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Abstract

We are concerned with split graphs and pseudo-split graphs whose complements are isomor-
phic to themselves. These special subclasses of self-complementary graphs are actually the core of
self-complementary graphs. Indeed, we show that all self-complementary graphs with forcibly self-
complementary degree sequences are pseudo-split graphs. We also give formulas to calculate the number
of self-complementary (pseudo-)split graphs of a given order, and show that a stronger version of
Trotignon’s conjecture holds for all self-complementary split graphs.

1 Introduction

The complement of a graph G is a graph defined on the same vertex set of G, where a pair of distinct
vertices are adjacent if and only if they are not adjacent in G. In this paper, we study the graph that
is isomorphic to its complement, hence called self-complementary. The graph of order one is trivially
self-complementary. There are one self-complementary graph of order four and two self-complementary
graphs of order five. Figure 1 lists all self-complementary graphs with eight vertices. A graph is a split
graph if its vertex set can be partitioned into a clique and an independent set. The first three of Figure 1
are split graphs, and their renditions in Figures 2 highlight the partition.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 1: All self-complementary graphs on eight vertices. In each graph, the four vertices with lower
degrees are represented as empty nodes, and others filled nodes.

These two families of graphs are connected by the following observation. An elementary counting
argument convinces us that the order of a nontrivial self-complementary graph is either 4k or 4k+ 1 for
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(a) (b) (c)

Figure 2: Self-complementary split graphs with eight vertices. Vertices in I are represented by empty nodes
on the top, while vertices in K are represented by filled nodes on the bottom. For clarity, edges among
vertices in K are omitted. Their degree sequences are (a) (54, 24), (b) (54, 24), and (c) (62, 42, 32, 12).

some positive integer k. Consider a self-complementary graph G of order 4k, where L (resp., H) represents
the set of 2k vertices with lower (resp., higher) degrees. Note that d(x) ⩽ 2k − 1 < 2k ⩽ d(y) for every
pair of vertices x ∈ L and y ∈ H. Xu and Wong [19] observed that the subgraphs of G induced by L and H

are complementary to each other. More importantly, the bipartite graph spanned by the edges between
L and H is closed under bipartite complementation, i.e., reversing edges in between but keeping both L

and H independent. See the thick edges in Figure 1. When studying the connection between L and H, it
is more convenient to add all the missing edges among H and remove all the edges among L, thereby
turning G into a self-complementary split graph. In this sense, every self-complementary graph of order
4k can be constructed from a self-complementary split graph of the same order and a graph of order
2k. For a self-complementary graph of an odd order, the self-complementary split graph is replaced by a
self-complementary pseudo-split graph. A pseudo-split graph is either a split graph or a split graph plus a
five-cycle such that every vertex on the cycle is adjacent to every vertex in the clique of the split graph
and is nonadjacent to any vertex in the independent set of the split graph.

The decomposition theorem of Xu and Wong [19] was for the construction of self-complementary
graphs, another ingredient of which is the degree sequences of these graphs (the non-increasing sequence
of its vertex degrees). Clapham and Kleitman [5, 3] present a necessary condition for a degree sequence to
be that of a self-complementary graph. However, a realization of such a degree sequence may or may not
be self-complementary. A natural question is to ask about the degree sequences all of whose realizations
are necessarily self-complementary, called forcibly self-complementary. All the degree sequences for
self-complementary graphs up to order five, (0), (2, 2, 1, 1), (2, 2, 2, 2, 2), and (3, 3, 2, 1, 1), are forcibly
self-complementary. Of the four degree sequences for the self-complementary graphs of order eight,
only (5, 5, 5, 5, 2, 2, 2, 2) and (6, 6, 4, 4, 3, 3, 1, 1) are focibly self-complementary. All the realizations of these
forcibly self-complementary degree sequences turn out to be pseudo-split graphs. As we will see, this is
not incidental.

We take p graphs S1, S2, . . ., Sp, each being either a four-path or one of the first two graphs in Figure 2.
Note that Si, i = 1, . . . , p, admits a unique decomposition into a clique Ki and an independent set Ii. For
any pair of i, j with 1 ⩽ i < j ⩽ p, we add all possible edges between Ki and Kj ∪ Ij. It is easy to verify that
the resulting graph is self-complementary, and can be partitioned into a clique

⋃p
i=1 Ki and an independent

set
⋃p

i=1 Ii. By an elementary self-complementary pseudo-split graph we mean such a graph, or one obtained
from it by adding a single vertex or a five-cycle and making them complete to

⋃p
i=1 Ki. For example, we

end with the graph in Figure 1(c) with p = 2 and both S1 and S2 being four-paths. It is a routine exercise
to verify that the degree sequence of an elementary self-complementary pseudo-split graph is forcibly
self-complementary. We show that the other direction holds as well, thereby fully characterizing forcibly
self-complementary degree sequences.

Theorem 1.1. A degree sequence is forcibly self-complementary if and only if every realization of it is an
elementary self-complementary pseudo-split graph.

Our result also bridges a longstanding gap in the literature on self-complementary graphs. Rao [12]
has proposed another characterization for forcibly self-complementary degree sequences (we leave the
statement, which is too technical, to Section 3). As far as we can check, he never published a proof of his
characterization. It follows immediately from Theorem 1.1.

All self-complementary graphs up to order five are pseudo-split graphs, while only three out of the ten
self-complementary graphs of order eight are. By examining the list of small self-complementary graphs,
Ali [1] counted self-complementary split graphs up to 17 vertices. Whether a graph is a split graph can be
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determined solely by its degree sequence. However, this approach needs the list of all self-complementary
graphs, and hence cannot be generalized to large graphs. Answering a question of Harary [9], Read [13]
presented a formula for the number of self-complementary graphs with a specific number of vertices.
Clapham [4] simplified Read’s formula by studying the isomorphisms between a self-complementary
graph and its complement. We take an approach similar to Clapham’s for self-complementary split graphs
with an even order, which leads to a formula for the number of such graphs. For other self-complementary
pseudo-split graphs, we establish a one-to-one correspondence between self-complementary split graphs
on 4k vertices and those on 4k+ 1 vertices, and a one-to-one correspondence between self-complementary
pseudo-split graphs of order 4k+ 1 that are not split graphs and self-complementary split graphs on 4k− 4

vertices.

V3

V4 V1

V2

(a)

V1

V2

V3

V4

(b)

Figure 3: (a) The rectangle partition and (b) the diamond partition. Each node represents one part of
the partition. A solid line indicates that all the edges between the two parts are present, a missing line
indicates that there is no edge between the two parts, while a dashed line imposes no restrictions on the
adjacency between the two parts.

We also study a conjecture of Trotignon [18], which asserts that if a self-complementary graph G

does not contain a five-cycle, then its vertex set can be partitioned into four nonempty sets with the
adjacency patterns of a rectangle or a diamond, as described in Figure 3. He managed to prove that
certain special graphs satisfy this conjecture. The study of rectangle partitions in self-complementary
graphs enabled Trotignon to present a new proof of Gibbs’ theorem [8, Theorem 4]. We prove Trotignon’s
conjecture on self-complementary split graphs, with a stronger statement. We say that a partition of V(G)

is self-complementary if it forms the same partition in the complement of G, illustrated in Figure 4. Every
self-complementary split graph of an even order admits a diamond partition that is self-complementary.
Moreover, for each positive integer k, there is a single graph of order 4k that admits a rectangle partition.
Note that in general, there are graphs that admit a partition, but do not admit any partition that is
self-complementary [2].

v6 v7

v1 v4

v5 v8 v2 v3

(a)

v6 v7 v8

v1 v4

v5 v2 v3

(b)

Figure 4: Two diamond partitions of a self-complementary graph; only the first is self-complementary.

Before closing this section, let us mention related work. There is another natural motivation to study
self-complementary split graphs. Sridharan and Balaji [17] tried to understand self-complementary graphs
that are chordal. They are self-complementary precisely split graphs [7]. The class of split graphs is
closed under complementation.1 We may study self-complementary graphs in other graph classes. Again,

1Some authors call such graph classes “self-complementary,” e.g., the influential “Information System on Graph Classes and their
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for this purpose, it suffices to focus on those closed under complementation. In the simplest case, we
can define such a class by forbidding a graph F as well as its complement. It is not interesting when F

consists of two or three vertices, or when it is the four-path. When F is the four-cycle, we end with the
class of pseudo-split graphs, which is the simplest in this sense. A more important class closed under
complementation is perfect graphs. We leave it open to characterize self-complementary perfect graphs.
Another open problem is the recognition of self-complementary (pseudo)-split graphs. It is well known
that the isomorphism test of both self-complementary graphs and (pseudo)-split graphs are GI-complete
[6, 10].

2 Preliminaries

All the graphs discussed in this paper are finite and simple. The vertex set and edge set of a graph G

are denoted by, respectively, V(G) and E(G). The two ends of an edge are neighbors of each other, and
the number of neighbors of a vertex v, denoted by dG(v), is its degree. We may drop the subscript G if
the graph is clear from the context. For a subset U ⊆ V(G), let G[U] denote the subgraph of G induced
by U, whose vertex set is U and whose edge set comprises all the edges with both ends in U, and let
G − U = G[V(G) \ U], which is simplified to G − u if U comprises a single vertex u. A clique is a set of
pairwise adjacent vertices, and an independent set is a set of vertices that are pairwise nonadjacent. For
ℓ ⩾ 1, we use Pℓ and Kℓ to denote the path graph and the complete graph, respectively, on ℓ vertices. For
ℓ ⩾ 3, we use Cℓ to denote the ℓ-cycle. We say that two sets of vertices are complete or nonadjacent to each
other if there are all possible edges or if there is no edge between them, respectively.

An isomorphism between two graphs G1 and G2 is a bijection between their vertex sets, i.e., σ : V(G1) →
V(G2), such that two vertices u and v are adjacent in G1 if and only if σ(u) and σ(v) are adjacent in
G2. Two graphs with an isomorphism are isomorphic to each other. A graph is self-complementary if it is
isomorphic to its complement G, the graph defined on the same vertex set of G, where a pair of distinct
vertices are adjacent in G if and only if they are not adjacent in G. An isomorphism σ between G and
G is a permutation of V(G), called an antimorphism. We may abuse notation to use σ(X) = Y, where
X, Y ⊆ V(G) to denote that Y =

⋃
x∈X{σ(x)}. We represent an antimorphism as the product of disjoint

cycles
σ = σ1σ2 · · ·σp,

where σi = (vi1vi2 · · · ) for all i = 1, . . . , p. Sachs and Ringel [16, 14] independently showed that there
can be at most one vertex v fixed by an antimorphism σ, i.e., σ(v) = v. For any other vertex u, the smallest
number k satisfying σk(u) = u has to be a multiplier of four. Gibbs [8] observed that d(v)+d(σ(v)) = n−1,
where n is the order of G. Hence, if v is fixed by σ, then d(v) = (n − 1)/2. Furthermore, the vertices in
every cycle of σ with a length of more than one alternate in degrees d and n− 1− d for some d.

Lemma 2.1 ([16, 14]). If σ is an antimorphism of a self-complementary graph, then the length of each cycle
in σ is either one or a multiplier of four. Moreover, there is a unique cycle of length one if and only if the order
of the graph is odd.

For any subset of cycles in σ, the vertices within those cycles induce a subgraph that is self-complementary.
Indeed, the selected cycles themselves act as an antimorphism of the subgraph.

Proposition 2.2 ([8]). Let G be a self-complementary graph and σ an antimorphism of G. For any subset of
cycles in σ, the vertices within those cycles induce a self-complementary graph.

A graph is a split graph if its vertex set can be partitioned into a clique and an independent set. We use
K ⊎ I, where K being a clique and I an independent set, to denote a split partition of a split graph. The
following is straightforward. Since it is not used in the present paper, we omit the proof.

Proposition 2.3. Let G be a graph of an order 4k, and let H and L be the 2k vertices of the higher and lower
degrees, respectively. If G is self-complementary, then it remains self-complementary after H replaced by a
clique and L an independent set.

A split graph may have more than one split partition; e.g., a complete graph on n vertices has n+ 1

different split partitions.

Inclusions” (https://www.graphclasses.org).
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Lemma 2.4. A self-complementary split graph on 4k vertices has a unique split partition and it is

{v | d(v) ⩾ 2k} ⊎ {v | d(v) < 2k} . (1)

Proof. Let G be a self-complementary split graph with 4k vertices, and σ an antimorphism of G. By
definition, for any vertex v ∈ V(G), we have d(v) + d(σ(v)) = 4k− 1. Thus,

min(d(v), d(σ(v))) ⩽ 2k− 1 < 2k ⩽ max(d(v), d(σ(v))).

As a result, G does not contain any clique or independent set of order 2k+ 1. Suppose for contradiction
that there exists a split partition K⊎ I of G different from (1). There must be a vertex x ∈ I with d(x) ⩾ 2k.
We must have d(x) = 2k and N(x) ⊆ K. But then there are at least |N[x]| = 2k+ 1 vertices having degree at
least 2k, a contradiction.

The following observation correlates self-complementary split graphs having even and odd orders.

Proposition 2.5. Let G be a split graph on 4k+ 1 vertices. If G is self-complementary, then G has exactly one
vertex v of degree 2k, and G− v is also self-complementary.

Proof. Let σ be an antimorphism of G. By Lemma 2.1, there exists a cycle of length one in σ. We take v

to be the vertex in this cycle. We can write σ = σ1 . . . σp(v). By definition, for each i = 1, . . . , p, a vertex
x ∈ σi is adjacent to v if and only if σi(x) is not adjacent to v. Thus, v is adjacent to half of vertices in σi,
and d(v) = 2k. By Proposition 2.2, σ1 . . . σp is an antimorphism of G− v, which is thus self-complementary.
Since G− v is an induced subgraph of a split graph, it is a self-complementary split graph. It remains to
show that no other vertex in G has a degree of 2k. By Lemma 2.4, G− v has a unique split partition; let it
be K ⊎ I. Note that N(v) = K, since G is a split graph and d(v) = 2k. Since a vertex x ∈ K cannot be moved
to I to make another split partition, it has at least one neighbor in I. Thus, d(x) > 2k. In a similar way, we
can conclude that d(x) < 2k for all x ∈ I.

A partition of V(G) into four nonempty subsets {V1, V2, V3, V4} is a rectangle partition if V1 is complete
to V2 and nonadjacent to V3, while V4 is complete to V3 and nonadjacent to V2, or a diamond partition if V1

is complete to V3 while V2 is nonadjacent to V4. See Figure 3. It is obvious that every self-complementary
split graph admits a diamond partition. We prove a stronger statement. We say that a rectangle or
diamond partition of a graph G is self-complementary if the four parts form the same type of partition in
the complement of G.

Lemma 2.6. Every self-complementary split graph G admits a diamond partition. If G has an even order,
then it admits a diamond partition that is self-complementary.

Proof. Let K ⊎ I be a split partition of G. For any proper and nonempty subset K ′ ⊆ K and proper and
nonempty subset I ′ ⊆ I, the partition

K ′, I ′, K \ K ′, I \ I ′

is a diamond partition.
Now suppose that the order of G is 4k. We fix an arbitrary antimorphism σ = σ1σ2 · · ·σp of G. Since

σ(K) = I, every cycle has vertices from both K and I. We may assume without loss of generality that for
all i = 1, . . . , p, the first vertex in σi is in K. For j = 1, . . . , |σi|, we assign the jth vertex of σi to Vj (mod 4).
As a result, σ(V1) = V2 and σ(V3) = V4. Moreover, V1 ∪ V3 = K and V2 ∪ V4 = I. Thus, {V1, V2, V3, V4} is a
self-complementary diamond partition of G.

For a positive integer k, let Zk denote the graph obtained from a P4 as follows. We substitute each
degree-one vertex with an independent set of k vertices, and each degree-two vertex with a clique of k
vertices. For example, P4 itself is Z1 and depicted in Figure 2(b) is Z2.

Lemma 2.7. A self-complementary split graph admits a rectangle partition if and only if it is isomorphic to
Zk.

Proof. The sufficiency is trivial, and we consider the necessity. Suppose that G is a self-complementary
split graph and it has a rectangle partition {V1, V2, V3, V4}. Let K ⊎ I be a split partition of G. There are at
least one edge and at least one missing edge between any three parts. Thus, vertices in K are assigned to
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precisely two parts in the partition. By the definition of rectangle partition, K is either V2 ∪ V3 or V1 ∪ V4.
Assume without loss of generality that K = V2 ∪ V3. Since V2 is complete to V1 and nonadjacent to V4,
any antimorphism of G maps V2 to either V1 or V4. If |V2| ̸= |V3|, then the numbers of edges between K

and I in G and G are different. This is impossible. It further implies |V1| = |V4|, and hence G is precisely
Z|V1|.

A pseudo-split graph is either a split graph, or a graph whose vertex set can be partitioned into a clique
K, an independent set I, and a set C that (1) induces a C5; (2) is complete to K; and (3) is nonadjacent to
I. We say that K ⊎ I ⊎ C is a pseudo-split partition of the graph, where C may or may not be empty. If C is
empty, then K⊎ I is a split partition of the graph. Otherwise, the graph has a unique pseudo-split partition.
Similar to split graphs, the complement of a pseudo-split graph remains a pseudo-split graph.

Proposition 2.8. Let G be a self-complementary pseudo-split graph with a pseudo-split partition K ⊎ I ⊎C. If
C ̸= ∅, then G− C is a self-complementary split graph of an even order.

Proof. Let σ be an antimorphism of G. In both G and its complement, the only C5 is induced by C. Thus,
σ(C) = C. Since C is complete to K and nonadjacent to I, it follows that σ(K) = I and σ(I) = K. Thus,
G− C is a self-complementary graph. It is clearly a split graph and has an even order.

3 Forcibly self-complementary degree sequences

The degree sequence of a graph G is the sequence of degrees of all vertices, listed in non-increasing order,
and G is a realization of this degree sequence. For our purpose, it is more convenient to use a compact
form of degree sequences where the same degrees are grouped:

(
dni

i

)ℓ
i=1

=
(
dn1

1 , . . . , dnℓ

ℓ

)
=

d1, . . . , d1︸ ︷︷ ︸
n1

, d2, . . . , d2︸ ︷︷ ︸
n2

, . . . , dℓ, . . . , dℓ︸ ︷︷ ︸
nℓ

 .

Note that we always have d1 > d2 > · · · > dℓ. For example, the degree sequences of the first two graphs
in Figure 2 are both (

54, 24
)
= (5, 5, 5, 5, 2, 2, 2, 2).

These two graphs are not isomorphic; thus, a degree sequence may have non-isomorphic realizations.
For four vertices v1, v2, v3, and v4 such that v1 is adjacent to v2 but not to v3 while v4 is adjacent to v3

but not to v2, the operation of replacing v1v2 and v3v4 with v1v3 and v2v4 is a 2-switch, denoted as

(v1v2, v3v4) → (v1v3, v2v4).

See Figure 5. It is easy to check that this operation does not change the degree of any vertex. Indeed, it
is well known that any two graphs of the same degree sequence can be transformed into each other by
2-switches [15].

v1

v2 v3

v4 v1

v2 v3

v4 v1

v2 v3

v4

Figure 5: Illustrations for 2-switches: replacing the dashed edges with thick edges.

Lemma 3.1 ([15]). Two graphs have the same degree sequence if and only if they can be transformed into
each other by a series of 2-switches.

The subgraph induced by the four vertices involved in a 2-switch operation must be isomorphic to a
2K2, P4, or C4. Moreover, after the operation, the four vertices induce an isomorphic subgraph. Since a
split graph G cannot contain any 2K2 or C4 [7], a 2-switch must be done on a P4. In any split partition
K ⊎ I of G, the two degree-one vertices of P4 are from I, while the others from K. The graph remains a
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split graph after this operation. Thus, if a degree sequence has a realization that is a split graph, then all
its realizations are split graphs [7]. A similar statement holds for pseudo-split graphs [11].

We do not have a similar claim on degree sequences of self-complementary graphs. Clapham and
Kleitman [5, 3] have fully characterized all such degree sequences, called potentially self-complementary
degree sequences. For simplicity, we only need a simpler statement on even-order graphs.

Theorem 3.2 ([5, 3]). A degree sequence (dni

i )ℓi=1 of even order n is potentially self-complementary if and
only if ℓ is even, and for all i = 1, . . . , ℓ/2,

• di + dℓ+1−i = n− 1, and

• ni = nℓ+1−i is even.

Moreover, for all p = 1, . . . , ℓ/2

p∑
i=1

nidi ⩽

(
p∑

i=1

ni

)(
n− 1−

p∑
i=1

ni

2

)
.

A degree sequence is forcibly self-complementary if all of its realizations are self-complementary. We
refer to the graph in Figure 1(a) as a trampoline graph.

Proposition 3.3. The following degree sequences are all forcibly self-complementary: (22, 12), (25), and
(54, 24).

Proof. Applying a 2-switch operation to a realization of (22, 12) or (25) leads to an isomorphic graph. A
2-switch operation transforms a Z2 into a trampoline, and vice versa. Thus, the statement follows from
Lemma 3.1.

We have seen that degree sequences (25), (22, 12), and (54, 24) are forcibly self-complementary. They
are the only ones of these forms. In general, it is quite challenging to verify that a degree sequence is
indeed forcibly self-complementary. On the other hand, to show that a degree sequence is not forcibly
self-complementary, it suffices to construct a realization that is not self-complementary. The proof of the
following proposition is deferred to the appendix.

Proposition 3.4. The following degree sequences are not forcibly self-complementary.

i) ((2k)4k+1), where k ⩾ 2.

ii) (d2k, (4k− 1− d)2k), where k ⩾ 2 and d ̸= 5.

iii) (d2k1 , (d− 1)2k2 , (4k− d)2k2 , (4k− 1− d)2k1), where k1, k2 > 0 and k = k1 + k2.

We take p vertex-disjoint graphs S1, S2, . . ., Sp, each of which is isomorphic to P4, Z2, or trampoline.
For i = 1, . . . , p, let Hi⊎Li denote the unique split partition of Si (Lemma 2.4). Let C be another set of 0, 1,
or 5 vertices. We add all possible edges among

⋃p
i=1 Hi to make it a clique, and for each i = 1, . . . , p, add

all possible edges between Hi and
⋃p

j=i+1 Lj.
2 Finally, we add all possible edges between C and

⋃p
i=1 Hi,

and add edges to make C a cycle if |C| = 5. Let E denote the set of graphs that can be constructed as
above.

Lemma 3.5. All graphs in E are self-complementary pseudo-split graphs, and their degree sequences are
forcibly self-complementary.

Proof. Let G be an arbitrary graph in E. It has a split partition (
⋃p

i=1 Hi ∪ C) ⊎ (
⋃p

i=1 Li) when |C| ⩽ 1,
and a pseudo-split partition (

⋃p
i=1 Hi) ⊎ (

⋃p
i=1 Li) ⊎ C otherwise. To show that G is self-complementary,

we construct an antimorphism σ for it. For each i = 1, . . . , p, we take an antimorphism σi of Si, and set
σ(x) = σi(x) for all x ∈ V(Si). If C consists of a single vertex v, we set σ(v) = v. If |C| = 5, we take an
antimorphism σp+1 of C5 and set σ(x) = σp+1(x) for all x ∈ C. It is easy to verify that a pair of vertices u

and v are adjacent in G if and only if σ(u) and σ(v) are adjacent in G.

2The reader familiar with threshold graphs may note its use here. If we contract Hi and Li into two vertices, we end with a
threshold graph. Threshold graphs have a stronger characterization by degree sequences. Since a threshold graph free of 2K2, P4,
and C4, no 2-switch is possible on it. Thus, the degree sequence of a threshold graph has a unique realization.
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For the second assertion, we show that applying a 2-switch to G in E leads to another graph in E. Since
G is a split graph, a 2-switch can only be applied to a P4. For two vertices v1 ∈ Hi and v2 ∈ Hj with i < j,
we have N[v2] ⊆ N[v1]. Thus, there cannot be any P4 involving both v1 and v2. A similar argument applies
to two vertices in Li and Lj with i ̸= j. Therefore, a 2-switch can be applied either inside C or inside Si for
some i ∈ {1, . . . , p}. By Proposition 3.3, the resulting graph is in E, hence self-complementary. Thus, the
degree sequence of G is forcibly self-complementary by Lemma 3.1.

We refer to graphs in E as elementary self-complementary pseudo-split graphs. The rest of this section is
devoted to showing that all realizations of forcibly self-complementary degree sequences are elementary
self-complementary pseudo-split graphs. We fix a forcibly self-complementary degree sequence τ =

(dn1

1 , . . . , dnℓ

ℓ ) and a realization G of τ. For each i = 1, . . . , ℓ, let

Vi = {v ∈ V(G) | d(v) = di}, V+
i = Vi ∪ Vℓ+1−i,

and we define the ith slice of G as the induced subgraph G[V+
i ]. Note that Vi = Vℓ+1−i and V+

i = Vi when
ℓ is odd and i = (ℓ+ 1)/2.

Each slice must be self-complementary, and more importantly, its degree sequence is forcibly self-
complementary.

Lemma 3.6. For all i = 1, . . . , ℓ, the degree sequence of the subgraph G[V+
i ] is forcibly self-complementary.

Proof. Let σ be an antimorphism of G. Since d1 > d2 > · · · > dℓ, we have σ(Vi) = Vℓ+1−i and σ(Vℓ+1−i) =

Vi (note that Vi and Vℓ+1−i are either identical or disjoint). Therefore, ni = nℓ+1−i. By Proposition 2.2, the
cycles of σ consisting of vertices from V+

i is an antimorphism of G[V+
i ], and G[V+

i ] is self-complementary.
To show that the degree sequence of G[V+

i ] is forcibly self-complementary, let S be any other realization
of the same degree sequence. By Lemma 3.1, we can transform G[V+

i ] to S by a sequence of 2-switches
applied on vertices in V+

i . We can apply the same sequence of 2-switches to G, and denote by G ′ the
resulting graph. By Lemma 3.1, the degree sequence of G ′ is also τ, and S is the ith slice of G ′. By the
first assertion, S is self-complementary.

Lemma 3.6 imposes limitations on possible 2-switches applicable to G.

Corollary 3.7. For all i = 1, . . . , ℓ, the number of edges in G[V+
i ] or between Vi and Vℓ+1−i cannot be changed

by any sequence of 2-switches.

Proof. Let G ′ be the graph obtained from G by a sequence of 2-switches. By the definition of 2-switches,
every vertex has the same degree in G and G ′. Since G ′ is a realization of τ, the subgraph G ′[V+

i ] is
self-complementary. Thus, the number of edges in G ′[V+

i ] is the same as in G[V+
i ]. Since there are an

antimorphism σ of G and an antimorphism σ ′ of G ′ such that σ(Vi) = σ ′(Vi) = Vℓ+1−i, the number of
edges between Vi and Vℓ+1−i are the same.

All the vertices in Vi share the same degree in the ith slice. In other words, the ith slice has at most
two distinct degrees.

Lemma 3.8. For each i ∈ {1, . . . , ℓ}, the vertices in Vi have the same degree in G[V+
i ].

Proof. Suppose for contradiction that vertices in Vi have different degrees in G[V+
i ].

Case 1, there are two vertices v1 and v2 in Vi such that

d = dG[V+
i ](v1) > dG[V+

i ](v2) + 1.

There exists a vertex x1 ∈ V+
i adjacent to v1 but not to v2. On the other hand, since dG(v1) = dG(v2),

there must be a vertex
x2 ∈ N(v2) \

(
N(v1) ∪ V+

i

)
.

We apply the 2-switch (x1v1, x2v2) → (x1v2, x2v1) to G and denote by G ′ the resulting graph. By Lemma 3.6,
G[V+

i ] is self-complementary, and hence there are an even number of vertices with degree d in G[V+
i ] by

Theorem 3.2. The degree of a vertex x in G ′[V+
i ] is

dG[V+
i ](x) − 1 x = v1,

dG[V+
i ](x) + 1 x = v2,

dG[V+
i ](x) otherwise.
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Thus, the number of vertices with degree d in G ′[V+
i ] is odd. Hence, G ′[V+

i ] is not self-complementary
by Theorem 3.2. By Lemma 3.1, G ′ is also a realization of τ, and hence G ′[V+

i ] is self-complementary by
Lemma 3.6. We end with a contradiction.

Case 2, the degree of vertices in Vi is either d or d− 1 for some d in G[V+
i ]. By Lemma 3.6, the degree

sequence of G[V+
i ] is forcibly self-complementary. It cannot be of the form (d2k1 , (d−1)2k2 , (n−d)2k2 , (n−

1− d)2k1) by Proposition 3.4(iii). Thus, the degree sequence of G[V+
i ] must be (d2k, (d− 1)2k) for some k.

By Proposition 3.4(ii), k = 1 and d = 2. Let v1v2v3v4 denote the path induced by V+
i . By the applicability

of the 2-switch (v1v2, v3v4) → (v1v3, v2v4) and Corollary 3.7, we must have i = ℓ + 1 − i. Also note that
ℓ > 1 because vertices in Vi have different degrees in G[Vi]. Let σ be an antimorphism of G. In every
cycle disjoint from Vi, the neighbors of v1 and v2 differ by an even number. Thus, dG(v1) ̸= dG(v2), a
contradiction.

We can now settle the interval structure of each slice.

Lemma 3.9. For all i = 1, . . . , ⌊ ℓ
2
⌋,

i) the slice G[V+
i ] is isomorphic to either a P4, a Z2, or a trampoline, and

ii) Vi ⊎ Vℓ+1−i is a split partition of G[V+
i ].

Moreover, if ℓ is odd, the slice G[V(ℓ+1)/2] is either a C5 or consists of a single vertex.

Proof. For all i = 1, . . . , ℓ, the induced subgraph G[V+
i ] of G is self-complementary by Lemma 3.6. Further-

more, G[V+
i ] is either a regular graph or has two different degrees (Lemma 3.8). For all i = 1, . . . , ⌊ ℓ

2
⌋,

the sets Vi and Vℓ+1−i are disjoint. Hence, |V+
i | is 4k for some positive k, and the degree sequence of

G[V+
i ] is of the form (d2k, (4k − 1 − d)2k). By Lemma 3.6 and Proposition 3.4(ii), k = 1 or d = 5. Thus,

the degree sequence of G[V+
i ] is either (22, 12) or (54, 24), whose realizations are either a P4, a Z2, or a

trampoline. Let Hi ⊎ Li be the unique split partition of G[V+
i ]. Suppose to the contradiction of (ii) that

there is a vertex v1 ∈ Vi ∩ Li. We can find a vertex v2 ∈ Hi \N(v1) and a vertex x2 ∈ N(v2) ∩ Li. Note that
x2 is not adjacent to v1. Since dG(v1) > dG(v2) while dG[V+

i ](v1) < dG[V+
i ](v2), we can find a vertex x1 in

V(G) \ V+
i that is adjacent to v1 but not v2. The applicability of the 2-switch (x1v1, x2v2) → (x1v2, x2v1)

violates Corollary 3.7.
If ℓ is odd, then G[V(ℓ+1)/2] is a regular graph by Lemma 3.9. Hence, the degree sequence of G[V(ℓ+1)/2]

is ((2k)4k+1), where k = (|V(ℓ+1)/2| − 1)/4. By Lemma 3.6 and Proposition 3.4(i), k ⩽ 1. The statement
follows.

The next is on edges between different slices.

Lemma 3.10. For every i ∈ {1, 2, . . . , ⌊ℓ/2⌋}, if a vertex in V(G) \ Vi has a neighbor in Vℓ+1−i, then it is
adjacent to all the vertices in V+

i .

Proof. Let x1 ∈ V(G)\Vi be adjacent to v1 ∈ Vℓ+1−i. Since Vℓ+1−i is an independent set, it does not contain
x1. Suppose for contradiction that V+

i ̸⊆ N(x1), and let v2 be a vertex in V+
i \N(x1). If v2 ∈ Vi, we can

find a vertex v3 ∈ Vi \N(v1) by Lemma 3.9. The applicability of the 2-switch (x1v1, v2v3) → (x1v2, v1v3)

violates Corollary 3.7. In the rest, v2 ∈ Vℓ+1−i.
If there exists a vertex x2 ∈ Vi ∩ N(v2) \ N(v1), then we can conduct the 2-switch (x1v1, x2v2) →

(x1v2, x2v1), but the ith slice of the resulting graph cannot be isomorphic to P4, Z2, or trampoline,
contradicting Lemma 3.9(i). Therefore, Vi ∩N(v2) ⊆ N(v1), and G[V+

i ] must be isomorphic to Z2. We
can find a vertex x3 in Vi \N(v1) and a vertex v3 in Vℓ+1−i ∩N(x3). Note that neither x2v3 nor x3v1 is an
edge. We may either conduct the 2-switch (x1v3, x2v2) → (x1v2, x2v3) or (x1v1, x3v3) → (x1v3, x3v1) to G,
depending on whether x1 is adjacent to v3. In either case, the ith slice of the resulting graph contradicts
Lemma 3.9(i). These contradictions conclude the proof.

We are now ready to prove the main lemma.

Lemma 3.11. The graph G is an elementary self-complementary pseudo-split graph.

Proof. Let σ be an antimorphism of G. For each i ∈ {1, 2, . . . , ⌊ℓ/2⌋}, we denote Hi = Vi and Li = Vℓ+1−i.
By Lemma 3.9, Hi ⊎ Li is a split partition of G[V+

i ]. Let i, j be two distinct indices in {1, 2, . . . , ⌊ℓ/2⌋}. We
argue that there cannot be any edge between Hi and Lj if i > j. Suppose for contradiction that there exists
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x ∈ Hi that is adjacent to y ∈ Lj for some i > j. By Lemma 3.10, x is adjacent to all the vertices in G[V+
j ].

Consequently, σ(x) is in Li and has no neighbor in G[V+
j ]. Let v1 be a vertex in Hj. Since v1 is not adjacent

to σ(x), it has no neighbor in Li by Lemma 3.10. Note that G[V+
i ] is either a P4, a Z2, or a trampoline, and

so does G[V+
j ]. If we focus on the graph induced by V+

i ∪ V+
j , we can observe that

dG[V+
i ∪V+

j ](v1) < dG[V+
i ∪V+

j ](x).

Since dG(v1) > dG(x), we can find a vertex x1 in V(G) \ (V+
i ∪ V+

j ) that is adjacent to v1 but not x.
Let v2 be a neighbor of x in Li. Note that v2 is not adjacent to v1. We can conduct the 2-switch
(x1v1, xv2) → (x1x, v1v2), violating Corollary 3.7. Therefore, Li is nonadjacent to

⋃⌊ℓ/2⌋
p=i+1 Hp for all

i = 1, . . . , ⌊ℓ/2⌋. Since σ(Li) = Hi and σ(
⋃⌊ℓ/2⌋

p=i+1 Hp) =
⋃⌊ℓ/2⌋

p=i+1 Lp, we can obtain that Hi is complete

to
⋃⌊ℓ/2⌋

p=i+1 Lp. Moreover, Hi is complete to
⋃⌊ℓ/2⌋

p=i+1 Hp by Lemma 3.10, and hence Li is nonadjacent to⋃⌊ℓ/2⌋
p=i+1 Lp.

We are done if ℓ is even. In the rest, we assume that ℓ is odd. By Lemma 3.9, the subgraph induced
by V(ℓ+1)/2 is either a C5 or contains exactly one vertex. It suffices to show that V(ℓ+1)/2 is complete
to Hi and nonadjacent to Li for every i ∈ {1, 2, . . . , ⌊ℓ/2⌋}. Suppose σ(v) = v. When V(ℓ+1)/2 = {v}, the
claim follows from Lemma 3.10 and that σ(v) = v and σ(Vi) = Vℓ+1−i. Now |V(ℓ+1)/2| = 5. Suppose
for contradiction that there is a pair of adjacent vertices v1 ∈ V(ℓ+1)/2 and x ∈ Li. Let v2 = σ(v1). By
Lemmas 3.10, v1 is adjacent to all the vertices in G[V+

i ]. Accordingly, v2 has no neighbor in G[V+
i ]. Since

G[V(ℓ+1)/2] is a C5 , we can find v3 ∈ V(ℓ+1)/2 that is adjacent to v2 but not v1. We can conduct the
2-switch (xv1, v2v3) → (xv2, v1v3) and denote by G ′ as the resulting graph. It can be seen that G ′[V(ℓ+1)/2]

is not a C5, contradicting Lemma 3.9.

Lemmas 3.5 and 3.11 imply Theorem 1.1 and Rao’s characterization of forcibly self-complementary
degree sequences [12].

Theorem 3.12 ([12]). A degree sequence (dni

i )ℓi=1 is forcibly self-complementary if and only if for all
i = 1, . . . , ⌊ℓ/2⌋,

nℓ+1−i = ni ∈{2, 4}, (2)

dℓ+1−i = n− 1− di=

i∑
j=1

nj −
1

2
ni, (3)

and n(ℓ+1)/2 ∈ {1, 5} and d(ℓ+1)/2 = 1
2
(n− 1) when ℓ is odd.

Proof. The sufficiency follows from Lemma 3.5: note that an elementary self-complementary pseudo-split
graph in which G[V+

i ] has 2ni vertices satisfies the conditions. The necessity follows from Lemma 3.11.

4 Enumeration

In this section, we consider the enumeration of self-complementary (pseudo-)split graphs. The following
corollary of Propositions 2.5 and 2.8 focuses us on self-complementary split graphs of even orders. Let
λn and λ ′

n denote the number of split graphs and pseudo-split graphs, respectively, of order n that are
self-complementary. For convenience, we set λ0 = 1.

Corollary 4.1. For each k ⩾ 1, it holds λ4k+1 = λ4k. For each n > 0,

λ ′
n =

{
λn n ≡ 0 (mod 4),

λn−1 + λn−5 n ≡ 1 (mod 4).

Proof. Proposition 2.5 implies that there exists a one-to-one correspondence between self-complementary
split graphs with 4k vertices and those with 4k+ 1 vertices. If a self-complementary pseudo-split graph is
not a split graph, then it contains a five cycle and the removal of this five cycle from the graph resulting a
self-complementary split graph of an even order by Proposition 2.8.
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Let σ = σ1 . . . σp be an antimorphism of a self-complementary graph of 4k vertices. We find the number
of ways in which edges can be introduced so that the result is a self-complementary split graph with σ as
an antimorphism. We need to consider adjacencies among vertices in the same cycle and the adjacencies
between vertices from different cycles of σ. For the second part, we further separate into two cases
depending on whether the cycles have the same length. We use G to denote a resulting graph and denote
by Gi the graph induced by the vertices in the ith cycle, for i = 1, . . . , p. By Lemma 2.4, G has a unique
split partition and we refer to it as K ⊎ I.

(i) The subgraph Gi is determined if it has been decided whether vi1 is to be adjacent or not adjacent
to each of the following |σi|

2
vertices in σi. Among those |σi|

2
vertices, half of them are odd-numbered in

σi. Therefore, vi1 is either adjacent to all of them or adjacent to none of them by Lemma 2.4. The number
of adjacencies to be decided is |σi|

4
+ 1.

(ii) The adjacencies between two subgraphs Gi and Gj of the same order are determined if it has been
decided whether vi1 is to be adjacent or not adjacent to each of the vertices in Gj. By Lemma 2.4, the
vertex vi1 and half of vertices of Gj are decided in K or in I after (i). The number of adjacencies to be
decided is |σj|

2
.

(iii) We now consider the adjacencies between two subgraphs Gi and Gj of different orders. We use
gcd(x, y) to denote the greatest common factor of two integers x and y. The adjacencies between Gi and
Gj are determined if it has been decided whether vi1 is to be adjacent or not adjacent to each of the first
gcd(|σi|, |σj|) vertices of Gj. Among those gcd(|σi|, |σj|) vertices of Gj, half of them are decided in the same
part of K ⊎ I as vi1 after (i). The number of adjacencies to be decided is 1

2
gcd(|σi|, |σj|).

By Lemma 2.1, |σi| ≡ 0 (mod 4) for every i = 1, . . . , p. Let c be the cycle structure of σ. We use cq to
denote the number of cycles in c with length 4q for every q = 1, 2, . . . , k. The total number of adjacencies
to be determined is

P =

k∑
q=1

(cq(q+ 1) +
1

2
cq(cq − 1) · 2q) +

∑
1⩽r<s⩽k

crcs ·
1

2
gcd(4r, 4s)

=

k∑
q=1

(qc2q + cq) + 2
∑

1⩽r<s⩽k

crcsgcd(r, s) .

For each adjacency, there are two choices. Therefore, the number of labeled self-complementary split
graphs with this σ as an antimorphism is 2P.

The number of distinct permutations of the cycle structure c consisting of cq cycles of length 4q for
every q = 1, 2, . . . , k is

(4k)!∏k
q=1(4q)

cq · cq!
,

and it is the number of possible choices for σ [4]. Let C4k be the set that contains all cycle structures c that
satisfy

∑k
q=1 cq ·4q = 4k. Then the number of antimorphisms with all possible labeled self-complementary

split graphs with 4k vertices corresponding to each is∑
c∈C4k

(4k!)∏k
q=1(4q)

cq · cq!
2P . (4)

For a graph G with 4k vertices, let AG be the set of automorphisms of G. Then, the number of different
labelings of G is (4k)!/|AG|. If G is self-complementary, then the number of antimorphisms of G is equal
to the number of automorphisms of G. Let S be the set of all non-isomorphic self-complementary split
graphs with 4k vertices and let λ4k = |S|. The number of labeled self-complementary split graphs with all
possible antimorphisms corresponding to each is equal to∑

G∈S

|AG|
(4k)!
|AG|

= λ4k (4k)!. (5)

Let Equation (4) equal to Equation (5) and we solve for λ4k:

λ4k =
∑

c∈C4k

2P∏k
q=1(4q)

cq · cq!
.

In Table 1, we list the number of self-complementary (pseudo-)split graphs on up to 21 vertices.
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Table 1: The number of self-complementary (pseudo)-split graphs on n vertices.

n 4 5 8 9 12 13 16 17 20 21

split graphs 1 1 3 3 16 16 218 218 9608 9608
pseudo-split graphs 1 2 3 4 16 19 218 234 9608 9826
all 1 2 10 36 720 5600 703760 11220000 9168331776 293293716992

A Appendix: Proof of Proposition 3.4

We start with a simple observation on potentially self-complementary degree sequences with two different
degrees. It can be derived from the characterization of Clapham and Kleitman [5, 3]. Here we provide a
direct and simple proof.

Proposition A.1. If the degree sequence (d2k, (4k− 1− d)2k) is potentially self-complementary, then 2k ⩽
d ⩽ 3k− 1.

Proof. By the definition of degree sequences, d > 4k− 1−d. Therefore, d ⩾ 2k. Let H be the set of vertices
of degree d and L the set of vertices of degree 4k − 1 − d. Each vertex in H has at most |H| − 1 = 2k − 1

neighbors in H. Thus, the number of edges between H and L is at least 2k(d − 2k + 1). On the other
hand, the number of edges between H and L is at most 2k(4k− 1− d). Thus, 4k− 1− d ⩾ d− 2k+ 1, and
d ⩽ 3k− 1.

Indeed, for any pair of positive integers d and k such that 2k ⩽ d ⩽ 3k − 1, we can construct a
self-complementary graph G(d, k) with a one-cycle antimorphism

(v1v2 · · · v4k).

We set N(v1) to be

{v2, v6, . . . , v4k−2} ∪

{
{v3, v5, . . . , vd−k} ∪ {v2k+1} ∪ {v5k−d+2, v5k−d+4, . . . , v4k−1}, d ̸≡ k (mod 2)

{v3, v5, . . . , vd−k+1} ∪ {v5k−d+1, v5k−d+3, . . . , v4k−1}, d ≡ k (mod 2).
(6)

Since vivj ∈ E(G) if and only if σ(vi)σ(vj) = vi+1 (mod |V(G)|)vj+1 (mod |V(G)|) ̸∈ E(G), all the other adjacen-
cies can be derived. We leave it to the reader to verify that G(d, k) is a self-complementary graph. See
Figure 6 for the constructions for k = 3 and all possible values of d. Note that (c) is Z3, while the roles of
cliques and independent sets are switched in (a). Let H denote the set of odd-numbered vertices, whose
degrees are d, and L the set of even-numbered vertices, whose degrees are 4k− 1− d.

Proposition A.2. The graph G(d, k) is self-complementary in which

i) {v1, v5, . . . , v4k−3} is complete to {v2, v6, . . . , v4k−2}, and

ii) {v3, v7, . . . , v4k−1} is complete to {v4, v8, . . . , v4k}.

(a) d = 6 (b) d = 7 (c) d = 8

Figure 6: Self-complementary graphs constructed by (6) with k = 3.

We now prove Proposition 3.4 by constructions adapted from G(d, k).
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(a) (49) (b) (44, 34) (c) (86, 36) (d) (66, 56) (e) (76, 46)

Figure 7: Constructions for (i) and (ii) of Proposition 3.4.

v1

v2

v5

v6

v9

v10

v3

v4

v7

v8

v11

v12

(a) k1 = 2, k2 = 1

v1

v2

v5

v6

v9

v10

v3

v4

v7

v8

v11

v12

(b) k1 = 1, k2 = 2

Figure 8: Constructions for degree sequences (82k1 , 72k2 , 42k2 , 32k1). Except for the dashed lines, edges
among solid nodes are all present.

Proof of Proposition 3.4. The statement holds vacuously if the degree sequence is not potentially self-
complementary. Henceforth, we assume that they are.

(i) We start from a cycle graph on 4k+ 1 vertices, and add an edge between every pair of vertices with
distance at most k on this cycle. The resulting graph is denoted as Ck

4k+1. As an example, C2
9, the graph

for k = 2, is in Figure 7a. To see that the graph Ck
4k+1 is not self-complementary, note that for any vertex

v, there are 3k(k− 1)/2 edges among N(v) and k(k− 1)/2 missing edges among V(G) \N[v].
(ii) By Proposition A.1, we have 2k ⩽ d ⩽ 3k− 1. The graph in Figure 7b has degree sequence (44, 34)

and is not self-complementary. In the rest, k ⩾ 3.
Case 1: d = 3k − 1. We take a Zk, whose degree sequence is (d2k, (4k − 1 − d)2k) = (d2k, k2k).

Let {u1, . . . , u2k} ⊎ {v1, . . . , v2k} be the split partition. For i = 1, . . . , k, we conduct (ukvi, uk+ivk+i) →
(ukvk+i, uk+ivi), and denote by G the resulting graph. Then

N[ui] =


K ∪ {v1, . . . , vk}, i = 1, . . . , k− 1,

K ∪ {vk+1, . . . , v2k}, i = k,

K ∪ {vi−k, vk+1, . . . , v2k} \ {vi}, i = k+ 1, . . . , 2k.

See Figure 7c for the construction of k = 3. An antimorphism of G, if one exists, must map u1 and u2 to
two vertices with the same open neighborhood. But N(vi) ̸= N(vi) for all i, j with 1 ⩽ i < j ⩽ k. Thus, G is
not self-complementary.

Case 2: d < 3k − 1 and d + k is odd. We start from G(d, k). Note that v1 is adjacent to v2k+1

but not to v2k−1: from d < 3k − 1 it follows that d − k + 1 < 2k and 5k − d + 1 > 2k + 2. From
v1v2 ∈ E(G) we can conclude that v2k−1v2k ∈ E(G) and v2kv2k+1 ̸∈ E(G). We conduct the 2-switch
(v1v2k+1, v2k−1v2k) → (v1v2k−1, v2kv2k+1), and denote by G ′ the resulting graph. See Figure 7d for the
example with d = 6 and k = 3. Suppose that G ′ is a self-complementary graph. Any antimorphism σ of G ′

must map vertices v2k−1 and v2k+1 to L. Since they have different numbers of neighbors in L, they must
be mapped to vertices in L with different numbers of neighbors in H. There are however no such two
vertices. We end with a contradiction.

Case 3: d < 3k − 1 and d + k is even. We start from G(d, k). Since d − k + 1 < 2k + 1 < 5k − d + 1,
the vertex v1 is not adjacent to v2k+1. From our construction, we know that d − k is even and v1 is
adjacent to vd−k+1 and not adjacent to vd−k+3. The fact that v1 is adjacent to v2 and not adjacent to v4
implies vd−k+3 is adjacent to vd−k+4 and vd−k+1 is not adjacent to vd−k+4. By conducting the 2-switch
(v1vd−k+1, vd−k+3vd−k+4) → (v1vd−k+3, vd−k+1vd−k+4). See Figure 7e for the example with d = 7 and
k = 3. Note that vertices vd−k+1 and vd−k+3 have different numbers of neighbors in L. The argument is
similar to the previous case.
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(iii) We use τ to denote the degree sequence (d2k1 , (d − 1)2k2 , (4k − d)2k2 , (4k − 1 − d)2k1). By
Theorem 3.2,

k1d+ k2(d− 1) ⩽ (k1 + k2)(4k− 1− (k1 + k2)) = k(3k− 1).

Therefore,

d ⩽ 3k− 1+
k2

k
< 3k− 1.

We can use (6) to construct a realization G of (d2k, (4k− 1− d)2k). Since d > d− 1 > 4k− d > 4k− 1− d,
we have d−(4k−1−d) ⩾ 3. Thus, d ⩾ 2k+2 and k ⩾ 3 (by Proposition A.1). By construction, v1v5 ∈ E(G).
Note that for all i = 0, 1, 2, . . . , k− 1 and for all x ∈ NG(v1), we have

σ4i(v1)σ
4i(x) ∈ E(G), σ4i+1(v1)σ

4i+1(x) ̸∈ E(G).

Let G ′ denote the graph obtained from G by removing all the edges σ4i(v1)σ
4i(v3) and adding edges

σ4i+1(v1)σ
4i+1(v3) for all i = 0, 1, 2, . . . , k2 − 1. The degree of a vertex vi in G ′ is

d i = 4k2 + 1, 4k2 + 3, . . . , 4k− 1,

d− 1 i = 1, 3, . . . , 4k2 − 1,

4k− d i = 2, 4, . . . , 4k2,

4k− 1− d i = 4k2 + 2, 4k2 + 4, . . . , 4k.

Thus, G ′ is a realization of the degree sequence τ. In G ′, the vertex v1 is adjacent to v5 and not to v3,
while v4 is adjacent to v3 and not to v5. We conduct the 2-switch (v1v5, v3v4) → (v1v3, v4v5) and denote by
G ′′ the resulting graph. The degree sequence of G ′′ is also τ by Lemma 3.1. See Figure 8 for illustrations.

We argue that in all the three graphs, each vertex in L has at least k neighbors in H in G. By
Proposition A.2, each vertex x ∈ L has at least k neighbors in H in G. This remains true in G ′ because the
modifications from G to G ′ involve only edges in H and in L. During the modification from G ′ to G ′′, the
vertex v4 loses a neighbor in H and gets a new neighbor in H.

If G ′′ is a self-complementary graph, any antimorphism σ ′ of G ′′ maps H to L and vice versa. Thus,
each vertex in H must have at least k non-neighbors in L. However, {v4} ∪ {v2, v6, . . . , v4k−2} ⊆ N(v5) ∩ L, a
contradiction.
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