction of
dynamic systems. How to construct CSNN models for various forced-
vibration systems is an appealing research topic and deserves further
investigation.

In this paper, we establish a generalized CSNN model for forced-
vibration systems in civil engineering. The state vector is introduced
in the CSNN model as the hidden variable, with the goal of learning
the inherent dynamic characteristics of the system subject to different
excitations. The CSNN model consists of two independent sets of neural
networks, labeled as state and output calculators, which are used to
compute the state derivative and output vectors, respectively. Both the
state and output calculators adopt linear and nonlinear neural network
layers in parallel, enabling the CSNN model to capture the linear and
nonlinear components in the responses of the system. The integration
operations from state derivative to state using the explicit 4th-order
Runge–Kutta (RK4) method make the CSNN model independent of the
data sampling rate. Additionally, the CSNN model does not require the
input data length to be fixed. With the above features, the proposed
CSNN model is highly flexible and has a strong capability to predict
system responses in real time.

This paper is organized as follows. In Section 2, the CSNN modeling
methodology is presented, and the features and potential applications
of the CSNN model are discussed in detail. In Section 3, the per-
formance of the CSNN model is evaluated through three illustrative
examples, where the first two are purely numerical examples (linear
and nonlinear cases), and the third one investigates a 6-story building
using recorded response data from 21 seismic events occurring during
1987 to 2018. Section 4 summarizes the conclusions. The data and
codes adopted in this study are publicly available on GitHub at https:
2

//github.com/lihongweiseu/CSNN. l
Fig. 1. Structure of the CSNN cell at time 𝑡.

. Continuous-time state-space neural network (CSNN)

In this study, the forced-vibration system with excitations (input
vector): 𝐮(𝑡) ∈ R𝑛𝑢×1 and responses (output vector): 𝐲(𝑡) ∈ R𝑛𝑦×1

s studied. Assuming that the true physical model of the system is
ompletely unknown (black box), we will utilize the CSNN architecture
o formulate a surrogate model of the system. The dynamic equation of
n unknown system at any time 𝑡 is constructed using a CSNN cell as
hown in Fig. 1, given by

̇ (𝑡) = 𝑥 [𝐱(𝑡),𝐮(𝑡)] ,
̂(𝑡) = 𝑦 [𝐱(𝑡),𝐮(𝑡)] .

(1)

n Eq.(1), 𝐱(𝑡) ∈ R𝑛𝑥×1 is the state vector which is used to learn the
ystem behavior along the vibration trajectory; 𝐱̇(𝑡) is the state derivative
ector ; 𝐲̂(𝑡) ∈ R𝑛𝑦×1 is the predicted output vector ; 𝑥(⋅) and 𝑦(⋅) are two
eural networks, defined as the state calculator and output calculator,

respectively. The initial state vector is assumed to be 𝟎; therefore, the
state vector is governed by

𝐱(𝑡) = ∫

𝑡

0
𝑥 [𝐱(𝜏),𝐮(𝜏)] d𝜏. (2)

Fig. 2 provides an illustration of CSNN for time-series modeling of
forced-vibration system, where

𝑖 = 𝐱(𝑡𝑖), 𝐮𝑖 = 𝐮(𝑡𝑖), 𝐲̂𝑖 = 𝐲̂(𝑡𝑖), 𝑖 = 0, 1, 2,… , (3)

0 = 0 s, and
[

𝑡0, 𝑡1, 𝑡2,…
]

is an ascending time series. The time interval
etween 𝑡𝑖 and 𝑡𝑖+1 is defined as 𝛥𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖, which might vary with
ime. In general, the time interval is constant in the data processing for
he sake of convenience. All the CSNN cells shown in Fig. 2 share the
ame model parameters.

The operations and neural network layers used in the state and
utput calculators are described in Fig. 3. For both the state and output
alculators, the state and input vectors are concatenated first; then fed
nto a sequence of fully connected nonlinear layers and a single fully
onnected linear layer to calculate nonlinear and linear ingredients, re-
pectively; and finally, the nonlinear and linear ingredients are summed
p to generate the state derivative vector or output vector we need.

The graph representations of the state and output calculators are
hown in Fig. 4, where the number of nonlinear layers in the state
nd output calculators is 𝑝 and 𝑞, respectively. The hyperbolic tangent
unction, i.e., Tanh(⋅), is adopted as the activation function in each non-
inear layer. Since the activation function Tanh(⋅) could only generate
he output greater than −1 and less than 1, the last nonlinear layer is
ollowed by a fully connected linear layer to make the output vary in
he entire real-number domain. Each layer contains several neurons,
nd the neuron number is equal to the size of the layer’s output signal.
here is only one linear layer in both the state and output calculators,
hus the neuron numbers in their linear layers are fixed, which are 𝑛𝑥
state vector size) and 𝑛𝑦 (output vector size), respectively. 𝑁 sets of
bserved input and output vectors

[

(𝐮0, 𝐲0), (𝐮1, 𝐲1),… , (𝐮𝑁−1, 𝐲𝑁−1)
]

re used to train the CSNN model, i.e., to determine a set of the calcu-

ators’ hyper-parameters (weights) which keep the errors between the

https://github.com/lihongweiseu/CSNN
https://github.com/lihongweiseu/CSNN
https://github.com/lihongweiseu/CSNN
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Fig. 2. Illustration of CSNN for time-series modeling of a forced-vibration system.
Fig. 3. Operations and layers used in the state and output calculators.
Fig. 4. Graph representations of the state and output calculators (left: state calculator; right: output calculator).
t

predictions

[

𝐲̂0, 𝐲̂1,… , 𝐲̂𝑁−1
]

and observations
[

𝐲0, 𝐲1,… , 𝐲𝑁−1
]

mini-
um. The state vectors are treated as the hidden variables of the CSNN
odel.

It is worth mentioning that in Ref. [44], the authors established
he linear state-space equations for a structure, and added a fully-
onnected neural network to the first equation which calculates the
tate derivative. This operation is similar to combining the nonlinear
nd linear neural network layers in parallel for the state calculator in
his paper. The main difference is that, in Ref. [44], the linear state-
pace equations of the structure were known a priori and fixed, and
he neural network was only used to capture the residual dynamics
f the structure. Additionally, the state vector they used had explicit
hysical meanings (displacement and velocity). In this paper, we move
step forward to formulate the CSNN model for systems without any

rior physical knowledge and let the model itself distinguish between
he system’s nonlinear and linear behaviors, where we do not assign
pecific physical meanings to the state vector of the CSNN model. In
his way, the applicability of the CSNN model will not be restricted to
ertain problems.

The discrete form of the CSNN model is

𝑖+1 = ODEint
[

𝑥(⋅), 𝐱𝑖, 𝐮𝑖, 𝐮𝑖+1, 𝛥𝑡𝑖
]

, 𝐱0 = 𝟎,
̂ 𝑖 = 𝑦

[

𝐱𝑖,𝐮𝑖
]

,
(4)

here ODEint
[

𝑥(⋅), 𝐱𝑖, 𝐮𝑖, 𝐮𝑖+1, 𝛥𝑡𝑖
]

refers to a numerical solver which
ntegrates 𝐱̇(𝑡) = 𝑥 [𝐱(𝑡),𝐮(𝑡)] from the initial value 𝐱𝑖 for the time
nterval 𝛥𝑡𝑖 given the inputs 𝐮𝑖 and 𝐮𝑖+1 at 𝑡𝑖 and 𝑡𝑖+1. The RK4 method
s used in this paper. The time-moving-forward calculation of the solver
s described in Algorithm 1, which is based on the procedure of the RK4
ethod for solving ordinary differential functions [48]. The difference

s that the differential function is replaced by the neural network 𝑥(⋅).
3

he final slope used to calculate the state vector at 𝑡𝑖+1 is estimated
Algorithm 1 Calculation of 𝐱𝑖+1 = ODEint
[

𝑥(⋅), 𝐱𝑖, 𝐮𝑖, 𝐮𝑖+1, 𝛥𝑡𝑖
]

using
he RK4 method.

Calculate the slope (state derivative) at 𝑡𝑖: 𝐤1 = 𝑥(𝐱𝑖, 𝐮𝑖)

Use 𝐤1 to calculate the temporary state at the interval midpoint:

𝐱𝑖+0.5 = 𝐱𝑖 +
𝐤1
2
𝛥𝑡𝑖

Use 𝐱𝑖+0.5 to calculate the slope at the interval midpoint: 𝐤2 =

𝑥

(

𝐱𝑖+0.5,
𝐮𝑖 + 𝐮𝑖+1

2

)

Use 𝐤2 to calculate the temporary state at the interval midpoint:

𝐱′𝑖+0.5 = 𝐱𝑖 +
𝐤2
2
𝛥𝑡𝑖

Use 𝐱′𝑖+0.5 to calculate the slope at the interval midpoint: 𝐤3 =

𝑥

(

𝐱′𝑖+0.5,
𝐮𝑖 + 𝐮𝑖+1

2

)

Use 𝐤3 to calculate the temporary state at 𝑡𝑖+1: 𝐱′𝑖+1 = 𝐱𝑖 + 𝐤3𝛥𝑡𝑖

Use 𝐱′𝑖+1 to calculate the slope at 𝑡𝑖+1: 𝐤4 = 𝑥

(

𝐱′𝑖+1, 𝐮𝑖+1
)

Use the average slope to calculate the state at 𝑡𝑖+1: 𝐱𝑖+1 = 𝐱𝑖 +
1
6
(𝐤1 +

2𝐤2 + 2𝐤3 + 𝐤4)𝛥𝑡𝑖

by a weighted average of the slope approximations at the beginning,
midpoint, and end of the time interval. The midpoint input vector
is required; however, it cannot be directly obtained. To address this
issue, the average of the input vectors at the beginning and end of
the time interval, i.e., (𝐮𝑖 + 𝐮𝑖+1)∕2, is used as the midpoint input
vector. We have tested this treatment through several numerical cases

with different time intervals and found that it could achieve high
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stability and precision. It should be stressed, though, that this is only a
numerical observation without rigorous proof. In addition to the RK4
method, the Euler method is another possible option. Nevertheless, the
Euler method is not recommended due to its low precision, particularly
when using relatively large time intervals.

Algorithm 1 essentially demonstrates how the CSNN model is im-
plemented to predict the system responses in the discrete-time domain.
Based on Algorithm 1, the training of the CSNN model is performed
following the procedure described in Algorithm 2. Adam algorithm is
adopted to optimize the model parameters in this study, and alternative
algorithms such as stochastic gradient descent (SGD) algorithm and
L-BFGS algorithm can also be adopted. Furthermore, multiple inde-
pendent input–output datasets (batched data) can be considered in the
training and prediction processes of the CSNN model.

Algorithm 2 Training process of the CSNN model.
Set the total training number: 𝑁𝑇
Calculate the number of data points for training: 𝑁
Initialize the model parameters (weights) with random values
Set 𝑗 = 1

while 𝑗 ≤ 𝑁𝑇 do
Initialize the loss function and state:  = 0, 𝐱0 = 𝟎
Set 𝑖 = 0
Calculate the predicted output: 𝐲̂𝑖 = 𝑦(𝐱𝑖, 𝐮𝑖)
Calculate the loss function:  = RMS(𝐲𝑖, 𝐲̂𝑖)⊳ mean squared error

(squared L2 norm)

while 𝑖 < 𝑁 − 1 do
Calculate the state 𝐱𝑖+1 using the RK4 method (Algorithm 1)
Calculate the predicted output: 𝐲̂𝑖+1 = 𝑦(𝐱𝑖+1, 𝐮𝑖+1)
Accumulate the loss function:  =  + RMS(𝐲𝑖+1, 𝐲̂𝑖+1)
Set 𝑖 = 𝑖 + 1

end while

Calculate the gradient of the loss function  with respect to the
model parameters (back-propagation)

Update model parameters to reduce the loss function  ⊳ Adam
algorithm is adopted in this study

Set 𝑗 = 𝑗 + 1
end while

In general, there are two features/advantages of the CSNN model:

. The effectiveness of a trained CSNN model is not influenced by
different data sampling rates/time intervals. Other neural networks
that can deal with time-series problems, e.g., RNN, LSTM, etc., work
for a specific time interval after they are trained [49,50], and they
need to be trained again each time as the time interval changes.

. The CSNN model could be formed as a single-time-step moving-
forward model, with one input and one output (one-to-one) at each
time point. Consequently, the CSNN model can be used to predict
the system responses in real time regardless of the input data length.
Other neural networks such as the physics-guided convolutional
neural network (PhyCNN) proposed in Ref. [35], are only valid for a
fixed input data length due to the adoption of fully connected layers.
Moreover, the CSNN model has fewer hyper-parameters to train
because it adopts identical model parameters for all time steps. This
model configuration gives the CSNN model a considerable capability
to avoid or mitigate the overfitting issue.
Additionally, compared to the existing CSNN models reported in

he literature, the CSNN model proposed in this paper has the fol-
owing refinements which are made specifically for the modeling of
orced-vibration systems in civil engineering:

. The hyper-parameters of the existing CSNN models include both
weights and biases, while all the bias options in the state and output
calculators of the proposed CSNN model are turned off. This modi-
4

fication is based on the fact that almost all forced-vibration systems
in civil engineering are dissipative systems without drift, which
means the systems’ responses vanish gradually after the input signal
decreases to zero. Turning off the bias options is a straightforward
way to satisfy this requirement. Despite that there is no rigorous
proof provided in this paper regarding the necessity and sufficiency
of this modification, the authors have tried to train the CSNN models
with the bias options turned off for the illustrative examples that
will be presented later and found that better performance and faster
training speed were achieved compared to the situation where the
bias options were turned on. Therefore, we believe this modification
is reasonable for the modeling of forced-vibration systems in civil
engineering.

2. In literature, the state vectors of CSNN models normally had physical
meanings, and their initial values were carefully handled. However,
we do not assign physical meanings to the state vector of the
proposed CSNN model, and the state vector is merely treated as the
hidden variable to process data-driven modeling of forced-vibration
systems. To guarantee that zero input series generate zero output
series, the initial state vector is assumed to be zero in this paper.

3. Nonlinear neural network layers were usually used alone in previous
studies since they are very powerful at fitting the training datasets,
and it appeared unnecessary to adopt linear layers. However, this
strategy normally results in a large number of hyper-parameters and
might be inefficient for time-series problems. Instead of using non-
linear layers alone, the proposed CSNN model adopts both linear and
nonlinear neural network layers, enabling the model to capture and
balance linear and nonlinear components in the system responses.
We will demonstrate through illustrative examples that, with this
configuration, the CSNN model can achieve good performance using
a relatively small number of hyper-parameters.

For the last feature, here we propose an approximate method to
quantify the linear and nonlinear components 𝐲̂𝑙,𝑖 and 𝐲̂𝑛,𝑖 in the pre-
dicted system output 𝐲̂𝑖. The formulas to calculate 𝐲̂𝑙,𝑖 and 𝐲̂𝑛,𝑖 are given
y

𝑙,𝑖+1 = ODEint
[

𝑙𝑥(⋅), 𝐱𝑖, 𝐮𝑖, 𝐮𝑖+1, 𝛥𝑡𝑖
]

, 𝐱𝑙,0 = 𝟎,
̂ 𝑙,𝑖 = 𝑙𝑦

[

𝐱𝑙,𝑖,𝐮𝑖
]

, 𝐲̂𝑛,𝑖 = 𝐲̂𝑖 − 𝐲̂𝑙,𝑖,
(5)

here 𝑙𝑥(⋅) and 𝑙𝑦(⋅) are the linear state and output calculators
hich are formed by removing all the nonlinear layers in 𝑥(⋅) and
𝑦(⋅), and 𝐱𝑙,𝑖 is the linear state. In Eq.(5), ODEint takes 𝐱𝑖 rather than

𝑙,𝑖 as the initial state to ensure that the calculation of 𝐱𝑙,𝑖+1 is stable.
he root mean square (RMS) of the linear and nonlinear components
an be obtained using the following equations:

𝐌𝐒𝑙 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=0
𝐲̂2𝑙,𝑖, 𝐑𝐌𝐒𝑛 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=0
𝐲̂2𝑛,𝑖. (6)

And then, the nonlinear ratio 𝐑𝑛 is defined as

𝐑𝑛 =
𝐑𝐌𝐒𝑛

𝐑𝐌𝐒𝑙 + 𝐑𝐌𝐒𝑛
× 100% (7)

to roughly indicate the proportion of the nonlinear component in the
predicted system output. Note that 𝐑𝐌𝐒𝑛, 𝐑𝐌𝐒𝑛 and 𝐑𝑛 have the same
imension as the system output, i.e., 𝐑𝐌𝐒𝑛, 𝐑𝐌𝐒𝑛, 𝐑𝑛 ∈ R𝑛𝑦×1, and the
alculations of Eqs.(6) and (7) are operated elementwise.

The features listed above make the proposed CSNN model workable
or various problems within the domain of civil engineering such
s system modeling, identification, and structural health monitoring
SHM). We list some possible applications of the proposed CSNN model
n the following.

. Construction of surrogate models for dynamic systems with com-
prehensive physical models, e.g., the fractional derivative order
systems, where the time domain analysis requires a large amount
of computation at each time step and the time interval must be very
small to ensure convergence [51–53].



Engineering Structures 302 (2024) 117329H.W. Li et al.

2

3

3

a
t
m
d
a
C

3

t

Fig. 5. Ground truth and RNN model prediction of the Zener system force response excited by 𝑢𝑑 (𝑡) = 0.8 sin(0.4𝜋𝑡) (mm).
. Data-driven modeling of unknown dynamic systems. The CSNN
model can be used for dynamic modeling of devices such as the
damper, isolation bearing, etc., filled with a newly invented mate-
rial, solely based on the experimental results. In this way, the effort
to determine a delicate model with clear physical meanings could
be saved.

. Online prediction of system responses. The CSNN model can be
implemented for SHM tasks, where the target system responses are
calculated and evaluated in real time based on the sensed data.

. Illustrative examples

Three illustrative examples are given in this section. The first two
re purely numerical examples. The third one uses the recorded moni-
oring data of a 6-story hotel building in San Bernardino, CA. The CSNN
odels in these illustrative examples are coded in Python utilizing the
eep-learning library PyTorch. The data and codes used in this paper
re publicly available on GitHub at https://github.com/lihongweiseu/
SNN.

.1. Illustrative example 1: the shear Zener model of viscoelastic dampers

The Zener model [10,54] describing the shear behavior of viscoelas-
ic dampers is expressed as
𝐺1 + 𝐺2

𝜂
𝐹𝑑 (𝑡) + 𝐹̇𝑑 (𝑡) =

𝐴𝑑𝐺1𝐺2
ℎ𝑑𝜂

𝑢𝑑 (𝑡) +
𝐴𝑑𝐺1
ℎ𝑑

𝐺1𝑢̇𝑑 (𝑡), (8)

where 𝐹𝑑 (𝑡) and 𝑢𝑑 (𝑡) are the shear force and displacement of the
damper, which are treated as the output and input; 𝐴𝑑 and ℎ𝑑 are
the shear area and height of the damper; the other parameters are
shear moduli. The parameter values we use in this example are listed
below [10].

𝐺1 = 4.79MPa, 𝐺2 = 0.479MPa, 𝜂 = 0.248MPa, 𝐴𝑑 = 6 × 103 mm2, ℎ𝑑 = 10mm.

(9)

Eq. (8) represents a linear first-order differential system. We first
use a one-to-one RNN model with 1 layer and 10 hidden states to fit
the system responses. A sinusoidal excitation 𝑢𝑑 (𝑡) = 0.8 sin(0.4𝜋𝑡) (mm)
is adopted as the training input, where the time interval is 𝛥𝑡 = 0.04 s
and the time duration is 30 s, leading to 751 training datasets. The
RNN model is trained 6000 times. Fig. 5 shows the ground truth and
RNN model prediction of the system force response (output) excited by
the training input. The RNN model performs well using the training
time interval 𝛥𝑡 = 0.04 s. Nevertheless, it fails to fit the data when
the time interval changes to 𝛥𝑡 = 0.01 s and 𝛥𝑡 = 0.1 s. Similar
results can be obtained when using the LSTM model to fit the system
responses. To summarize, both RNN and LSTM models necessitate a
fixed time interval, which renders them utterly impractical for dealing
5

with dynamic time-series problems.
Next, we utilize the CSNN model to capture the system’s dynamic
behavior. Nine band-limited white noises (BLWN) with different time
intervals, signal powers, and cut-off frequencies as listed in Table 1
are generated as the input displacement signals, which all have a time
duration of 100 s. To obtain the BLWN signals, first, the MATLAB
function wgn(⋅) is used to create the white Gaussian noise samples with
different signal powers, and then the MATLAB low pass filters with
different cut-off frequencies are acting on these noise samples. The first
40 s of the nine input displacement signals (cases 1–9) are shown in
Fig. 6. Only the first 10 s of case 1 are used to train the CSNN model.

The sizes of the input and output are 𝑛𝑢 = 1 and 𝑛𝑦 = 1, respectively.
The configuration of the CSNN model is described in Table 2. Two
hidden states (𝑛𝑥 = 2) are used in the CSNN model. The state calculator
𝑥(⋅) includes two nonlinear layers (𝑝 = 2) with two neurons (𝑛𝑑 = 2)
in each layer, and the output calculator 𝑦(⋅) includes one nonlinear
layer (𝑞 = 1) with one neuron (𝑛𝑔 = 1). The model configuration shown
in Table 2 is determined by comparing the model performance after
training under different configurations, which are formed by setting all
the coefficients (𝑛𝑥, 𝑝, 𝑛𝑑 , 𝑞 and 𝑛𝑔) as 1 and gradually increasing them.
Although the neuron numbers are the same for each nonlinear layer in
this example, they could be set to different values. The total training
number is set to 𝑁𝑇 = 6, 000.

The Pearson correlation coefficients 𝑟 (−1 ≤ 𝑟 ≤ 1, abbreviated as
Pearson corr.) between the ground truth and CSNN model prediction
of the force response, as well as the nonlinear ratios for the nine cases
are listed in Table 3. Pearson corr. reflects the linear correlation or
similarity between two signals, and higher Pearson corr. means higher
correlation (𝑟 = 1 represents a perfect correlation, i.e., the two signals
are exactly the same). The Pearson corr. listed in Table 3 are very close
to 1, indicating an excellent performance of the CSNN model. It can be
observed from Fig. 6 and Table 3 that when the input amplitude is
higher than that considered in the training dataset, the Pearson corr.
slightly decreases with the increase of the input amplitude (cases 2, 6,
7, and 8). Therefore, the input signals with a wider amplitude range are
preferred for training the model, which should better cover the highest
input amplitude that could possibly occur in the testing dataset. The
nonlinear ratios listed in Table 3 are less than 35% (4.47% ∼ 34.90%),
therefore the linear layers of the CSNN model have a larger impact
on the system predictions than the nonlinear layers. Since the studied
system Eq.(8) is a linear system, an ideal CSNN model should mute
the nonlinear layers, i.e., minimize the absolute values of the nonlinear
weights, to make the nonlinear ratios close to zero. Although we have
tried to increase the training times and found that the nonlinear ratios
could hardly be further decreased, the precision of the CSNN model is
acceptable for this illustrative example. The ground truth and CSNN
model prediction of the force response for case 6 are depicted in Fig. 7,
where we can see that they coincide quite well.

It should be remarked that some model configurations could cause

the model unstable if the model is insufficiently trained. For a brief

https://github.com/lihongweiseu/CSNN
https://github.com/lihongweiseu/CSNN
https://github.com/lihongweiseu/CSNN
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Fig. 6. Time histories (first 40 s) of the input signals for illustrative example 1.

Fig. 7. Ground truth and CSNN model prediction of the force response for case 6 of illustrative example 1.

Fig. 8. Ground truth and CSNN model prediction of the force response for case 4 of illustrative example 1 (𝑝 = 1, trained 3000 times).
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Table 1
Nine cases of BLWN displacement inputs.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Time interval (s) 0.01 0.002 0.002 0.002 0.002 0.05 0.05 0.05 0.05
Signal power (mm2) 32 128 128 8 8 128 128 8 8
Cut-off frequency (Hz) 4 8 2 8 2 8 2 8 2
Table 2
Configuration of the CSNN model for illustrative example 1.

Size of Nonlinear layer Neuron number of each Nonlinear layer Neuron number of each
state: 𝑛𝑥 number of 𝑥(⋅): 𝑝 nonlinear layer in 𝑥(⋅): 𝑛𝑑 number of 𝑦(⋅): 𝑞 nonlinear layer in 𝑦(⋅): 𝑛𝑔
2 2 2 1 1
Table 3
Pearson corr. between the ground truth and CSNN model prediction of the force response and the nonlinear ratios for the nine cases of
illustrative example 1.

Case no. Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Pearson corr. 0.999942 0.999449 0.999955 0.999959 0.999934 0.985037 0.993983 0.999438 0.999915
Nonlinear ratio (%) 29.32 32.55 33.86 34.90 34.01 10.75 8.40 16.89 4.47
demonstration, Fig. 8 shows the results for case 4 after the model is
trained 3000 times, where only one nonlinear layer is used in the state
calculator and all other configuration settings stated in Table 2 remain
unchanged. It can be seen that the CSNN model becomes unstable at
about 45 s. And increasing the training times to 6000 would make the
model stable (in the range of 0 ∼ 100 s).

In the following two illustrative examples, the CSNN model and
the PhyCNN model proposed in Ref. [35] are compared. To make
the comparison as fair as possible, we use the same training/testing
datasets and total training numbers (3000 times for illustrative example
2, and 10,000 times for illustrative example 3) as used in Ref. [35]. All
the training and testing data used in these two illustrative examples
were downloaded from the GitHub project of Ref. [35] at https://
github.com/zhry10/PhyCNN. The detailed descriptions of the selected
input signals (earthquakes) and how the training and testing datasets
are determined can be found in Ref. [35], which are omitted in this
paper.

3.2. Illustrative example 2: a nonlinear system subjected to acceleration
excitations

A single degree-of-freedom (DOF) nonlinear system subjected to
acceleration excitations is investigated in this illustrative example. The
nonlinear system is expressed as follows:

𝑚𝑦̈(𝑡) + 𝑐𝑦̇(𝑡) + 𝑘1𝑦(𝑡) + 𝑘2𝑦
3(𝑡) = −𝑚𝑢̈𝑔(𝑡), (10)

where the parameter values are mass 𝑚 = 1 kg, damping coefficient
𝑐 = 1Ns∕m, linear stiffness coefficient 𝑘1 = 20N∕m, and nonlinear
stiffness coefficient 𝑘2 = 200N∕m3 [35]. The database contains 99
independent seismic acceleration histories (𝑢̈𝑔(𝑡)) and the corresponding
system displacement responses (𝑦(𝑡)). The first 10 datasets labeled as
cases 1–10 are used for training and the rest (cases 11–99) are used for
testing. Each input sequence is sampled at 20 Hz (𝛥𝑡 = 0.05 s) with a
time duration of 50 s, leading to 1001 data points. The PhyCNN model
has the following limitations. It is executed at the specific time interval
𝛥𝑡 = 0.05 s and does not work for other time intervals. Additionally, it
takes all 1001 acceleration data points in 50 s as the single input vector
to calculate the 1001-point system responses. The input sequence with
a different time duration must be cut off or padded to be a sequence of
50 s. The proposed CSNN model is not subject to these limitations. It
is a one-to-one neural network model, and a well-trained CSNN model
can be used to predict the system response with different time intervals
and time durations.

The PhyCNN model consists of 5 convolution layers, 5 rectified
7

linear unit (ReLU) activation functions (following at the end of each
convolution layer), and finally, 3 fully connected linear layers. Each
convolution layer has 64 filters and 50 kernels. For the CSNN model,
we use the same model configuration as we used in illustrative example
1 (Table 2). As a result, the CSNN model has significantly fewer
parameters than the PhyCNN model.

The Pearson corr. between the ground truth and model prediction
of the system response for the 99 cases are displayed in Fig. 9. The
PhyCNN model fits the training cases well except for case 8 and case
10. However, the PhyCNN model exhibits inconsistent performance for
the testing cases, where the minimum Pearson corr. is 0.57781 (case
94). In contrast, the CSNN model achieves good performance for both
training and testing cases. Therefore, the CSNN model is more stable
than the PhyCNN model for this nonlinear illustrative example. The
ground truth and model prediction of the displacement responses for
cases 30 and 94 are shown in Fig. 10. It is apparent from Fig. 10 that
the CSNN model predicts the system responses better than the PhyCNN
model.

Fig. 11 is the scatter plot of the nonlinear ratio over the prediction’s
RMS for the 99 cases. The nonlinear ratios vary from 45.25% (case 52)
to 85.05% (case 29). A trend that the nonlinear ratio increases with
the prediction’s RMS appears obviously. Therefore, it can be inferred
that the nonlinear layers of the CSNN model contribute more when the
system response is higher, which is in accord with the pattern that the
nonlinear term 𝑘2𝑦3(𝑡) of the true model Eq.(10) becomes increasingly
dominant as the system response increases.

3.3. Illustrative example 3: a 6-story hotel building with recorded seismic
responses

In this illustrative example, a 6-story hotel in San Bernardino,
California, built in 1970, is investigated. The recorded ground and hotel
roof accelerations from 21 seismic events that occurred between 1987
to 2018 are selected as the input–output database for the training and
testing of the CSNN model. The first 15 cases are used for training
and the rest 6 cases are used for testing. Each acceleration sequence is
sampled at 50 Hz (𝛥𝑡 = 0.02 s) with a time duration of 49.98 s, leading
to 2500 data points. The PhySNN model is deployed with the input
and output sizes being set to 2500 each. The configuration of the CSNN
model used in this illustrative example is listed in Table 4.

Fig. 12 shows the Pearson corr. between the measurement and
model prediction of the building response for the 21 cases. Similar
results as Fig. 9 are observed in Fig. 12. The PhyCNN works very well
for the training cases, while its performance noticeably degrades for
the testing cases. However, the CSNN model achieves the same perfor-

mance level for both training and testing cases, within a relatively small

https://github.com/zhry10/PhyCNN
https://github.com/zhry10/PhyCNN
https://github.com/zhry10/PhyCNN
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Fig. 9. Pearson corr. between the ground truth and model prediction of the system response for the 99 cases of illustrative example 2.
Fig. 10. Ground truth and model prediction of the displacement responses for cases 29, 30, 65, and 94 of illustrative example 2.
Fig. 11. Nonlinear ratios for the 99 cases of illustrative example 2.
Table 4
Configuration of the CSNN model for illustrative example 3.

Size of Nonlinear layer Neuron number of each Nonlinear layer Neuron number of each
state: 𝑛𝑥 number of 𝑥(⋅): 𝑝 nonlinear layer in 𝑥(⋅): 𝑛𝑑 number of 𝑦(⋅): 𝑞 nonlinear layer in 𝑦(⋅): 𝑛𝑔
3 1 3 1 1
8
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Fig. 12. Pearson corr. between the measurement and model prediction of the building response for the 21 cases of illustrative example 3.
Fig. 13. Measurement and model prediction of the building roof acceleration response for case 17 of illustrative example 3.
Fig. 14. Nonlinear ratios for the 21 cases of illustrative example 3.
variation range (0.86242 ≤ 𝑟 ≤ 0.97244) compared to the PhyCNN model
(0.78518 ≤ 𝑟 ≤ 0.99998). Furthermore, the CSNN model performs better
han the PhyCNN model for all six testing cases. The measurement
nd model prediction of the roof acceleration response for case 17
re shown in Fig. 13, where the CSNN model prediction agrees with
he measured response better than the PhyCNN model. Fig. 14 is the
catter plot of the nonlinear ratio over the prediction’s RMS for the 21
ases. The nonlinear ratios reach a relatively high level, varying from
7.28% (case 9) to 79.50% (case 11), and there is no obvious pattern in
he variations of the nonlinear ratio. Therefore, the structure exhibits
onsiderable nonlinearities for all cases.

Both illustrative examples 2 and 3 show that the CSNN model
an represent a system’s underlying dynamic properties and adapt
o various excitation scenarios. The PhyCNN model adopts the neu-
al network with a much larger scale than the CSNN model. The
onsequence is that the PhyCNN model tends to overfit the training
9

datasets, and meanwhile performs erratically for the testing datasets,
as shown in Figs. 9 and 12. Additionally, the PhyCNN model requires
some quite strict preconditions, i.e., the time duration, time interval,
and the number of input points must be fixed, which significantly
diminishes the operability of the PhyCNN model. Contrarily, there are
no such preconditions in the CSNN model, making it highly adaptive
for modeling and prediction under a variety of circumstances.

4. Conclusion

This paper presented a novel CSNN architecture to elicit data-
driven surrogate models for forced-vibration systems. The CSNN model
includes state and output calculators, which are used to compute the
state derivative and output vectors, respectively. Both state and output
calculators consist of several nonlinear neural network layers and a
linear neural network layer in parallel. The RK4 method is utilized to
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update the state vector and calculate the output vector. The execution
of the CSNN model does not require the time interval and time duration
of the input data to be fixed, and therefore is highly flexible and
adaptive.

Three illustrative examples were provided to demonstrate the effec-
tiveness of the proposed CSNN model. Illustrative example 1 indicates
that the CSNN model has a great capability to represent the dynamic
behavior of a linear system using very limited training datasets, even
though the testing input signals are substantially different from the
training input signals. Illustrative examples 2 and 3 compare the CSNN
model with the PhyCNN model for the response prediction of a highly
nonlinear numerical system and a 6-story building with measured data,
respectively. The results show that the CSNN model achieves better
and more stable performance than the PhyCNN model. It is important
to remark that the influences of structural uncertainty and noise of
measured signals are not considered in this paper, while they are
core issues that need to be addressed to guarantee the robustness of
the CSNN model. Based on the current work, we believe that the
proposed CSNN model has great potential, and more in-depth studies
will be undertaken in our follow-up work to further explore the CSNN
model for various system modeling/identification and structural health
monitoring problems, with the presence of uncertainties and sensor
noises.
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