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Abstract: Aircraft is one of the most expensive resources owned by an airline which should be 

properly planned. The aircraft maintenance routing problem (AMRP) generates aircraft routes 

to serve scheduled flights, while satisfying the strict maintenance requirements. However, in 

operations, the pre-determined aircraft routes are usually disrupted due to unplanned 

maintenance requirements or insufficient remaining legal flying time to maintenance stations. 

Thus, airlines often have to re-route aircraft in real time. This study proposes a new aircraft re-

routing approach to fulfil the maintenance requirements arising in the operational stage. 

Specifically, maintenance stations are capacity-constrained, while airlines could allocate 

maintenance resources (like staff and equipment) to other airports with additional costs. 

Besides, flights could be re-scheduled (i.e., cancelled with a high penalty), while the model 

endeavors to minimize the impact of recovery actions on the original plan. To achieve this, 

specialized flight networks are constructed, and a column generation-based algorithm is 

developed to obtain high-quality solutions within short computational times. Computational 
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experiments show that the solutions obtained by the proposed algorithm are optimal or near-

optimal with an optimality gap of 0.3% on average. In addition, some managerial insights on 

allocating maintenance resources to other airports to fulfil aircraft maintenance demands in 

operations are discussed. 

Keywords: airline recovery; flight scheduling; aircraft maintenance routing; column 

generation.
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1. Introduction 

The airline scheduling problem is often decomposed into four sequential problems (Jamili, 

2017; Munari & Alvarez, 2019; Wen et al., 2020; Wen et al., 2021): flight scheduling, fleet 

assignment, aircraft maintenance routing, and crew scheduling (Sun et al., 2020). Aircraft is 

the core resource of an airline which should be properly planned to ensure that the strict 

maintenance requirements would not be violated when serving flights. The aircraft 

maintenance checks vary across countries and airlines (Jamali et al., 2021; Shaukat et al., 2020). 

For instance, Liang et al. (2011) state that many U.S. airlines require a daily check for every 

24-60 flying hours, including a walkaround inspection and checks on lights & emergency 

equipment, etc., while Federal Aviation Administration (FAA) imposes an A check for every 

60 flying hours (Barnhart, Boland, et al., 1998). Typically, from a tactical planning perspective, 

the AMRP prescribes that aircraft can follow a cyclic path and visit a maintenance station (i.e., 

an airport with qualified manpower and sufficient equipment to conduct the corresponding 

maintenance check) on a regular basis to fulfil the maintenance requirement.  

However, the aviation industry is full of uncertainties. Many unplanned events force 

airlines to modify their pre-determined tactical aircraft routes in real operations (Kammoun & 

Rezg, 2018; Yetı̇moğlu & Aktürk, 2021). For instance, bad weather or accidents during 

previous flights, unplanned mechanical failures, or emergency maintenance checks required by 

airlines, aircraft manufacturers, and authorities all impose unexpected maintenance 

requirements which are not planned in the tactical planning stage. Besides, disruptions like 

flight delays and traffic congestions lengthen flight flying times (Chung et al., 2017; Khan et 

al., 2019a, 2019b; Khan et al., 2021). Thus, the pre-determined aircraft routes may become 

infeasible as there is no proper maintenance opportunity for the unexpected requirements or an 

aircraft could not arrive at the scheduled maintenance station in time. Thus, airlines often have 

to re-route aircraft in daily operations to fulfill maintenance demands while covering the 

scheduled flight as much as possible. To be specific, airlines usually apply automatic recording 

systems to keep track of the real-time status of each individual aircraft. When the remaining 

legal flying time reaches a certain threshold, the aircraft will be labeled as a “high-time” aircraft. 

Then, in the recovery procedure, the high-time aircraft will be re-routed to proper maintenance 

stations to carry out maintenance checks (Sarac et al., 2006). However, maintenance stations 



4 
 

are often capacity-constrained in various aspects, like available man-hour, parking slots, 

available equipment. Eltoukhy et al. (2018) point out that the maintenance resource availability 

constraint is a major factor which affects the feasibility of an aircraft routing plan. Conflicts 

between the workload assigned to a maintenance station with its capacity are commonly seen 

in the industry, which is even more severe in the operational stage as many unforeseen 

maintenance requirements arise day by day. To ensure the travel safety and avoid the high 

penalties of violating maintenance requirements, many airlines would allocate maintenance 

resources (like staff and equipment) to other airports with high costs (named as the SMR 

strategy in this study). That is, if a high-time aircraft is expected to finish its duty at a 

maintenance-infeasible airport (either an unqualified airport or a qualified airport with 

insufficient maintenance resources), the airline will send a team of qualified personnel with 

sufficient equipment there2. The maintenance team can be sent (allocated) to the prescribed 

airport by any means, like moving along with the flights operated by that aircraft. However, 

adopting the SMR strategy is expensive. First, some seats on the aircraft that could generate 

profits by transporting passengers are occupied by maintenance staff if they move along with 

the aircraft. Second, travel and accommodation allowances should be paid to the maintenance 

staff. Third, the maintenance personnel schedules of the airline are disrupted. Thus, airlines 

have to balance between the additional expenditures generated by adopting the SMR strategy 

and the costs of cancelling flights. Moreover, when conducting recovery, airlines usually 

endeavor to keep the original flight schedule and aircraft routing unchanged. That is, a re-

scheduling/routing plan is preferred if it induces the minimum impact on the original plan. This 

leaves great challenges for airlines to adjust the tactical plan to meet the urgent needs arising 

in operations. 

Although the AMRP has been extensively studied, relatively less attention has been paid 

to the operational aircraft re-routing problem. This study aims to propose a new aircraft re-

routing approach to fulfil the maintenance requirements arising in the operational stage by both 

capacity-constrained maintenance stations and the SMR strategy. Flights could be cancelled 

with a high penalty, while the impact on the original plan is minimized. To achieve this, 

 
2 Note that airlines could also seek for third-party maintenance service providers’ assistance to conduct maintenance checks 
at other airports with high costs. 
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specialized flight networks are constructed for high-time aircraft to guarantee maintenance 

opportunities, and a column generation-based algorithm is developed to obtain high-quality 

solutions within short computational times. Note that some existing AMRP studies have 

considered the usage of deadhead flights to reposition an aircraft to a different station where it 

is needed to cover a flight leg or where it can take maintenance checks, which is totally different 

from the SMR strategy proposed in this study. The flight network construction logic (e.g., flight 

connection arcs, maintenance arcs) is also different for these two strategies. 

As we investigate an operational AMRP in this study, the planning horizon is set as one 

day. That is, given a list of high-time aircraft, a list of non-high-time aircraft, and initial airports, 

the goal of the recovery problem is to re-route the aircraft to cover the scheduled flights (note 

that flights are allowed to be cancelled with high penalties), while ensuring that all the high-

time aircraft can conduct maintenance checks at the end of the day. Thus, both flights and 

aircraft need to be re-planned. The maintenance check could be conducted by either a resource-

feasible maintenance station or the maintenance resources sent to the airport by the airline. As 

pointed out by Sarac et al. (2006), the time horizon of the aircraft recovery problem could be 

even shorter, like several hours, as disruptions usually occur during the middle of a day, while 

a longer horizon, like a week, is more like a tactical planning problem that is too optimistic for 

the disruptions frequently occurring in daily operations.  

This paper is organized as follows. First of all, the previous related literature is reviewed 

from three perspectives in Section 2. Then, Section 3 builds the mathematical model for the 

operational flight scheduling and aircraft routing problem. Then, a column generation-based 

solution algorithm is developed in Section 4, while computational experiments are 

demonstrated in Section 5. Finally, Section 6 draws conclusions for this work. 

 

2. Literature review 

In this section, we review the related literature from three aspects. First, as our study relates to 

AMRP, we first review the aircraft maintenance routing studies and discuss the major factors 

that affect the AMRP formulations. Besides, we survey the operational aircraft maintenance 

recovery studies because we also explore a re-routing problem. Last, as our study allows the 

cancellation of scheduled flights, which relates to the integrated flight scheduling and aircraft 
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routing problems, we review the recent integrated airline scheduling studies. 

 
2.1 Aircraft maintenance routing 

As aircraft is one of the most expensive resources owned by airlines, the academia has 

conducted abundant research on the AMRP with the fast development of operations research 

(OR) in the past several decades. There are several major factors that influence the problem 

definition and model formulation adopted in the existing AMRP studies. 

First, aircraft maintenance checks vary across airlines with different time lengths and 

frequency requirements (e.g., the time interval between two checks, which could be measured 

by D days, maximum flying hours, maximum number of take-offs, etc.). These different 

maintenance considerations naturally impose significant impacts on the AMRP studies. For 

example, in Haouari et al. (2011), both routine checks (every 3-4 calendar days) and short-term 

A checks are considered. However, the modelling approach for these two checks are totally 

different. For routine checks, the authors state that routine checks are only conducted during 

night, while the flight schedule of the considered airline can ensure that every aircraft would 

stay overnight at a routine-check-feasible airport. Thus, it is no need to model routine checks 

explicitly. However, short-term A checks shall be carried out every 60 hours, and not all airports 

are A-check-feasible station. Therefore, special resource vectors should be created for labels 

during the path extension procedure, in order to satisfy the A check requirements (Haouari et 

al., 2011). 

The time horizon of the scheduling problem is another major factor. Generally, the existing 

literature considers daily-repeated flight schedules, weekly-repeated flight schedules, one-day 

horizon, four-day horizon, or one-week horizon. The time horizon greatly affects how the 

AMRP can be depicted. For example, if a daily-repeated flight schedule is considered, the 

AMRP is usually formulated as a network flow problem based on the time-space network 

developed by Hane et al. (1995), in which the flow balance constraints ensures that aircraft can 

circulate in the network. Usually, the maintenance check requirement is fulfilled by assuming 

that maintenance is conducted during night (i.e., by traversing an overnight/wraparound arc). 

Liang et al. (2011) propose that if an aircraft needs to take a maintenance check every D days, 

then the daily-repeated flight schedule could be copied for D days, while overnight 
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maintenance arcs are created to link the end of each day with the starting of the first day. Based 

on the daily AMRP network, Liang and Chaovalitwongse (2013) revise the network structure 

so that weekly schedules could be considered. However, the maintenance checks that can be 

modeled by the time-space based networks are overnight checks, while only the number of 

calendar days between two maintenance checks could be considered. Thus, the string-based 

approach developed by Barnhart, Boland, et al. (1998) is recommended if airlines allow 

daytime maintenance or other maintenance interval requirements are imposed (like the 

accumulated flying hours and number of take-offs). In the string-based approach, a string is a 

sequence of flights that starts from and ends at a maintenance station, while an augmented 

string is a string with the maintenance check time attached to the end of the last flight in the 

string. Flight events are modelled as nodes at each maintenance station, while ground arcs are 

created to link the flight event nodes. Besides, by counting the number of aircraft in the air and 

on the ground at a time point, the fleet size restriction could be satisfied (Barnhart, Boland, et 

al., 1998). The flight schedule considered in Barnhart, Boland, et al. (1998) could be T-day 

repeated where T could be any positive integer. By imposing flow balance constraints at each 

flight event node, the model ensures that aircraft could circulate in the network while satisfying 

various maintenance requirements. Focusing on an one-day horizon, Desaulniers et al. (1997) 

consider that an aircraft should start from and end at the same airport based on a connection 

network, while flights could depart within pre-determined time windows. A set-partitioning 

type model and a time-constrained multi-commodity network flow model are proposed, which 

are solved by column generation and Dantzig-Wolfe decomposition, respectively (Desaulniers 

et al., 1997). Considering a one-week period, Haouari et al. (2011) formulate an assignment-

based model, as well as set-partitioning-based model, which are solved by Benders 

decomposition and Branch-and-price, respectively. In the problem studied by Haouari et al. 

(2011), only the long-term maintenance checks are explicitly considered. That is, the model 

will identify aircraft routes that cover the pre-scheduled long-term maintenance checks for each 

aircraft within the considered one-week period. Moreover, deadhead flights are utilized in 

Haouari et al. (2011), in which two flight nodes could be connected even if the arrival airport 

of the first flight is not the departure airport of the second flight, to serve the maintenance check 

purposes and flight coverage purposes, or to satisfy the aircraft number requirements to be used 
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for the next day at each airport. On the other hand, some studies consider the four-day horizon 

as it is a commonly required that a maintenance check shall be conducted every four calendar 

days (Eltoukhy et al., 2018; Talluri, 1998). 

 
2.2 Operational aircraft maintenance recovery and robust routing 

In the tactical planning stage, aircraft are arranged to serve specific flight while satisfying the 

various maintenance requirements, usually with the aim of minimizing operations costs or 

maximizing profits (like through revenues). However, in real operations, disruptions are 

common which make the planned aircraft itinerary infeasible. Thus, aircraft recovery is 

necessary to maintain daily operations. 

Haouari et al. (2011) state that the AMRP in the considered airline usually plans for long-

term maintenance checks, while during daily operations, short-term maintenance (also named 

as A check) should be considered which requires the revision of the long-term AMRP solutions. 

Thus, they explore an operational aircraft maintenance re-routing problem for one day. To be 

specific, Haouari et al. (2011) consider that A checks should be conducted every 60 flying hours, 

while airlines generally keep track of the accumulated flying hours for each individual aircraft, 

and re-route the aircraft that are labeled with low legal remaining flying hours to ensure that 

they could land at a maintenance-feasible airport at the end of the day. The number of aircraft 

that can be used for the next day's tasks is also formulated as a constraint in Haouari et al. 

(2011). Similarly, Sarac et al. (2006) study the aircraft re-routing problem encountered in daily 

operations, in which both available man-hours and number of available slots for different 

maintenance types at each overnight station are considered. Besides, those “non-high-time” 

aircraft whose remaining legal flying hours are sufficient (e.g., two days or more) are not 

restricted to be used in the given day in their re-routing model. A set-partitioning based 

formulation is developed, while a problem structured based branching scheme is explored to 

relieve the computational burden of the pricing problem in Sarac et al. (2006). 

Liang et al. (2018) point out that the recovery time horizon is usually one to four days. 

Using a connection network, Liang et al. (2018) aim to utilize strategic flight delays, flight 

cancellations, flight swaps, and planned maintenance swaps to deal with the disruption sources 

like airport flow control, airport-on-grounds, and airport/time mismatch. A column generation 
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approach is developed to solve the linear-relaxation of the aircraft recovery model developed 

in Liang et al. (2018), while the integer programming technique is used to obtain integer 

solutions based on the solutions of the last restricted master problem. Moreover, in order to 

consider the airport capacity and maintenance swaps, special shortest path algorithms are 

developed in Liang et al. (2018). 

In fact, aircraft recovery is critical when disruption happens in real operations as 

sequential recovery actions such as crew and passenger recovery are badly dependent on it. 

Some aircraft recovery actions such as reassigning fleet type for disrupted aircraft will 

complicate crew and passenger recovery. Rosenberger et al. (2003) proposed a revised aircraft 

routing model which aims to minimize the re-routing and cancellation cost during the aircraft 

recovery stage without resigning fleet types to help avoid disruptions to crew pairing and 

passenger itineraries in real operations. A heuristic called aircraft selection heuristic is 

developed to determine the subset of aircraft for optimization before new routes are constructed 

for the aircraft, by which large recovery instances can be solved quickly. 

In addition to recovery problem, some studies also try to insert robustness into the tactical 

plans of aircraft. For example, Liang et al. (2015) propose a robust aircraft routing model for 

weekly-repeated flight schedules where maintenance checks shall be conducted for every three 

days. Robustness is achieved by minimizing the propagated delay of flights within each day 

based on data analytics of historical data, while a new method to compute propagated delay is 

developed. The maintenance requirements are satisfied by the network construction strategies 

that ensure an aircraft will traverse an overnight maintenance arc no more than three days. A 

column generation approach is developed to generate promising line-of-flights for each day in 

Liang et al. (2015). Yan and Kung (2016) propose a robust optimization model for the aircraft 

routing problem, in which the objective is to minimize the possible maximum total propagated 

delay. To incorporate the correlated and non-linear propagated delay into the model and make 

the solution approach tractable, a column and row generation framework is developed based 

on the decomposition methods. Each time a new robustness constraint (with the consideration 

of the optimal primary delay) is added to the relaxed master problem, while the column 

generation procedure is applied to obtain new feasible routes until no more violated constraint 

is found. 
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2.3 Integrated airline scheduling problems 

Although the sequential scheduling approach can significantly reduce the problem scale and 

solution complexity for airlines, the high correlations among the sub-scheduling problems may 

lead to poor solution quality (or even infeasibility). Thus, in recent years, increasing research 

is devoted to exploring integrated airline scheduling problems. Specifically, AMRP is usually 

integrated with the fleet assignment problem and the crew scheduling problem. For instance, 

focusing on a regional airline with three operators operating at CanaryIslands, Salazar-

González (2014) propose an integrated decision framework for the fleet assignment, aircraft 

routing, and crew pairing problem. Note that the fleet assignment problem considered in 

Salazar-González (2014) is to assign flights to a specific operator, instead of assigning fleet 

type to flights. The flight schedule considered in Salazar-González (2014) is a daily schedule, 

while the author solve the integrated routing problem day by day, and impose that the number 

of aircraft and crew members available could be obtained according to the previous day’s 

solution. A mixed integer linear programming model is developed for the integrated problem, 

while a heuristic is developed for solutions in Salazar-González (2014). Based on the routing 

solutions, Salazar-González (2014) further studies the crew rostering problem. As for the merit 

of integrating the aircraft routing and crew pairing problem, Salazar-González (2014) point out 

that the aircraft/crew changes along an itinerary could be minimized. Besides, Mercier et al. 

(2005) build aircraft routes and crew pairings simultaneously for daily flight schedules. The 

authors build time-space networks for both aircraft and crew, while flights are copied by D 

times where D equals the maximum number of calendar days between two maintenance checks 

for aircraft, and the maximum number of calendar days that a crew pairing could last. For the 

AMRP, a source node and a sink node are used to facilitate the generation of aircraft paths. As 

pointed out by Mercier et al. (2005), for a daily AMRP, the number of calendar days involved 

in an aircraft route is equal to the number of aircraft required by this route. Moreover, the 

aircraft-crew integrated decision framework developed by Mercier et al. (2005) enables crew 

members to serve two consecutive flights with a connection time that is shorter than the 

minimum legal transit time if the two flights are operated by the same aircraft (named as short 

connections). On the other hand, if the flight connection time is larger than the minimum legal 
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transit time but shorter than the ideal transit time for crew members, penalties will not be 

imposed only when the two flights are served by the same aircraft (Mercier et al., 2005). A 

similar study could be found in Cordeau et al. (2001), in which the Benders decomposition 

method is used to solve the integrated problem where the AMRP is the master problem while 

the crew pairing problem is the sub-problem. Kenan et al. (2018) study a flight scheduling 

(flights are allowed to be rejected), fleet assignment (consider the revenue produced by serving 

a flight by an aircraft type), and aircraft routing (require that each aircraft begins and ends at 

the same airport, which is a maintenance station) integrated problem. A one day connection 

network is built for this integrated problem, while flight propagated delay is minimized through 

a column generation approach (Kenan et al., 2018). It is worth mentioning that each aircraft 

type is given an initial airport, while the number of aircraft for each type is limited, to facilitate 

the modelling of maintenance checks implicitly in Kenan et al. (2018). 

      The traditional integrated scheduling regarding aircraft routing is based on generic 

aircraft, i.e., same type of fleet, not yet specific to the tail number of each aircraft. However, 

such kind of integrated scheduling is usually based on a short planning horizon where only the 

most frequent maintenance requirements are involved. For those less frequent maintenance, 

tail-dependent scheduling is supposed to be considered (Ruther et al. 2017). On the other hand, 

for those integrated scheduling of aircraft and crew, adjustments of the crew connections to the 

aircraft routes in the tail assignment process may happen due to less consideration of the less 

frequent maintenance. Differently, Ruther et al. (2017) propose an integrated aircraft routing, 

crew pairing, and tail assignment problem at the operational level, in which each aircraft and 

group of crews are separately modeled with a specified pricing problem (PP). To tackle with 

the unpredictable disruption from the aircraft, Ahmed et al. (2018) explore an integrated robust 

operational solution for the airline by a novel objective function, which aims to minimize the 

total penalties of short connections of crews and aircraft. A polynomial-size mixed-integer 

nonlinear programming model is built to solve the proposed integrated aircraft routing and 

crew paring problem. A reformulation-linearization technique is applied so that the model can 

be resolved by the commercial solver directly. Simulation-based evaluation is carried out to 

show the superiority of the robust model compared to the non-robust one. 

Based on the previous study of Salazar-González 2014, Cacchiani and Salazar-González 
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(2017) further explore the exact methods to solve an integrated scheduling of fleet assignment, 

aircraft routing and crew pairing per day for a regional carrier, in which the objective is to 

minimize the aircraft and crew operations cost while maximizing the robustness of the 

integrated schedules. A novel arc-path model is built on both arc-based variables (aircraft routes) 

and path-based variables (crew pairing). For the arc-path model, column generation is used to 

obtain the lower bound while some heuristic is applied to obtain the upper bound. The authors 

further solve a reduced MILP model in which the dynamic programming procedure is used to 

select out those path-based variables, whose reduced cost is less than the gap of upper and 

lower bounds, to solve the arc-path model to optimality.  

 
2.4 Research gaps and contribution 

Based on the existing literature, we found that AMRP has been extensively studied from 

different perspectives like the requirements of distinct aircraft maintenance checks, recovery 

actions for daily disruptions, and considerations of integrated mechanism among different 

decision stages. However, existent literature usually treats the maintenance requirements as the 

passive restrictions in the operational stage. Differently, this study innovatively proposes the 

SMR strategy under the real situation of capacity-constrained maintenance stations, which aims 

to explore a novel aircraft re-routing approach to fulfill the maintenance requirements in the 

operational stage via a flexible and movable maintenance mechanism. Besides, we propose a 

column generation based algorithm to solve the new problem with good solution quality. This 

study may further bring about useful managerial insights on the cooperation of different parties 

like airlines and maintenance service providers for maintenance resource sharing at the 

operational level. 

 

3. The model 

Consider a set of flights (𝑓𝑓 ∈ 𝐹𝐹) to be scheduled for an operation day. The set of aircraft is 

denoted by 𝑘𝑘 ∈ 𝐾𝐾, while all the possible routes for aircraft 𝑘𝑘 is 𝑅𝑅𝑘𝑘, indexed by 𝑟𝑟. An aircraft 

is in the high-time list if its remaining legal flying time is below a threshold. The maintenance 

checks to be conducted could be either pre-planned ones or unexpected requirements that arise 

in the operational stage. The set of high-time aircraft is denoted by 𝐾𝐾ℎ, while the set of non-
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high-time aircraft is denoted by 𝐾𝐾𝑛𝑛 . For a high-time aircraft 𝑘𝑘 ∈ 𝐾𝐾ℎ , 𝑐𝑐𝑟𝑟𝑘𝑘  is the cost of 

assigning route 𝑟𝑟 to aircraft 𝑘𝑘, which is divided into three parts: the operating costs of aircraft 

𝑘𝑘 flying the flights contained in the route (∑ 𝑐𝑐𝑓𝑓𝑘𝑘𝑓𝑓∈𝐹𝐹𝑟𝑟 ), aircraft change penalties (∑ 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓𝑓𝑓∈𝐹𝐹𝑟𝑟 ), 

and maintenance costs (𝑚𝑚𝑟𝑟
𝑘𝑘 ). That is, 𝑐𝑐𝑟𝑟𝑘𝑘 = ∑ 𝑐𝑐𝑓𝑓𝑘𝑘𝑓𝑓∈𝐹𝐹𝑟𝑟 + ∑ 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓𝑓𝑓∈𝐹𝐹𝑟𝑟 + 𝑚𝑚𝑟𝑟

𝑘𝑘  (∀𝑘𝑘 ∈ 𝐾𝐾ℎ ). Note 

that 𝐹𝐹𝑟𝑟  is the set of flights contained in route 𝑟𝑟 . It is noted that to reduce the impact of 

recovery operations on the original plan, we assign a penalty cost 𝑤𝑤𝑓𝑓  to flight 𝑓𝑓  if it is 

covered by an aircraft which is different from the originally assigned one. Accordingly, 𝑜𝑜𝑓𝑓𝑘𝑘 is 

used to represent whether the flight is scheduled to be operated by the aircraft assigned in the 

original plan. If 𝑜𝑜𝑓𝑓𝑘𝑘 = 1, it means the aircraft assigned to flight 𝑓𝑓 is changed. If 𝑜𝑜𝑓𝑓𝑘𝑘 = 0, it 

means the aircraft assigned to flight 𝑓𝑓 remains unchanged. Besides, for maintenance costs, 

we consider that when aircraft 𝑘𝑘  is scheduled to conduct the maintenance at a feasible 

maintenance station (𝑛𝑛 ∈ 𝑁𝑁), the maintenance costs is the basic cost 𝑚𝑚𝑟𝑟
𝑘𝑘 = 𝑏𝑏𝑘𝑘. Each feasible 

maintenance station is restricted by the available man-hour 𝑃𝑃𝑛𝑛, while aircraft 𝑘𝑘 requires ℎ𝑛𝑛𝑘𝑘 

man-hour to complete the maintenance check at station 𝑛𝑛. On the other hand, if the aircraft 

carries out the maintenance check at a maintenance-infeasible airport by the maintenance 

resources (personnel and equipment) sent by the airline (i.e., the SMR strategy), additional cost 

(𝑑𝑑𝑘𝑘 ) should be attached to this route, i.e., 𝑚𝑚𝑟𝑟
𝑘𝑘 = 𝑏𝑏𝑘𝑘 + 𝑑𝑑𝑘𝑘 . Note that the “maintenance-

infeasible airport” could be either an airport which is not a maintenance station or a 

maintenance airport without enough resources/capacities. For a non-high-time aircraft (𝑘𝑘 ∈

𝐾𝐾𝑛𝑛), its route cost is the aircraft change penalties plus the flight operating costs. Following a 

large body of the AMRP literature, we consider that the maintenance checks are carried out at 

the end of the day (Haouari et al., 2011; Kenan et al., 2018; Liang & Chaovalitwongse, 2013). 

Besides, 𝑞𝑞𝑓𝑓  represents the penalty of cancelling flight 𝑓𝑓 , which can represent the 

compensation for passengers, the damage to airline reputation, etc. Similarly, we apply 𝑞𝑞𝑘𝑘 to 

aircraft 𝑘𝑘 if it is not used in the solution. For high-time aircraft, on one hand, a large idling 

cost for a high-time aircraft can help promote this aircraft to move for a maintenance check. 

On the other hand, this cost can represent the maintenance check cost if this aircraft stays at 

the initial airport without any duty (implying that the airline has to allocate maintenance 
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resources to this initial airport to conduct maintenance checks for this high-time aircraft). For 

non-high-time aircraft, imposing a penalty cost for idling can help improve the resource 

utilization of the airline. Actually, this penalty can also be set as zero according to airlines’ 

preference. Moreover, binary coefficient 𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘  stands for whether route 𝑟𝑟 of aircraft 𝑘𝑘 covers 

flight 𝑓𝑓, while 𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘  represents whether route 𝑟𝑟 of aircraft 𝑘𝑘 ends at maintenance station 𝑛𝑛 

and conducts maintenance check at that station. Note that a non-high-time aircraft may end at 

a maintenance station without any maintenance activities. In such situations, the non-high-time 

aircraft would not occupy any resources of the maintenance station. Binary decision variables 

𝑥𝑥𝑟𝑟𝑘𝑘 stand for whether route 𝑟𝑟 of aircraft 𝑘𝑘 is selected or not, while 𝑦𝑦𝑓𝑓 represent whether 

flight 𝑓𝑓  will be cancelled by the algorithm or not. The notation used in this study is 

summarized in Appendix.  

With the notation introduced above, the operational flight scheduling and aircraft routing 

problem can be formulated as in Eq. (3-1) to Eq. (3-5). First, the objective function Eq. (3-1) 

minimizes the overall costs of the routes selected for high-time aircraft (i.e., 

∑ ∑ (∑ 𝑐𝑐𝑓𝑓𝑘𝑘𝑓𝑓∈𝐹𝐹𝑟𝑟 + ∑ 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓𝑓𝑓∈𝐹𝐹𝑟𝑟 + 𝑚𝑚𝑟𝑟
𝑘𝑘)𝑥𝑥𝑟𝑟𝑘𝑘𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾ℎ  ), the overall costs of the routes selected for 

non-high-time aircraft (i.e., ∑ ∑ (∑ 𝑐𝑐𝑓𝑓𝑘𝑘𝑓𝑓∈𝐹𝐹𝑟𝑟 + ∑ 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓𝑓𝑓∈𝐹𝐹𝑟𝑟 )𝑥𝑥𝑟𝑟𝑘𝑘𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾𝑛𝑛  ), the total flight 

cancellation penalties (i.e., ∑ 𝑞𝑞𝑓𝑓𝑦𝑦𝑓𝑓𝑓𝑓∈𝐹𝐹  ), and the total penalties for unused aircraft (i.e., 

∑ 𝑞𝑞𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘∈𝐾𝐾 ). Second, Eqs. (3-2) are the flight coverage constraint, requiring that each flight 

(𝑓𝑓 ∈ 𝐹𝐹) is either serviced by an aircraft (i.e., ∑ ∑ 𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘 𝑥𝑥𝑟𝑟𝑘𝑘𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾 = 1) or cancelled (i.e., 𝑦𝑦𝑓𝑓 =

1). Third, Eqs. (3-3) ensures that each aircraft is assigned with no more one route. Then, the 

man-hour availability at each maintenance station is respected through applying Eqs. (3-4), in 

which the left-hand-side is the total man-hour required for the high-time aircraft that is assigned 

to maintenance station 𝑛𝑛 to carry out the maintenance check. Last, the solution space for the 

decision variables is regulated in Eqs. (3-5).   
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� � (� 𝑐𝑐𝑓𝑓𝑘𝑘
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ � 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ 𝑚𝑚𝑟𝑟
𝑘𝑘)𝑥𝑥𝑟𝑟𝑘𝑘

𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾ℎ

+ � � (� 𝑐𝑐𝑓𝑓𝑘𝑘
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ � 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓
𝑓𝑓∈𝐹𝐹𝑟𝑟

)𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾𝑛𝑛

+ � 𝑞𝑞𝑓𝑓𝑦𝑦𝑓𝑓
𝑓𝑓∈𝐹𝐹

+ � 𝑞𝑞𝑘𝑘𝑦𝑦𝑘𝑘
𝑘𝑘∈𝐾𝐾

 

(3-1) 

s.t.  � � 𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘 𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾

+ 𝑦𝑦𝑓𝑓 = 1 ∀𝑓𝑓 ∈ 𝐹𝐹 (3-2) 

 � 𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘

+ 𝑦𝑦𝑘𝑘 = 1 ∀𝑘𝑘 ∈ 𝐾𝐾 (3-3) 

 � � ℎ𝑛𝑛𝑘𝑘𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘 𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾

≤ 𝑃𝑃𝑛𝑛 ∀𝑛𝑛 ∈ 𝑁𝑁 (3-4) 

 𝑥𝑥𝑟𝑟𝑘𝑘 ,𝑦𝑦𝑓𝑓 ,𝑦𝑦𝑘𝑘 ∈ {0,1} ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘,∀ 𝑓𝑓 ∈ 𝐹𝐹 (3-5) 

It is seen that the operational flight scheduling and aircraft routing model formulated above 

is a set-partitioning type formulation, which is well-known to be NP-hard due to the 

exponential number of possible decision variables (i.e., vast number of feasible aircraft routes). 

It is inefficient or even infeasible to enumerate all routes and find a subset of cost-minimized 

routes. Therefore, we develop a column generation-based solution algorithm to efficiently 

solve the operational flight scheduling and aircraft routing problem in the next section. 

 

4. Solution approach 

Column generation is a powerful tool to solve large-scale linear programming problems 

without encountering the difficulty of enumerating the vast number of potential variables 

(Barnhart, Johnson, et al., 1998; Sarac et al., 2006). The mechanism of column generation is 

briefly explained as follows. First of all, the large-scale linear programming problem is divided 

into a master problem and a sub-problem (or many sub-problems) (Desaulniers et al., 2006; 

Liang et al., 2018). The master problem is initiated with a small number of variables, so that 

the mater problem is also named as the restricted master problem. Solving the restricted master 

problem (e.g., by using the simplex method), the dual prices for each constraint are obtained 

and passed to the sub-problem which is usually formulated as a resource constrained shortest 

path problem in airline scheduling problems. Considering the resource window for each node, 

the aim of the sub-problem is to identify the most negative path in the network with the dual 

prices generated by the master problem. The resources could be flying time, the number of 



16 
 

take-offs, the number of calendar days, etc., in AMRP, and could be duty working time, duty 

flight number, pairing elapse time, etc., in the crew pairing problem (Anbil et al., 1998; Lavoie 

et al., 1988). In this study, the remaining legal flying time of an aircraft is the resource we 

consider during path generation. That is, for high-time aircraft, before the remaining legal 

flying time becomes zero, the aircraft would be assigned with a maintenance opportunity. The 

identified negative paths (routes) are then added into the solution pool of the restricted master 

problem, while the next iteration is triggered until no more negative path could be found 

(implying that the master problem has reached optimality). If the solutions obtained by column 

generation is fractional, then the branch-and-bound technique is invoked to get integer 

solutions. If the column generation is called at every node of the branch-and-bound tree, then 

the overall algorithm is named as branch-and-price. Exact branching is exactly time-consuming. 

Thus, heuristic branching strategies, like diving column fixing and inter-task fixing, are 

commonly used. Many studies also apply the mixed integer programming technique on the last 

restricted master problem, without invoking column generation at each branch-and-bound tree, 

in order to obtain integer solutions quickly (Liang et al., 2015; Liang et al., 2018). In the 

following, we present the details of the restricted master problem and the sub-problem for each 

aircraft.  

 
4.1 Restricted master problem 

The restricted master problem is the linear relaxed version of the operational flight scheduling 

and aircraft routing model formulated in Section 3, as shown in Eq. (4-1) to Eqs. (4-5). The 

restricted master problem is initialized with a sub-set of aircraft routes. In this study, we build 

an artificial aircraft route covering all flights with a very large cost to initiate the model. This 

initial large-cost route will be priced out when new aircraft routes are generated and inserted 

into the solution pool. Note that this initial bad route would always be priced out as flights are 

allowed to be cancelled, while the cost of this initial route is far larger than the flight 

cancellation cost. The dual prices associated with Eq. (4-2) to Eqs. (4-4) are denoted by 𝛽𝛽𝑓𝑓 

(for each flight), 𝛿𝛿𝑘𝑘 (for each aircraft), and 𝛾𝛾𝑛𝑛 (for each maintenance station), respectively. 

The dual prices are passed to the sub-problem for each aircraft to seek for new routes that have 

the potential to lower down the objective value. 
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� � (� 𝑐𝑐𝑓𝑓𝑘𝑘
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ � 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ 𝑚𝑚𝑟𝑟
𝑘𝑘)𝑥𝑥𝑟𝑟𝑘𝑘

𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾ℎ

+ � � (� 𝑐𝑐𝑓𝑓𝑘𝑘
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ � 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓
𝑓𝑓∈𝐹𝐹𝑟𝑟

)𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾𝑛𝑛

+ � 𝑞𝑞𝑓𝑓𝑦𝑦𝑓𝑓
𝑓𝑓∈𝐹𝐹

+ � 𝑞𝑞𝑘𝑘𝑦𝑦𝑘𝑘
𝑘𝑘∈𝐾𝐾

 

(4-1) 

s.t.  � � 𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘 𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾

+ 𝑦𝑦𝑓𝑓 = 1 ∀𝑓𝑓 ∈ 𝐹𝐹 (4-2) 

 � 𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘

+ 𝑦𝑦𝑘𝑘 = 1 ∀𝑘𝑘 ∈ 𝐾𝐾 (4-3) 

 � � ℎ𝑛𝑛𝑘𝑘𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘 𝑥𝑥𝑟𝑟𝑘𝑘
𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾

≤ 𝑃𝑃𝑛𝑛 ∀𝑛𝑛 ∈ 𝑁𝑁 (4-4) 

 𝑥𝑥𝑟𝑟𝑘𝑘 ,𝑦𝑦𝑓𝑓 ,𝑦𝑦𝑘𝑘 ≥ 0 ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘,∀ 𝑓𝑓 ∈ 𝐹𝐹 (4-5) 

 
4.2 Sub-problem 

As mentioned, the objective of the sub-problem is to identify a better column (that is, an aircraft 

route in the AMRP) that can help reduce the objective value using the dual prices obtained 

from solving the restricted master problem. In this study, the sub-problem is equivalent to 

identifying a route for an (or several) aircraft with a negative reduced cost. The reduced cost 

(𝜃𝜃𝑟𝑟𝑘𝑘) for route 𝑟𝑟 of aircraft 𝑘𝑘 is formulated as in Eq. (4-6). More specifically, the reduced 

cost for a route of a high-time aircraft is detailed in Eq. (4-7), while that for a route of a non-

high-time aircraft is presented in Eq. (4-8). Specifically, it is seen that compared with non-high-

time aircraft, the reduced cost for a high-time aircraft involves the maintenance cost as well as 

the dual prices related to the maintenance station if used. 

𝜃𝜃𝑟𝑟𝑘𝑘 = 𝑐𝑐𝑟𝑟𝑘𝑘 −� 𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘 𝛽𝛽𝑓𝑓
𝑓𝑓∈𝐹𝐹

− 𝛿𝛿𝑘𝑘 −� ℎ𝑛𝑛𝑘𝑘𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘 𝛾𝛾𝑛𝑛
𝑛𝑛∈𝑁𝑁

 ∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘 (4-6) 

𝜃𝜃𝑟𝑟𝑘𝑘 = � 𝑐𝑐𝑓𝑓𝑘𝑘
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ � 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ 𝑚𝑚𝑟𝑟
𝑘𝑘

−� 𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘 𝛽𝛽𝑓𝑓
𝑓𝑓∈𝐹𝐹

− 𝛿𝛿𝑘𝑘

−� ℎ𝑛𝑛𝑘𝑘𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘 𝛾𝛾𝑛𝑛
𝑛𝑛∈𝑁𝑁

 

∀𝑘𝑘 ∈ 𝐾𝐾ℎ,∀𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘 (4-7) 

𝜃𝜃𝑟𝑟𝑘𝑘 = � 𝑐𝑐𝑓𝑓𝑘𝑘
𝑓𝑓∈𝐹𝐹𝑟𝑟

+ � 𝑜𝑜𝑓𝑓𝑘𝑘𝑤𝑤𝑓𝑓
𝑓𝑓∈𝐹𝐹𝑟𝑟

−� 𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘 𝛽𝛽𝑓𝑓
𝑓𝑓∈𝐹𝐹

− 𝛿𝛿𝑘𝑘 

∀𝑘𝑘 ∈ 𝐾𝐾𝑛𝑛,∀𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘 (4-8) 

The sub-problem is then transformed to solving a resource constrained shortest path 
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problem (RCSTP), where the cost of each flight arc is set as (−𝛽𝛽𝑓𝑓), the cost of each aircraft is 

set as (−𝛿𝛿𝑘𝑘), the cost of each maintenance station for each aircraft is set as (−ℎ𝑛𝑛𝑘𝑘𝛾𝛾𝑛𝑛), while the 

path cost is defined as 𝜃𝜃𝑟𝑟𝑘𝑘. At each column generation iteration, the path with the most negative 

cost is identified (actually, all non-dominated paths with negative costs could be found). Note 

that for a non-high-time aircraft, the path extension procedure is not restricted by the legal 

flying time constraint. However, for a high-time aircraft, it should be guaranteed that the 

aircraft could either stay at a maintenance station with sufficient resources or stay at a 

maintenance-infeasible airport with the SMR strategy before it uses up the remaining legal 

flying time. The flight networks most commonly used in AMRPs are the time-space networks 

and connection networks (Barnhart, Boland, et al., 1998; Hane et al., 1995). In a time-space 

network, nodes represent flight departures and arrivals, while arcs represent flights or 

overnights. On the other hand, connection networks apply nodes as flights, while the arcs 

connecting flights represent the turn-around time between two consecutive flights. In this study, 

we apply the connection network for path generation. Generally, the connection network 

contains a dummy source node (s), a dummy sink node (t), flight nodes, and flight arcs. Next, 

we will demonstrate how to construct the connection networks for each type of aircraft in order 

to achieve the above-mentioned purposes.  

Connection network for non-high-time aircraft 𝑘𝑘 ∈ 𝐾𝐾𝑛𝑛 

The network for non-high-time aircraft is relatively simple. Given an initial location of the 

aircraft, the dummy source node is connected with all flights that depart from the initial airport 

through route starting arcs to represent the beginning of a route. Flight nodes are connected 

through connection arcs if the arrival airport of the previous flight is the departure airport of 

the following flight, while the connection time between these two flights is at least the 

minimum required turn time. Besides, each flight is connected with the sink node through a 

route ending arc, as there is no restriction on non-high-time aircraft regarding the ending airport 

in the day. A simple example is shown in Figure 1, where solid lines represent the route starting 

arcs and route ending arcs, while dash lines are flight connection arcs. In this example, the 

initial location of the aircraft is the departure airport of flight 1 and flight 2 (i.e., station A). 

Flights 1&4, 2&3, and 3&5 could be flown consecutively by an aircraft as the turn times 

between those flight pairs are legal. Besides, the aircraft could end its duty in the day after 
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flying any flight. Thus, all flights could be connected with the sink node no matter whether the 

ending station is a maintenance station or not. Along the generation of routes, once the 

originally assigned aircraft for a flight is not the currently considered one, an aircraft change 

penalty 𝑤𝑤𝑓𝑓 is added to the path cost. 

 
Figure 1. A connection network for a non-high-time aircraft. 

 

Connection network for high-time aircraft 𝑘𝑘 ∈ 𝐾𝐾ℎ 

The network structure for a high-time aircraft is more complicated as we need to model 

the maintenance activity at a maintenance station, as well as the SMR strategy to ensure that 

each high-time aircraft could be maintained before the remaining legal flying time is used up 

in the day. Thus, we introduce two types of maintenance arcs, normal maintenance arcs and 

SMR maintenance arcs, as shown in Figure 2. In this figure, the arrival airport of flight 4 and 

flight 5 are maintenance stations. The normal maintenance arc links the flights arriving at 

airports that can serve as a maintenance station with the sink node, while the SMR maintenance 

arc links all flights with the sink node. These two types of maintenance arcs ensure that every 

high-time aircraft could end with a maintenance opportunity at the end of the operation day. 

Accordingly, the cost of a normal maintenance arc is set as the basic maintenance costs of 

aircraft 𝑘𝑘 (i.e., 𝑏𝑏𝑘𝑘), while that of a SMR maintenance arc is set as the basic maintenance cost 

plus the additional cost when aircraft 𝑘𝑘 adopts the SMR maintenance strategy (i.e., 𝑏𝑏𝑘𝑘 + 𝑑𝑑𝑘𝑘). 

Note that the flights arriving at a maintenance station are also connected with the sink node 

through a SMR maintenance arc (see flight 4 and flight 5 in Figure 2), implying that when 

there is insufficient man-hour at the corresponding maintenance station, a high-time aircraft 



20 
 

could end at that airport by applying the maintenance personnel/equipment sent by the airline. 

If the available resources of a maintenance station are lower than the minimum requirements 

of all aircraft, then the normal maintenance arcs of this maintenance station could be eliminated. 

In the example of Figure 2, the aircraft could operate flights 1 and 4, ending at the maintenance 

station C (either adopting the SMR strategy or using the maintenance services provided by 

station C). It can also only operate flight 1, and end at the arriving airport of flight 1 (that is, 

station B). The maintenance personnel sent by the airline will conduct the maintenance check 

for this aircraft at the arriving airport of flight 1 (that is, station B). Similar to non-high-time 

aircraft, along the generation of routes, an aircraft change penalty 𝑤𝑤𝑓𝑓 is derived if the aircraft 

is not the one originally assigned to a flight. It should be pointed out that through the aircraft 

change penalty cost, one could reduce the impact of the recovery plan on the original schedule. 

 

 
Figure 2. A connection network for a high-time aircraft. 

The RCSTP is usually solved by the labelling algorithm (Irnich & Desaulniers, 2005). The 

labelling algorithm is further clarified as the label setting algorithm and the label correcting 

algorithm according to the path extension method. In this study, we apply the label correcting 

algorithm. A label 𝐿𝐿𝑖𝑖  represents a partial path arriving at node 𝑖𝑖 , denoted by 

𝐿𝐿𝑖𝑖 =[𝑇𝑇( 𝐿𝐿𝑖𝑖),𝜃𝜃𝑟𝑟𝑘𝑘( 𝐿𝐿𝑖𝑖)], where 𝜃𝜃𝑟𝑟𝑘𝑘( 𝐿𝐿𝑖𝑖) is the reduced cost for the partial path at node 𝑖𝑖. 𝑇𝑇( 𝐿𝐿𝑖𝑖) 

stands for remaining legal flying time, and it should satisfy the resource window ([0,𝑇𝑇] ) 

regulated at node 𝑖𝑖 (𝑇𝑇 is the maximum allowed flying time between two maintenance checks). 

Starting from the trivial initial label only containing the source node, new labels are created 
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during the path extension procedures if they are resource-feasible. As there are usually more 

than one label existing for each node (i.e., a node can be reached from the source node through 

different paths), dominance tests are conducted to remove unpromising labels to reduce 

searching efforts and accelerate the labeling algorithm. Note that if two labels are identical 

(reduced costs and resource consumptions are the same), one of them will be kept. To accelerate 

the overall solution procedure, the partial pricing strategy could be adopted. That is, at each 

iteration, only a subset of sub-problems for some aircraft are invoked as long as a number of 

negative paths could be identified. At the end of the column generation procedure, the sub-

problems for all aircraft will be examined to guarantee that no more negative paths could be 

identified to ensure optimality. Note that in this study, we add all the negative paths identified 

to the restricted master problem. 

 

5. Computational experiments 

This section presents analyses that demonstrate the performances of the proposed operational 

flight scheduling and aircraft routing model through computational experiments based on real-

world collected flight schedules. Experiments were conducted on a PC with Windows 10 

operation system and Intel (R) Core (TM) i7-10510U CPU @ 1.80GHz @ 2.30 GHz (16 GB 

RAM). The implementations are coded in Java programming language. The restricted master 

problem is solved using CPLEX Concert Technology in IBM ILOG CPLEX Optimization 

Studio (Version 20.1.0).  

 
5.1 Instances characteristics 

The test instances are summarized in Table 1. Note that our objective is to reschedule aircraft 

in daily operations. Thus, all the instances used in our study span one day. There are four major 

instances, I1, I2, I3, and I4, with 53 flights, 103 flights, 190 flights, and 238 flights in total. All 

these flight schedules involve two airports (both are maintenance stations with limited available 

man-hour, as shown in the fifth column of Table 1). Note that although the number of flights 

does not increase too many from 53 to 238, the scale and complexity of the flight network 

increases significantly. This is because with only two airports serving as the departure and 

arrival stations of all flights, the number of feasible connections between flights grows 
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exponentially. Thus, it is seen later that the computational time required by larger instances 

also increases exponentially. Besides, each instance is characterized by the number of non-

high-time aircraft, the number of high-time aircraft, as well as the average maintenance 

required time by the high-time aircraft. As mentioned, due to the resource restriction at the 

maintenance stations, as well as the aircraft route constraints, some high-time aircraft may not 

be able to stay at a resource-feasible maintenance station at the end of the day (or when its legal 

remaining flying time is used up). Thus, for the test reason, we further construct four sub-

instances (A, B, C, and D) for each major instance by adding additional 50% available man-

hour for the maintenance stations. For example, I1-A is featured by 600-minute average 

available man-hour, implying that the total available man-hour for the two maintenance stations 

is 1200 minutes. In I1-B, I1-C, and I1-D, the average available man-hours for the two 

maintenance stations are then 900, 1350, and 2025 minutes, respectively. Besides, we observe 

that the high-time aircraft in I1 requires 5*320=1600 minutes maintenance time in total. 

Therefore, it is concluded that the SMR strategy is essential in this case. On the other hand, I1-

D operates with 2025-minute average available man-hour, which is larger than 1600. Thus, in 

I1-D, the maintenance stations have the potential to fulfil all the maintenance demand of the 

high-time aircraft (but not guaranteed due to aircraft route constraints). 
Table 1. Instance characteristics. 

Index 
Number 
of flights 

Number 
of 

airports 

Number of 
maintenance 

stations 

Average 
available 
man-hour 

in min 

Number of 
non-high-time 

aircraft 

Number of 
high-time 
aircraft 

Average 
maintenance 
required time 

in min 
I1-A 

53 2 2 

600 

8 5 320 
I1-B 900 
I1-C 1350 
I1-D 2025 
I2-A 

103 2 2 

1200 

14 10 320 
I2-B 1800 
I2-C 2700 
I2-D 4050 
I3-A 

190 2 2 

1800 

30 14 323 
I3-B 2700 
I3-C 4050 
I3-D 6075 
I4-A 238 2 2 1500 45 12 330 
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I4-B 2250 
I4-C 3375 
I4-D 5063 

 
5.2 Solution time analysis 

The computational performance of the proposed column generation based algorithm is 

displayed in detail in Table 2. It is obvious to reveal that, with the increase of the number of 

the flights from 53 to 238, the computation time increases exponentially with the instance size, 

namely a 323% growth. The number of columns generated to obtain optimality is increased 

dramatically, namely, from 6000 to 400000. In particular, for the sub-instances of I1, I2, and 

I3, the corresponding computation times are relatively close to each other. However, for I4, 

there is a big difference for the computation time among the subinstances (e.g., 273s is required 

by I4-A, while 793s is spent by I4-B). The reason behind is that, when there is limited (i.e., 

small feasible solution space) or sufficient (i.e., less constraints on the feasible solutions) 

average available man-hour, the time used for searching the optimal solution is much less. 

When the number of the average available man-hour is at a medium level, on one hand, the 

searching space of the feasible solutions is increased; on the other hand, more constraints are 

involved on the maintenance man-hour, which incurs a larger computational burden.  

The fourth column of Table 2 presents the time spent on the sub-problems (i.e., the 

resource-constrained shortest path problem), while the fifth column summarizes the overall 

time used to insert the identified new potential columns into the restricted master problem. As 

for I1-I3, the computation times for the corresponding sub-problems are all less than those 

spent on new column insertion. This is because the computation times for the sub-problems of 

the small-size instances are relatively short. However, for I4, much time is needed to run the 

resource-constrained shortest path problem in the corresponding large network. 

Moreover, it is verified that, for different problem sizes, the solutions obtained by the 

proposed column generation based algorithm are optimal or near-optimal. The biggest 

optimality gap is within 1.8%, and 0.3% on average. 
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Table 2. Computation times and optimality gap. 

Index 

Time consumed (s) 

CG 
iterations 

Number of variables 

Optimality gap 
CG MIP 

Sub-
problem 

New 
column 
insertion 

Final 
master 

problem 
Generated 

I1-A 0.9 0.2 0.2 0.5 15 6070 6003 1.8% 
I1-B 0.9 0.4 0.2 0.5 12 6262 6195 1.1% 
I1-C 0.8 0.2 0.1 0.4 11 5563 5496 0.0% 
I1-D 0.8 0.1 0.1 0.4 14 5754 5687 0.0% 
I2-A 12.5 4.5 2.6 6.5 21 54671 54543 0.4% 
I2-B 12.2 6.4 2.5 6.7 20 55854 55726 0.1% 
I2-C 12.2 2.5 2.8 6.2 19 52432 52304 0.0% 
I2-D 12.2 1.7 2.5 6.1 25 51484 51356 0.0% 
I3-A 128.2 51.2 41.8 55.4 28 247061 246826 0.1% 
I3-B 117.4 51.6 42.8 50.9 28 253716 253481 0.0% 
I3-C 129.0 85.0 43.1 54.0 29 244391 244156 0.0% 
I3-D 113.3 51.9 37.4 49.3 28 244148 243913 0.0% 
I4-A 273.5 111.7 105.4 109.7 34 383473 383177 0.1% 
I4-B 793.8 226.0 382.5 283.9 39 397006 396710 0.0% 
I4-C 733.6 199.6 352.5 287.7 36 411938 411642 0.0% 
I4-D 292.2 121.7 126.0 106.2 36 394052 393756 0.0% 

 
5.3 Model performances 

As is shown in Table 3, there is no flight being cancelled for all instances, while all aircraft are 

used by the algorithm. In particular, for the sub-instance A of all instances (i.e., I1-A, I2-A, I3-

A and I4-A), due to the lack of available man-hour for the maintenance stations, more SMR 

maintenance checks are utilized. When there is sufficient man-hour available at the 

maintenance stations (i.e., in sub instances of B, C, and D), it is less essential to adopt the SMR 

strategy. Moreover, except for I1, it is obvious to uncover that the level of utilization of the 

maintenance stations is high for all sub-instances A. However, for I1-A, only 52% of the 

available man-hour is used in the maintenance stations. It may be caused by the structure of 

the flight schedules. Furthermore, it is interesting to find that, for the cases with super-sufficient 

man-hour available in the maintenance stations (i.e., I1-D, I2-D, I3-D, I4-D), the level of man-

hour utilization becomes lower. 
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Table 3. Solution details. 

Index 
Number of 
uncovered 

flights 

Number 
of 

unused 
aircraft 

Number of SMR 
used 

Utilization of 
maintenance 

station 1 

Utilization of 
maintenance 

station 2 
 

I1-A 0 0 3 52% 52%  
I1-B 0 0 1 74% 69%  
I1-C 0 0 0 23% 95%  
I1-D 0 0 0 0% 79%  
I2-A 0 0 4 81% 81%  
I2-B 0 0 0 89% 89%  
I2-C 0 0 0 25% 94%  
I2-D 0 0 0 16% 62%  
I3-A 0 0 4 89% 87%  
I3-B 0 0 0 70% 97%  
I3-C 0 0 0 16% 95%  
I3-D 0 0 0 6% 69%  
I4-A 0 0 4 88% 83%  
I4-B 0 0 0 87% 89%  
I4-C 0 0 0 49% 68%  
I4-D 0 0 0 32% 45%  

 

To further analyze the impacts of the average maintenance required time, flight 

cancellation cost and aircraft idling cost on the optimal solution (especially on the utilization 

of maintenance stations, the number of SMR used, the number of flights cancelled and the 

number of aircraft unused), extended numerical experiments are conducted based on instance 

I2-A (serving as the benchmark). The corresponding parameter settings of the instances are 

shown in Table 4. In particular, instances I2-A-1 to I2-A-4 specify the setting of the average 

maintenance required time being in an increasing trend. Instances I2-A-5 to I2-A-8 and I2-A-

9 to I2-A-12 specify the settings of the flight cancellation cost and aircraft idling cost being in 

a decreasing manner, respectively. Note that for each instance, only the specific parameter is 

substituted with the corresponding value shown in the table. Note that the computational 

performances of these extended analyses on I2-A are shown in Appendix. 
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Table 4. Instance characteristics for extended analysis on I2-A. 

Index 

Average 
maintenance 

required 
time in min 

Index 
Flight 

cancellation 
cost 

Index 
Aircraft idling 

cost 

benchmark 320 benchmark 100000 benchmark 10000 
I2-A-1 360 I2-A-5 10000 I2-A-9 1000 
I2-A-2 400 I2-A-6 1000 I2-A-10 100 
I2-A-3 440 I2-A-7 100 I2-A-11 10 
I2-A-4 480 I2-A-8 0 I2-A-12 0 

 

As we can see from the results of instances I2-A-1 to I2-A-4 in Table 5, when the average 

maintenance required time is increased, the aircraft rely more on the SMR maintenance strategy, 

while the utilization of the maintenance stations becomes lower. This is because, on one hand, 

when the average maintenance required time is increased, it has more impacts on the original 

flight/aircraft schedules, while adopting the SMR strategy helps reduce the changes of the 

original flight/aircraft schedule, thus being preferred by the algorithm. On the other hand, the 

available man-hour at maintenance stations becomes more restricted when the maintenance 

demand of aircraft increases. From the results of instances I2-A-5 to I2-A-8, it is interesting to 

uncover that, when the flight cancellation cost is decreased, the number of SMR maintenance 

used keeps unchanged, but the number of uncovered flights is increased dramatically with a 

relatively low utilization of the maintenance stations. The results are reasonable from the cost-

oriented perspective. As the flight cancellation cost is decreased, the optimal decision for the 

airline is to cancel some flights. However, in the case of extreme low penalty cost, the service 

level of the passengers and the overall profit of the airline maybe damaged to a large extent. 

Furthermore, compared to the flight cancellation cost, the aircraft idling cost imposes little 

impact on the optimal solution.  
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Table 5. Solution details for further analysis on I2-A. 

Index 
Number of 
uncovered 

flights 

Number of 
unused 
aircraft 

Number of SMR used Utilization of M1 Utilization of M2 

 
I2-A-1 0 0 4 91% 88%  
I2-A-2 0 0 4 98% 98%  
I2-A-3 0 0 6 75% 72%  
I2-A-4 0 0 6 82% 79%  

I2-A-5 14 0 4 78% 78%  
I2-A-6 79 0 4 78% 78%  
I2-A-7 79 0 4 78% 78%  
I2-A-8 79 0 4 78% 78%  

I2-A-9 0 0 4 81% 78%  
I2-A-10 0 0 4 81% 81%  
I2-A-11 0 0 4 81% 78%  
I2-A-12 0 0 4 81% 81%  

 

6. Conclusions 

Aircraft is the core resource of an airline which should be properly planned to ensure that it 

complies with the strict maintenance requirements when serving flights. Typically, from a 

tactical planning perspective, the AMRP prescribes that aircraft can follow a cyclic path and 

visit a maintenance station on a regular basis to fulfil the maintenance requirement. However, 

the aviation industry is full of uncertainties. Many unplanned events force airlines to modify 

their pre-determined tactical aircraft routes in real operations. This study considers that 

unexpected maintenance requirements arise in daily operations, or an aircraft could not arrive 

at a maintenance station as planned due to disruptions, which triggers the need to re-route 

aircraft in real time to fulfill maintenance requirements while covering the scheduled flight as 

much as possible. Moreover, maintenance stations are often capacity-constrained in various 

aspects, like available man-hour, parking slots, available equipment. To ensure travel safety 

and avoid high penalties of violating maintenance requirements, many airlines allocate 

maintenance resources (like manpower and equipment) to the destination airports of aircraft 

when there is no proper maintenance station could be utilized (named as the SMR strategy in 

this study). However, allocating maintenance resources to other airports is expensive. Thus, 

airlines have to balance between the additional expenditures generated by re-allocation of 
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maintenance resources and the costs of cancelling flights. Moreover, when conducting recovery, 

airlines usually endeavor to keep the original flight schedule and aircraft routing unchanged. 

This study proposes a new aircraft re-routing approach to fulfil the maintenance requirements 

arising in the operational stage either through the SMR strategy or the maintenance services 

provided by maintenance stations. Besides, flights are re-scheduled if necessary (i.e., cancelled 

with a high penalty), while the impact on the original plan is minimized. To achieve this, 

specialized flight networks are constructed for high-time aircraft to guarantee maintenance 

opportunities, while a column generation-based algorithm is developed to obtain high-quality 

solutions within short computational times. The sub-problems of the column generation 

approach are modelled as resource-constrained shortest path problems which are solved by the 

labelling algorithm. To validate the computational efficiency of the proposed solution 

algorithm as well as the model performances, computational experiments based on real-world 

collected flight schedules are conducted. Results show that, even for big-size problems, the 

solutions obtained by the proposed column generation based algorithm are optimal or near-

optimal with an optimality gap of 0.3% on average. Finally, note that although we have found 

that the maintenance workload (i.e., manhours) is often uncertain in real operations3 (Khan et 

al., 2021), the related uncertainty is not considered in the current study as the maintenance is 

performed overnight which is regarded to be enough to absorb the disruptions. 
 
Appendix – Notation  

The notation used in this study is summarized in Table A as below.  
Table A. Notation. 

𝐹𝐹 The set of flights to be scheduled, indexed by 𝑓𝑓. 

𝐾𝐾 The set of aircraft to be re-routed, indexed by 𝑘𝑘. 

𝐾𝐾ℎ The set of high-time aircraft. 

𝑁𝑁 The set of feasible maintenance station, indexed by 𝑛𝑛. 

𝐹𝐹𝑟𝑟 The set of flights contained in route 𝑟𝑟. 

𝑅𝑅𝑘𝑘 The set of possible routes for aircraft 𝑘𝑘, indexed by 𝑟𝑟. 

 
3 From our data analysis based on the maintenance data provided by our industrial partner, we found that most maintenance 
workloads follow the normal distribution. 
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𝑐𝑐𝑟𝑟𝑘𝑘 The cost of assigning route 𝑟𝑟 to aircraft 𝑘𝑘. 

𝑐𝑐𝑓𝑓𝑘𝑘 The operating costs of aircraft 𝑘𝑘 flying flight 𝑓𝑓. 

𝑤𝑤𝑓𝑓 The aircraft change penalties of flight 𝑓𝑓. 

𝑜𝑜𝑓𝑓𝑘𝑘 The binary coefficient representing whether the flight is scheduled to be operated 

by the aircraft assigned in the original plan. 

𝑚𝑚𝑟𝑟
𝑘𝑘 The maintenance costs of aircraft 𝑘𝑘. 

𝑏𝑏𝑘𝑘 The basic maintenance costs of aircraft 𝑘𝑘 at a maintenance station. 

𝑑𝑑𝑘𝑘 The additional cost if aircraft 𝑘𝑘 carries a maintenance personnel. 

𝑃𝑃𝑛𝑛 The man-hour restriction for maintenance station 𝑛𝑛. 

ℎ𝑛𝑛𝑘𝑘 The number of man-hours required by aircraft 𝑘𝑘 at maintenance station 𝑛𝑛. 

𝑑𝑑𝑘𝑘 The additional cost derived by the SMR strategy. 

𝑞𝑞𝑓𝑓 The penalty of cancelling flight 𝑓𝑓. 

𝑞𝑞𝑘𝑘 The idling cost of aircraft 𝑘𝑘. 

𝑎𝑎𝑟𝑟𝑟𝑟𝑘𝑘  The binary coefficient representing whether route 𝑟𝑟 of aircraft 𝑘𝑘 covers flight 𝑓𝑓. 

𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘  The binary coefficient representing whether route 𝑟𝑟  of aircraft 𝑘𝑘  ends at 

maintenance station 𝑛𝑛 and conducts maintenance check at that station. 

𝑥𝑥𝑟𝑟𝑘𝑘 Binary decision variable, whether route 𝑟𝑟 of aircraft 𝑘𝑘 is selected or not. 

𝑦𝑦𝑘𝑘 Binary decision variable, whether aircraft 𝑘𝑘 is used or not. 

𝑦𝑦𝑓𝑓 Binary decision variable, whether flight 𝑓𝑓 is cancelled or not. 

𝛽𝛽𝑓𝑓 The dual price for each flight. 

𝛿𝛿𝑘𝑘 The dual price for each aircraft. 

𝛾𝛾𝑛𝑛 The dual price for each maintenance station. 

 

Appendix – Table A1 

Table A1 shows the computational performance of the proposed column generation based 

algorithm for the extended instances regarding the sensitivity analysis of the number of average 

available maintenance man-hour, the cost of flight cancellation, and the cost of the aircraft 

idling. We find that there is little impact on the computational complexity when the number of 
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average available maintenance man-hour and the aircraft idling cost are changed. However, 

when the penalty for the flight cancellation is decreased, the computation time is reduced to a 

great extent with a rather smaller number of columns needed for attaining the optimality. The 

reason behind is that when the penalty cost for the flight cancellation is very small, the problem 

complexity is reduced as many of the originally-scheduled flights are not considered at all 

during the solution procedure. For most of the instances, the solution quality is good as the 

optimality gap is within 0.41%.  

Table A1. Computation times and optimality gap for further analysis on I2-A. 

Index 

Time consumed (s) 
CG 

iterations 

Number of variables 

Optimality gap 
CG MIP 

Sub-
problem 

New 
column 
insertion 

Final 
master 

problem 
Generated 

I2-A-1 15.4 4.4 3.7 7.9 21 56436 56308 0.18% 
I2-A-2 24.5 6.2 2.7 18.7 20 53610 53482 0.05% 
I2-A-3 14.8 5.5 3.0 7.2 24 58067 57939 0.41% 
I2-A-4 12.3 4.2 2.3 6.5 23 55171 55043 0.28% 
I2-A-5 8.4 3.3 1.9 4.7 14 36522 36394 0.52% 
I2-A-6 0.5 0.2 0.1 0.4 2 2624 2496 2.20% 
I2-A-7 0.4 0.1 0.1 0.3 2 2012 1884 4.10% 
I2-A-8 0.4 0.1 0.1 0.3 2 1947 1819 4.53% 
I2-A-9 12.0 4.4 2.4 6.4 19 55302 55174 0.39% 

I2-A-10 14.2 4.9 2.9 7.5 21 58109 57981 0.39% 
I2-A-11 13.6 4.4 2.7 7.0 21 57052 56924 0.39% 
I2-A-12 12.3 4.1 2.4 6.2 24 53829 53701 0.39% 
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