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Green smart manufacturing: Energy-efficient robotic 
job-shop scheduling models 

Abstract  
Smart manufacturing has boosted the wide application of mobile robots in robotic cells for automated 

material delivery. However, the mismatching between machine production process and robot movement 

process causes extensive energy waste. Nevertheless, most existing robotic job-shop scheduling (RJSP) 

studies mainly focus on minimizing makespan but overlook the low energy efficiency problem faced 

by robotic cells. Motivated by the importance of green smart manufacturing, in this study, we 

innovatively propose to achieve robotic cell energy saving through coordinating the machine production 

process and robot movement process. Specifically, both machines and the mobile robot can flexibly 

adjust operating speeds with a V-scale speed framework. Two novel energy-efficient RJSP approaches 

(i.e., the RJSP-E and the RJSP-EM) are thus proposed. The RJSP-E focuses on minimizing energy 

consumption, while the RJSP-EM simultaneously considers makespan (i.e., productivity) and energy 

consumption. Through computational experiments, the RJSP-E demonstrates superior performances in 

reducing energy consumption (15% on average), at a loss of productivity (20% on average). On the 

other hand, the RJSP-EM can select the most suitable energy-saving operating speeds without much 

sacrifice in productivity. Notably, the RJSP-EM can reduce energy consumption by a mean of 10% 

even without increasing makespan. The RJSP-EM also demonstrates higher solution efficiency. 

 

Keywords: Green production; Smart manufacturing; Robotic job-shop scheduling; Energy saving; 

Mixed integer linear programming. 

 

1. Introduction 

Smart manufacturing is developing fast with the wide application of automated technologies (He and 

Stecke, 2021; Chung, 2021). In smart robotic cells, autonomous mobile robots (AMRs) are used to pick, 

transport, and sort items on manufacturing shop floors without manual intervention. The AMRs market 

values USD 1.9 billion in 2019 and is expected to grow at a compound annual growth rate (CAGR) of 
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19.6% from 2020 to 20271, which demonstrates the promises of such a technology. However, the 

application of robots leads to higher energy (electricity) 2 consumption, which worsens the serious 

environmental concerns for the energy-intensive manufacturing industry (Zhang and Yan, 2021). 

Besides, the existing practice overlooks the coordination between the machinery production process 

and the robot movement process, leading to excessive energy waste (Gürel, et al., 2019; Liu et al., 2019).  

The energy waste in robotic cells come from several aspects. First, as the movement of the robot is 

subjected to diverse restrictions like robot availability, machines may stay idle for a long period 

(Koulamas and Panwalkar, 2019). Second, the robot/machines generally moves/produce at a constant 

speed. It is thus commonly seen that (i) products are blocked on machines for a long time (i.e., the 

product is blocked on the processing machine after completion, waiting for the availability of the robot, 

named as machine blocking), or (ii) the robot arrives at a machine earlier than the completion of the 

current operation and has to wait there before conducting the next transportation (named as robot 

partial-blocking) 3. These circumstances imply poor coordination between the machine production 

process and the robot movement process, which causes nonnegligible energy waste. Considering the 

increasing energy costs and the growing public awareness of sustainability, the low energy efficiency 

in robotic cells greatly dampens the benefits brought by robotic technology (Mokhtari and Hasani, 

2017). It is thus of great significance to enhance the energy efficiency of robotic cells through improving 

robotic job-shop scheduling decisions4 (Jiang and Wang, 2019; Lamotte & Geroliminis, 2021; Parente 

et al., 2020). 

According to Zhang and Chiong (2016), the energy consumption rate of machine production 

declines if it switches to a slower processing speed. Similarly, the robot is shown to consume less 

electricity at a slower moving speed (Brossog et al., 2015). Therefore, it is promising to achieve energy 

 
1 Details are at: https://www.grandviewresearch.com/industry-analysis/autonomous-mobile-robots-
market#:~:text=The%20global%20autonomous%20mobile%20robots%20market%20size%20was,manufacturin
g%20and%20distribution%20facilities%20without%20any%20manual%20intervention.  
2 In a robotic cell, the energy consumed is generally electricity. In this study, we use “energy” and “electricity” 
interchangeably. 
3 A robot full-blocking refers to the situation that the robot must wait at the machine for the whole operation 
process to deliver the same job (as instructed by the optimal schedule that minimizes the makespan while avoiding 
deadlocks). 
4 The robotic job-shop scheduling problem (RJSP) aims to identify the optimal production schedule for machines 
and the optimal delivery route for robots, while the makespan is usually minimized to improve productivity 
(Brucker et al., 2012). 

https://www.grandviewresearch.com/industry-analysis/autonomous-mobile-robots-market#:%7E:text=The%20global%20autonomous%20mobile%20robots%20market%20size%20was,manufacturing%20and%20distribution%20facilities%20without%20any%20manual%20intervention
https://www.grandviewresearch.com/industry-analysis/autonomous-mobile-robots-market#:%7E:text=The%20global%20autonomous%20mobile%20robots%20market%20size%20was,manufacturing%20and%20distribution%20facilities%20without%20any%20manual%20intervention
https://www.grandviewresearch.com/industry-analysis/autonomous-mobile-robots-market#:%7E:text=The%20global%20autonomous%20mobile%20robots%20market%20size%20was,manufacturing%20and%20distribution%20facilities%20without%20any%20manual%20intervention
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conservation through speed adjustments for both machines and robots. The mechanism of energy-

saving by speed adjustment is explained as follows. On one hand, to reduce machine idling and blocking 

periods, machines can process at a slower speed. In fact, as long as the processing finishes before the 

arrival of the robot, the overall makespan is not affected. In this way, the production energy 

consumption declines (as the processing speed is slower), while the energy waste caused by machine 

idling is also reduced. On the other hand, robot partial-blocking can be eliminated/reduced if the robot 

moves at a slower speed, thus achieving movement energy saving. Accordingly, by adjusting the 

processing/moving speeds, the system energy consumption of a robotic cell can be reduced significantly. 

Therefore, proper operating speed selection and better coordination between the machine production 

process and the robot movement process are crucial for the energy efficiency enhancement of robotic 

cells. However, two major challenges arise. First of all, the scheduling framework should identify the 

diverse inter-related factors leading to energy inefficiency in the production system. Second, the 

scheduling scheme should reduce the energy waste incurred by the speed mismatching between the two 

processes, while the interaction between the two processes further complicates the scheduling and speed 

adjustment tasks.  

Motivated by the real challenges faced by robotic cells and the potential to reduce energy waste 

through speed adjustment, in this paper, we propose two novel energy-efficient robotic job-shop 

scheduling models. A V-scale speed framework is thus developed for both machines and the mobile 

robot. In this V-scale speed framework, the processing speed of each machine as well as the moving 

speed of the robot can be selected from a finite and discrete set with |𝑉𝑉| levels. First, a robotic job-shop 

scheduling with energy consumption (i.e., RJSP-E) is developed to minimize the total energy 

consumption. Then, we further propose a robotic job-shop scheduling with energy consumption and 

makespan limitation (i.e., RJSP-EM) which simultaneously considers energy consumption and system 

productivity by limiting the increase of makespan. The novelty of our models is twofold. First, the 

energy consumption derived by both machines and the robot is considered along with the generation of 

the machine production plans and the robot routes. Second, speed adjustment is applied for both 

machines and the robot. In this way, the production system can consume less electricity through slower 

operating speeds, while energy waste can be reduced through better coordination between the machine 
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production process and the robot movement process. Through computational experiments, the RJSP-E 

is shown to remarkably reduce energy consumption (with an average of 15%) by selecting slower 

operating speeds. However, the makespan increases by 20% on average. Differently, for the RJSP-EM, 

as the makespan increase is restricted, it demonstrates superior ability in selecting the most proper 

operating speeds based on the evaluation of the production system, thus demonstrating great potential 

to achieve process coordination by reducing robot partial-blocking and machine blocking. Notably, the 

RJSP-EM is shown to reduce energy consumption by a mean of 10% compared with the traditional 

model even without sacrifice in productivity (i.e., when the makespan is not allowed to increase). 

However, it should be pointed out that the energy-saving efficacy of the RJSP-EM declines when the 

allowed makespan growth becomes larger. This is because (i) the energy saving is at a cost of 

productivity; and (ii) the saving effect is counteracted by the additional electricity consumed by the 

prolonged machine idling period.  

To the best of our knowledge, this is the first study that integrates the energy consumption of both 

machines and the mobile robot into the RJSP framework, which theoretically contributes to the JSP 

literature by proposing a new research direction. Besides, we innovatively propose to achieve energy 

saving through speed selection and coordination between the machine production process and the robot 

movement process by reducing/eliminating machine blocking and robot partial-blocking. It is believed 

that our study could greatly enhance the green level of smart manufacturing.  

The rest of this paper is arranged as follows. Section 2 reviews the related literature. Section 3 

describes the problem studied. Section 4 then formulates the mathematical models. Section 5 

demonstrates the superior performances of the proposed models through computational experiments. 

Finally, Section 6 concludes the study.  

 

2. Literature Review 

Our study is related to two research streams: robotic job-shop scheduling problems and job-shop 

scheduling problems with energy considerations. 
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2.1 Robotic job-shop scheduling problems (RJSP) 

The RJSP investigates the joint scheduling of machines and mobile robots. Common optimization 

objectives of the RJSP are set to minimize makespan or tardiness (Petrović et al., 2019). As the robotic 

movement process is integrated into the RJSP decision framework, various restrictions like the machine 

buffer capacity, pickup criteria, and movement conflict avoidance should be considered. For example, 

Liu et al. (2018) study a job-shop scheduling problem with four different buffer constraints (no-wait, 

no-buffer, limited buffer, and infinite buffer) and formulate the problem with mixed integer 

programming (MIP) models. The pickup criteria are determined by the equipment and job requirements. 

For example, Zeng and Yan (2014) study a blocking job shop with automated guided vehicles (AGVs) 

for delivery, where a job remains on the current machine after an operation is finished until the next 

machine is available. Sun et al. (2021) investigate a blocking RJSP with robot movement considerations. 

They model job scheduling and robot movement simultaneously with several deadlock strategies 

developed to avoid conflicts. Differently, Cheng et al. (2019) explore a mixed no-wait flow-shop, which 

allows the co-existence of no-wait machines (operations should be removed instantly after completion) 

and regular machines. Hurink and Knust (2000) study an RJSP following the time window rule, which 

requires each operation to begin within a time window. Similarly, Caumond et al. (2009) use a time 

window approach to schedule a flexible manufacturing system with one transportation vehicle. 

Differently, a few studies focus on job shops with several robots (El Khayat et al., 2006; Ham, 2020).  

The incorporation of robots in RJSP problems has further increased the difficulty of the JSP 

problem which is already NP-hard. Besides, compared with robotic flowshop problems, studies on job-

shop problems with robotic constraints are still very limited. 

2.2 JSP with energy considerations 

Many JSP studies have incorporated energy considerations into planning (Abedi et al., 2020). For 

instance, Hassani et al. (2019) model a JSP with considerations of no-buffer and energy consumption 

into a MILP model. Mokhtari and Hasani (2017) investigate the flexible JSP and propose a multi-

objective optimization model, which minimizes the completion time, the system availability, and the 

energy cost. Dai et al. (2019) establish an optimization model that minimizes the energy consumption 

and makespan for a flexible JSP with transportation considerations.  
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From the literature, various energy-saving strategies can be identified. First, considering that the 

price of electricity varies across time, research efforts are paid to saving costs through scheduling 

production activities to off-peak periods (Masmoudi et al., 2019; Wang and Wang, 2019). Besides, 

several studies develop machine turning off/on strategies, which plan to turn off machines when they 

become idle for a long period to save energy (Meng et al., 2019). However, such strategies may be not 

that feasible due to the switching energy consumption and possible damage to devices (Zhang and 

Chiong, 2016). As the processing speed affects the energy consumption rate, the speed scaling 

mechanism is another strategy that enables energy conservation with flexible adjustment of machine 

operating speeds. Zhang and Chiong (2016) adopt a speed scale framework for a JSP to pursue a trade-

off between energy savings and tardiness. Abedi et al. (2020) also apply a machine speed scaling 

mechanism to achieve energy savings where the production is affected by deteriorations.  

As can be seen from the discussions above, many existing JSP studies have made an effort to save 

energy from the machine side (e.g., turn on/off strategies, production speed adjustment). However, in 

RJSP where robot movements are critical for the energy efficiency of the overall system, much less 

attention has been paid to the energy consumed by robots. As discussed in previous sections, in robotic 

cells, energy waste could be generated due to the poor coordination between the machine production 

process and the robot movement process (e.g., machine blocking, robot partial-blocking), which 

emphasizes the importance of considering the energy consumed by both machines and robots in 

achieving higher energy efficiency in robotic cells. To our best knowledge, there are only a few studies 

trying to reduce robot energy consumption in RJSP. For instance, Gürel et al. (2019) investigate the 

robot speed and moving sequence in a robotic cell and find that controlling robot speeds can 

significantly reduce energy consumption. Bukata et al. (2019) try to reduce the energy consumed by the 

robotic cells without deterioration in throughput by applying robot power-saving modes and adjusting 

robot positions. Barak et al. (2021) incorporate the energy efficiency of AGVs into flexible 

manufacturing systems. However, none of these studies has endeavored to achieve energy saving by 

coordinating the machine production process and the robot movement process through speed adjustment 

for both machines and robots. Our study thus fills this gap. 
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2.3 Research Gaps 

Through the review above, several research gaps can be derived. First of all, although robotic 

technologies have re-shaped the manufacturing industry, the energy efficiency of robotic cells is under-

explored. Second, even though several energy-saving strategies have been developed for job shops, 

most studies focus on reducing energy consumption from the side of machines. However, the energy 

consumed by the robot movement process and the energy waste caused by the poor coordination 

between the machine production process and the robot movement process have been rarely considered. 

To the best of our knowledge, no prior studies explore the coordination of these two processes to reduce 

energy waste. Third, little research investigates the benefits of simultaneously controlling the operating 

speeds of machines and the robot in enhancing the systematic sustainability performances. To bridge 

these critical research gaps, in this work, we propose two novel RJSP models with a speed scaling 

framework, in which the speeds of machines and the robot are adjustable to achieve the goal of energy 

saving.   

 

3. Problem Description 

The RJSP with energy considerations studied in this paper is described as follows. In the robotic cell, 

there are |𝑀𝑀| processing machines and one mobile robot. Each machine can perform a specific type of 

operation. An input depot D and an output stock S are placed at the two ends of the cell. The robotic 

cell aims to process sets of jobs. The job features and machine execution follow the job shop setting. 

Each job 𝑖𝑖 consists of several ordered operations denoted by 𝐽𝐽𝑖𝑖 = {Oi1, Oi2, …, Oi|Ji|}. The sequence of 

operations for a job is named as in-job sequence. Each 𝑂𝑂𝑖𝑖 is a nonstop operation that will be performed 

by a designated machine 𝑀𝑀𝑖𝑖𝑖𝑖 with processing time 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖. Pre-emption is not allowed. Notations used in 

this paper are summarized in Table 1.  

 

Table 1. Notations 

Parameters 
I Set for jobs, 𝐼𝐼 = {1,2, … , |𝐼𝐼|}. 
|𝐼𝐼| Total number of jobs. 
𝑖𝑖,𝑚𝑚 , ℎ Indexes for jobs, where 𝑖𝑖,𝑚𝑚, ℎ ∈ 𝐼𝐼. 
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𝐽𝐽𝑖𝑖  Set for operations in job I, 𝐽𝐽𝑖𝑖 =  {1,2, … , |𝐽𝐽𝑖𝑖|}. 
𝐽𝐽𝑖𝑖’ Set for operations with the stock operation in job i, 𝐽𝐽𝑖𝑖’ =  {1,2, … , |𝐽𝐽𝑖𝑖| + 1}. 
|𝐽𝐽𝑖𝑖| Number of operations in job i. 
|𝐽𝐽𝑖𝑖’| Number of operations with the stock operation in job i, |𝐽𝐽𝑖𝑖’|= |𝐽𝐽𝑖𝑖| + 1. 
𝑗𝑗,𝑛𝑛,𝑔𝑔 Indexes for operations, where 𝑗𝑗 ∈  𝐽𝐽𝑖𝑖’ ,𝑛𝑛 ∈ 𝐽𝐽𝑚𝑚’,𝑔𝑔 ∈ 𝐽𝐽ℎ’. 
𝑂𝑂𝑖𝑖𝑖𝑖 , 𝑂𝑂𝑚𝑚𝑚𝑚 ,𝑂𝑂ℎ𝑔𝑔 Index for the j-th, n-th, and g-th operation of job i, job m, and job h. 
𝑀𝑀 Set for machines, 𝑀𝑀 = {1,2, … , |𝑀𝑀|}. 
|M| Number of machines. 
𝑘𝑘 Index for the k-th machine, k ∈ 𝑀𝑀. 
𝑀𝑀𝑖𝑖𝑖𝑖 Index for the machine to execute 𝑂𝑂𝑖𝑖𝑖𝑖 . 
𝑃𝑃𝑀𝑀𝑖𝑖𝑖𝑖  Position for machine to execute 𝑂𝑂𝑖𝑖𝑖𝑖  (Positions for D and S: 𝑃𝑃𝑀𝑀𝐷𝐷 = 0, 𝑃𝑃𝑀𝑀𝑖𝑖|𝐽𝐽𝑖𝑖’| =  |𝑀𝑀| + 1). 

𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  Processing time of 𝑂𝑂𝑖𝑖𝑖𝑖  on the machine under normal speed (stock operation: 𝑃𝑃𝑃𝑃𝑖𝑖|𝐽𝐽𝑖𝑖’| = 0). 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖  Moving time for a loaded movement from 𝑀𝑀𝑖𝑖𝑖𝑖−1 to 𝑀𝑀𝑖𝑖𝑖𝑖. 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 Moving time for an empty movement from 𝑀𝑀𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑚𝑚𝑚𝑚 under normal speed. 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 Moving time for an empty movement from 𝑀𝑀𝑖𝑖𝑖𝑖 to D under normal speed. 
𝜎𝜎𝑖𝑖𝑖𝑖 Moving distance for a loaded movement from 𝑀𝑀𝑖𝑖𝑖𝑖−1 to 𝑀𝑀𝑖𝑖𝑖𝑖. 
𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚  Moving distance for an empty movement from 𝑀𝑀𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑚𝑚𝑚𝑚. 
𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷  Moving distance for an empty movement from 𝑀𝑀𝑖𝑖𝑖𝑖 to D. 
𝑉𝑉 Set for speed scales of machines and robot, 𝑉𝑉 = {1,2, … , |𝑉𝑉|}. 
|𝑉𝑉| Number of speed scales of machines and robot. 
𝑣𝑣𝑘𝑘  Normal processing speed for machine k.  
𝑣𝑣𝑘𝑘𝑘𝑘  Actual processing speed for machine k under speed scale v. 
𝑣𝑣𝑅𝑅  Normal robot moving speed (1 unit distance/minute). 
𝑣𝑣𝑟𝑟  Robot moving speed under speed scale r. 
µ𝑘𝑘 Processing power of machine k under normal speed (unit: w). 
µ𝑘𝑘𝑘𝑘 Processing power of machine k under speed scale v. 
𝛼𝛼𝑘𝑘 Operating characteristics of the machine k. 
p (q) Parameters denote the positive relationships between the speed and machine (robot) power. 
w Robot loaded weight. 
𝜉𝜉 Operating characteristics of the robot. 
𝐶𝐶0 Minimized makespan derived by the traditional model. 
𝐸𝐸𝐼𝐼𝑘𝑘  Idling energy consumption per unit time of machine k. 
𝑆𝑆𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖  Energy consumption to perform 𝑂𝑂𝑖𝑖𝑖𝑖  under normal speed. 
𝐸𝐸𝐸𝐸𝐸𝐸 Energy consumption per unit distance for robot empty movements under normal speed.  
𝐸𝐸𝐸𝐸𝐸𝐸 Energy consumption per unit distance for robot loaded movements. 
𝑆𝑆𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖  Energy consumption for robot loaded movement from 𝑀𝑀𝑖𝑖𝑖𝑖−1 to 𝑀𝑀𝑖𝑖𝑖𝑖. 
𝑆𝑆𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 Energy consumption for robot empty movement under normal speed from 𝑀𝑀𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑚𝑚𝑚𝑚. 
𝛽𝛽 A large positive number. 
α Makespan increase tolerance. 
F Dummy sink node that connects with the last operation in a job batch. 
Decision Variables 
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𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚  Binary decision variable. It equals 1 when the robot leaves for 𝑂𝑂𝑚𝑚𝑚𝑚 after 𝑂𝑂𝑖𝑖𝑖𝑖  starts, where i 
and m are two different jobs; 0 otherwise. 

𝑌𝑌𝑖𝑖𝑖𝑖(𝑖𝑖+1) Binary decision variable. It equals 1 when the robot waits for the entire processing time of 
the current operation 𝑂𝑂𝑖𝑖𝑖𝑖  and goes to 𝑀𝑀𝑖𝑖(𝑖𝑖+1); 0 otherwise. 

𝑍𝑍𝑖𝑖𝑖𝑖ℎ𝑔𝑔  Binary decision variable. It equals 1 when both 𝑂𝑂𝑖𝑖𝑖𝑖 and 𝑂𝑂ℎ𝑔𝑔 are executed on the same 
machine, and 𝑂𝑂𝑖𝑖𝑖𝑖  precedes 𝑂𝑂ℎ𝑔𝑔 (not necessarily the immediate predecessor); 0 otherwise. 

𝑉𝑉𝑀𝑀𝑖𝑖𝑖𝑖𝑘𝑘  Binary decision variable. It equals 1 when machine executes 𝑂𝑂𝑖𝑖𝑖𝑖  with speed scale v. 
𝑉𝑉𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟  Binary decision variable. It equals 1 when the robot selects speed scale r to execute the 

empty movement from 𝑀𝑀𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑚𝑚(𝑚𝑚−1). 
𝑆𝑆𝑀𝑀𝑖𝑖𝑖𝑖  Starting time of 𝑂𝑂𝑖𝑖𝑖𝑖  on the assigned machine.   
𝑆𝑆𝑀𝑀𝐹𝐹  Time to reach the sink node F. 
𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖  Removing time of 𝑂𝑂𝑖𝑖𝑖𝑖  from machine after completion. 
𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖  Energy consumption of 𝑂𝑂𝑖𝑖𝑖𝑖  under actual processing speed. 
𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  Time consumption of 𝑂𝑂𝑖𝑖𝑖𝑖  under actual processing speed. 
𝐴𝐴𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 Energy consumption for moving from 𝑀𝑀𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑚𝑚𝑚𝑚 under actual robot speed. 
𝑃𝑃𝐼𝐼𝑘𝑘  Total idling time of machine k.  
𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶 Makespan. 
𝐸𝐸𝐸𝐸 Total energy consumption for loaded movements. 
𝐸𝐸𝐸𝐸 Total energy consumption for empty movements. 
𝑃𝑃𝐸𝐸 Total energy consumption for movements. 
𝑃𝑃𝐸𝐸 Total machine processing energy consumption. 
𝐼𝐼𝐸𝐸 Total machine idling energy consumption. 
𝐴𝐴𝐸𝐸 Total auxiliary energy consumption. 

 

A single-gripper robot is involved for the in-facility movements of goods. For each job, the robot 

should first pick the initialized job up at D before moving it to the first machine Mi1. Also, the robot 

should deliver the job to S after all operations within it are completed. As there is no precedence 

restriction between operations from different jobs, the robot can flexibly turn to handle another job 

(after an upload action) if all in-job sequences are not violated. Two types of robot movement exist: 

loaded movement implies moving a job to a machine for uploading and processing, while empty 

movement indicates a deadhead movement that relocates the robot for job picking-up. Due to the linear 

layout, the moving time between any pair of machines is symmetrically determined by the absolute 

distance between their locations. Similar to Sun et al. (2021), we consider the situation that machines 

have no buffer and the mobile robot has the capacity to hold one product each time. Therefore, machines 

and robot can be occupied by only one job at any time. Besides, a job will be blocked on a machine 

after completion until the robot comes for release. Such periods are called as machine blocking. The 
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setup time of both the machines and the robots are incorporated into the processing times and movement 

times. 

The problem aims to simultaneously determine the job schedules and the robot route. Following 

the above settings, two scenarios can be extracted after a loaded movement that places job i (i∈ 𝐼𝐼) on 

one machine: the robot can (i) wait at the machine for the entire processing of the operation and then 

transport job i to its next handling machine (defined as a robot full-blocking); or (ii) turn to another job 

m (m∈ 𝐼𝐼; m≠ 𝑖𝑖). In the second scenario, the robot first moves emptily to the machine currently holding 

job m (or to D). Then, three sub-scenarios may appear: (a) the robot arrives later than the completion 

time of job m’s current operation (i.e., job m should experience a blocking period in this sub-scenario); 

(b) the robot arrives before the completion of that operation and the robot should experience a robot 

partial-blocking (RPB) before it can conduct the transport; and (c) the robot arrives exactly when the 

operation is finished and could pick up job m directly for the next move. Sub-scenario (c) is a 

synchronized process, where machine blocking and robot partial-blocking are avoided. 

In the machine speed scaling framework, the processing speed of each machine can be selected 

from a finite and discrete set (Abedi et al., 2020; Hassani et al., 2019; Zhang and Chiong, 2016). In this 

paper, we propose to improve the coordination of machines and robot with a V-scale speed framework 

that enables speed adjustment for both machines and the robot. Generally, machines and robot operate 

at normal speeds (denoted as 𝑣𝑣𝑘𝑘  (𝑘𝑘 ∈ 𝑀𝑀) for machine 𝑘𝑘 , and 𝑣𝑣𝑅𝑅  for the robot). For productivity, 

companies usually set machines to work at a high speed. Thus, in our study, we consider the normal 

speed as the highest speed. While with the V-scale speed framework, for each operation, the actual 

processing speed level 𝑣𝑣𝑘𝑘𝑘𝑘 (𝑘𝑘 ∈ 𝑀𝑀, 𝑣𝑣 ∈ 𝑉𝑉) is a value selected from |𝑉𝑉| levels (𝑣𝑣𝑘𝑘𝑘𝑘 ≤ 𝑣𝑣𝑘𝑘). Also. The 

moving energy can be saved by adjusting the robot speed. As the robot partial-blocking only occurs 

after empty movements, the empty movements can be decelerated to eliminate the original robot partial-

blocking periods under normal speeds. Thus, for each empty movement, the robot selects a speed 

𝑣𝑣𝑟𝑟 ( 𝑟𝑟 ∈ 𝑉𝑉 ) from the V-scale levels. Considering there is no robot partial-blocking after loaded 

movements or movements to D and S, these movements are conducted at the highest speeds to ensure 

productivity. 
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Here we specify the energy calculation method for machines and the robot. Following Zhang and 

Chiong (2016), the machine processing energy equals the actual processing time (APT) multiplying the 

power under this speed. If the normal speed is applied for 𝑂𝑂𝑖𝑖𝑖𝑖, the 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 equals to the normal processing 

time 𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖. While if a lower speed 𝑣𝑣𝑘𝑘𝑘𝑘 is selected, the 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 is proportionally changed to 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘𝑘𝑘

𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖. µ𝑘𝑘 

denotes the power of machine k with normal speed, and µ𝑘𝑘𝑘𝑘 represents the power of Machine k under 

the selected speed 𝑣𝑣𝑘𝑘. µ𝑘𝑘 > µ𝑘𝑘𝑘𝑘 because the machine power is positively related to the processing speed. 

Besides, similar to Zhang and Chiong (2016), we consider cases where the energy consumption 

decreases with the reduced speed despite the longer processing time. Therefore, we have µ𝑘𝑘 × 𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 >

µ𝑘𝑘𝑘𝑘 × 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖. Equations (3.1) - (3.2) derive the machine power under the normal speed and the selected 

speed. Parameter p denotes the positive relationship between the speed and the power, which should be 

larger than 1 to guarantee that the speed growth leads to an increasing energy consumption rate. Note 

that 𝛼𝛼𝑘𝑘 represents the operation characteristics of machine k. Equations (3.3) calculate the actual energy 

consumed for processing 𝑂𝑂𝑖𝑖𝑖𝑖 and derives the relationship between the actual energy consumption 𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 

and the normal consumption 𝑆𝑆𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖. 

µ𝑘𝑘𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘𝑝𝑝           (3.1) 

µ𝑘𝑘𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑣𝑣𝑘𝑘𝑘𝑘𝑝𝑝           (3.2) 

𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 = µ𝑘𝑘𝑘𝑘 × 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 × (𝑘𝑘kv
𝑘𝑘k

)𝑝𝑝−1 × µ𝑘𝑘𝑘𝑘 = 𝑆𝑆𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖  ×  (𝑘𝑘kv
𝑘𝑘k

)𝑝𝑝−1            (3.3) 

Following Gürel et al. (2019), we consider that the robot movement energy consumption depends 

on the robot moving speed, the traveled distance, the carrying load, and the operating characteristics of 

the robot. Equations (3.4) calculate the loaded energy consumption per unit distance (ERL), which is 

jointly determined by robot operating characteristics 𝜉𝜉, loaded weight w, and robot normal speed 𝑣𝑣𝑅𝑅. 

The exponential parameter q (q>1) forms the positive relationship between the moving speed and 

energy consumption, which indicates that higher speeds lead to larger energy consumption (but not a 

linear relationship). Equations (3.5) obtain the energy for loaded movement from 𝑀𝑀𝑖𝑖(𝑖𝑖−1) to 𝑀𝑀𝑖𝑖𝑖𝑖 (the 

traveling distance is 𝜎𝜎𝑖𝑖𝑖𝑖 ). Similarly, Equations ( 3. 6) computes the unit consumption of empty 

movements under normal speed, based on which Equations (3.7) calculates the energy consumption of 
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empty movements under normal speed for a distance 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚. Equations (3.8) derive the actual energy 

needed for an empty movement from 𝑀𝑀𝑖𝑖𝑖𝑖 to 𝑀𝑀𝑚𝑚𝑚𝑚  by applying the V-scale speed scales. 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝜉𝜉𝜉𝜉𝑣𝑣𝑅𝑅𝑞𝑞 (3.4) 

𝑆𝑆𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸           (3.5) 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝜉𝜉𝑣𝑣𝑅𝑅
𝑞𝑞           (3.6) 

𝑆𝑆𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 × 𝜉𝜉𝑣𝑣𝑅𝑅
𝑞𝑞              (3.7) 

𝐴𝐴𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 =  𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 × 𝜉𝜉𝑣𝑣𝑟𝑟
𝑞𝑞 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 × 𝐸𝐸𝐸𝐸𝐸𝐸 × (𝑘𝑘𝑟𝑟

𝑘𝑘𝑅𝑅
)𝑞𝑞  (3.8) 

   

4. Model Development  

As introduced, this study proposes two novel robotic job-shop scheduling models to enhance energy 

efficiency. In this section, we first present the novel RJSP-E in Section 4.1. Then, the RJSP-EM is 

constructed in Section 4.2. 

 

4.1 RJSP-E  
We first develop the model named as robotic job-shop scheduling with energy consumption (i.e., RJSP-

E) formulated with Equation (0) to Equations (44) in Table 2. Following Sun et al. (2021), we apply the 

network-based modelling approach to build the new models. The optimization objective is to minimize 

the total energy consumed for the robotic cell. The overall energy consumption (as shown in Equation 

(0)) consists of four parts: the machine processing energy, the machine idling energy, the robot 

movement energy, and the auxiliary energy consumption. In the following, we first explain the energy 

consumption constraints in Section 4.1.1 to Section 4.1.4. Then, Section 4.1.5 briefly introduces the 

other traditional RJSP constraints. 

 

4.1.1 Total machine processing energy consumption  
The energy consumed by machine production is the product of the power of machines (in Watts, w) and 

the processing time (in seconds). Constraints (18-20) calculate the total machine processing energy 

consumption by summing the actual energy consumed by each operation. Specially, Constraints (18) 

ensure that each operation is assigned with one speed from the V-scale framework. Constraints (19) 
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derive the actual processing energy (𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖) under the selected speed with the relationship between 

𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 and the normal energy consumption 𝑆𝑆𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 (refer to Equation (3.3) in Section 3). Constraints (20) 

then add up all 𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 to obtain the total machine energy consumption PE. 

 

4.1.2 Total robot movement energy consumption 
The energy consumed by robot movement is the product of the electricity consumed for a unit distance5 

movement (in KJ) and the moving distance. Constraints (21-25) formulate the total robot movement 

energy consumption by summing up the robot energy consumed by loaded movements and empty 

movements. Constraints (21) make sure that the empty movement from 𝑂𝑂𝑖𝑖𝑖𝑖 to 𝑂𝑂𝑚𝑚(𝑚𝑚−1) will be assigned 

with a speed level if arc 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 is selected. Constraints (22-24) derive the total energy consumed by 

empty movements (EE), which is further divided into empty movements to machines (Constraints (22)) 

and empty movements to the D (Constraints (23)). Constraints (22) apply the V-scale speed framework 

to empty movements and derive the energy consumption (refer to Equations (3.8) in Section 3). 

Constraints (23) add up all empty movements to the input depot for picking up the initialized jobs, 

which are conducted with the normal speed. Constraints (25) obtain the energy consumed for loaded 

movements (LE) by summing up the electricity used for every loaded movement, as calculated with 

Equations (3.5) in Section 3.  

 

4.1.3 Total machine idling energy consumption  
The total machine idling energy consumption is the electricity used during machine idling periods 

throughout the entire manufacturing process. Constraints (26) calculate the length of idling time 

encountered by each machine by subtracting the processing time of that machine from the lasting time 

Cmax. Constraints (27) obtain the total machine idling energy consumption by adding up the idling 

energy of each machine, and the latter is calculated by multiplying the individual idling power and the 

idling time. 

 

 
5 A unit distance is the distance moved in a minute of the robot. 
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4.1.4 Auxiliary energy consumption 
The auxiliary energy is consumed by supporting activities in the robotic cell not directly related to 

production, such as for keeping temperature and humidity. Following Meng et al. (2019), we model it 

as proportional to the total processing time (i.e., the makespan) by an auxiliary energy consumption 

coefficient s (Constraint (28)). 

 

Table 2. The formulation of RJSP-E. 

Obj. Min 𝑃𝑃𝐸𝐸 + 𝐼𝐼𝐸𝐸 + 𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸 +  𝐴𝐴𝐸𝐸  (0) 

s.t.   

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑆𝑆𝑀𝑀𝐹𝐹 ,   (1) 

𝑆𝑆𝑀𝑀𝐹𝐹 ≥ 𝑆𝑆𝑀𝑀𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|}, (2) 

𝑆𝑆𝑀𝑀11 = |𝑃𝑃𝑀𝑀11 − 𝑃𝑃𝑀𝑀𝐷𝐷| 𝑣𝑣𝐸𝐸⁄ ,   (3) 

∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚∈𝐽𝐽𝑚𝑚’𝑚𝑚∈𝐼𝐼 + 𝑌𝑌𝑖𝑖𝑖𝑖(𝑖𝑖+1) = 1,   ∀𝑖𝑖, 𝑖𝑖 ≠ 𝑚𝑚, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (4)  

∑ ∑ 𝑋𝑋𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚∈𝐽𝐽𝑚𝑚’𝑚𝑚∈𝐼𝐼 + 𝑌𝑌𝑖𝑖(𝑖𝑖−1)𝑖𝑖 = 1,  ∀𝑖𝑖, 𝑖𝑖 ≠ 𝑚𝑚, 𝑗𝑗 ∈ {2,3, … , |𝐽𝐽𝑖𝑖’|}, (5)  

∑ ∑ 𝑋𝑋𝑖𝑖|𝐽𝐽𝑖𝑖’|𝑚𝑚𝑚𝑚 +𝑚𝑚∈𝐽𝐽𝑚𝑚’𝑚𝑚∈𝐼𝐼 𝑋𝑋𝑖𝑖|𝐽𝐽𝑖𝑖’|𝐹𝐹 = 1,     ∀𝑖𝑖, 𝑖𝑖 ≠ 𝑚𝑚, (6) 

∑ ∑ 𝑋𝑋𝑚𝑚𝑚𝑚𝑖𝑖1𝑚𝑚∈𝐽𝐽𝑚𝑚’𝑚𝑚∈𝐼𝐼 = 1,   ∀𝑖𝑖, 𝑖𝑖 ≠ 𝑚𝑚, 𝑖𝑖 ≠ 1, (7) 

𝑆𝑆𝑀𝑀𝑖𝑖1 ≥  𝑆𝑆𝑀𝑀𝑚𝑚𝑚𝑚 + 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝐷𝐷 + 𝑡𝑡𝑡𝑡𝑖𝑖1 − (1 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑖𝑖1) × 𝛽𝛽, ∀𝑖𝑖,𝑚𝑚, 𝑖𝑖 ≠ 𝑚𝑚,𝑛𝑛 ∈ {1,2, … , |𝐽𝐽𝑚𝑚’|}, (8) 

𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 ≥  𝑆𝑆𝑀𝑀𝑚𝑚𝑚𝑚 +∑ 𝑉𝑉𝐸𝐸𝑚𝑚𝑚𝑚𝑖𝑖(𝑖𝑖+1)𝑟𝑟 × 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 × (𝑣𝑣𝑅𝑅 𝑣𝑣𝑟𝑟⁄ )r∈V − �1 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑖𝑖(𝐽𝐽+1)� × 𝛽𝛽,  ∀𝑖𝑖,𝑚𝑚, 𝑖𝑖 ≠ 𝑚𝑚, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, ,𝑛𝑛 ∈ {1,2, … , |𝐽𝐽𝑚𝑚’|}, (9) 

𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 ≥ 𝑆𝑆𝑀𝑀𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (10) 

𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = ∑ 𝑉𝑉𝑀𝑀𝑖𝑖𝑖𝑖𝑘𝑘 × 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 × (𝑣𝑣k 𝑣𝑣kv⁄ ),𝑣𝑣∈V   ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (11) 

𝑆𝑆𝑀𝑀𝑖𝑖𝑖𝑖+1 ≥ 𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1 ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (12) 

𝑍𝑍𝑖𝑖𝑖𝑖ℎ𝑔𝑔 + 𝑍𝑍ℎ𝑔𝑔𝑖𝑖𝑖𝑖 = 1,   ∀𝑖𝑖, ℎ, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|},𝑔𝑔 ∈ {1,2, … , |𝐽𝐽ℎ|},𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀ℎ𝑔𝑔, (13) 

𝑆𝑆𝑀𝑀𝑖𝑖𝑖𝑖 ≥ 𝑆𝑆𝑀𝑀ℎ(𝑔𝑔+1) + 𝑡𝑡𝑡𝑡ℎ(𝑔𝑔+1)𝑖𝑖(𝑖𝑖−1) + 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑍𝑍𝑖𝑖𝑖𝑖ℎ𝑔𝑔 × 𝛽𝛽, ∀𝑖𝑖, ℎ, 𝑗𝑗 ∈ {2,3, … , |𝐽𝐽𝑖𝑖|},𝑔𝑔 ∈ {1,2, … , |𝐽𝐽ℎ|},𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀ℎ𝑔𝑔,, (14) 

𝑆𝑆𝑀𝑀ℎ𝑔𝑔 ≥ 𝑆𝑆𝑀𝑀𝑖𝑖(𝑖𝑖+1) + 𝑡𝑡𝑡𝑡𝑖𝑖(𝑖𝑖+1)ℎ(𝑔𝑔−1) + 𝑡𝑡𝑡𝑡ℎ𝑔𝑔 − (1 − 𝑍𝑍𝑖𝑖𝑖𝑖ℎ𝑔𝑔) × 𝛽𝛽, ∀𝑖𝑖, ℎ, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|},𝑔𝑔 ∈ {2,3, … , |𝐽𝐽ℎ|},𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀ℎ𝑔𝑔,, (15) 

𝑆𝑆𝑀𝑀𝑖𝑖1 ≥ 𝑆𝑆𝑀𝑀ℎ(𝑔𝑔+1) + 𝑡𝑡𝑡𝑡ℎ(𝑔𝑔+1)𝐷𝐷 +  𝑡𝑡𝑡𝑡𝑖𝑖1 − 𝑍𝑍𝑖𝑖1ℎ𝑔𝑔 × 𝛽𝛽,   ∀𝑖𝑖, ℎ,𝑔𝑔 ∈ {1,2, … , |𝐽𝐽ℎ|},𝑀𝑀𝑖𝑖1 = 𝑀𝑀ℎ𝑔𝑔, (16) 

𝑆𝑆𝑀𝑀ℎ1 ≥ 𝑆𝑆𝑀𝑀𝑖𝑖(𝑖𝑖+1) + 𝑡𝑡𝑡𝑡𝑖𝑖(𝑖𝑖+1)𝐷𝐷 + 𝑡𝑡𝑡𝑡ℎ1 − (1 − 𝑍𝑍𝑖𝑖𝑖𝑖ℎ1) × 𝛽𝛽,   ∀𝑖𝑖, ℎ, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|},𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀ℎ1, (17)  

Processing   

∑ 𝑉𝑉𝑀𝑀𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘∈V = 1,  ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (18) 

𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 = ∑ [𝑉𝑉𝑀𝑀𝑖𝑖𝑖𝑖𝑘𝑘 × 𝑆𝑆𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 × (𝑣𝑣kv 𝑣𝑣k⁄ )𝑝𝑝−1],𝑘𝑘∈V   ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (19) 

𝑃𝑃𝐸𝐸 = ∑ ∑ 𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖∈𝐽𝐽𝑖𝑖𝑖𝑖∈𝐼𝐼 ,   (20) 

Transportation   

∑ 𝑉𝑉𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟r∈V = 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ,  ∀𝑖𝑖,𝑚𝑚,𝑚𝑚 ≠ 𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|},𝑛𝑛 ∈ {2,3, … , |𝐽𝐽𝑚𝑚’|}, (21) 

𝐴𝐴𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ≥ ∑ [𝑉𝑉𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟 × 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚(𝑚𝑚−1) × (𝑣𝑣𝑟𝑟 𝑣𝑣𝑅𝑅⁄ )𝑞𝑞 × 𝐸𝐸𝐸𝐸𝐸𝐸]r∈V ,  ∀𝑖𝑖,𝑚𝑚,𝑚𝑚 ≠ 𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|},𝑛𝑛 ∈ {2,3, … , |𝐽𝐽𝑚𝑚’|}, (22) 

𝐴𝐴𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚1 ≥ 𝜎𝜎𝑖𝑖𝑖𝑖𝐷𝐷 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 − (1 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚1) × 𝛽𝛽,  ∀𝑖𝑖,𝑚𝑚,𝑚𝑚 ≠ 𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|}, (23) 

𝐸𝐸𝐸𝐸 ≥ ∑ ∑ ∑ ∑ 𝐴𝐴𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ,𝑚𝑚∈𝐽𝐽𝑚𝑚’𝑚𝑚∈𝐼𝐼𝑖𝑖∈𝐽𝐽𝑖𝑖’𝑖𝑖∈𝐼𝐼    (24) 

𝐸𝐸𝐸𝐸 ≥ ∑ ∑ �𝜎𝜎𝑖𝑖𝑖𝑖 × 𝐸𝐸𝐸𝐸𝐸𝐸�+𝑖𝑖∈{2,3,…,�𝐽𝐽𝑖𝑖’�}𝑖𝑖∈𝐼𝐼  ∑ 𝜎𝜎𝑖𝑖1 × 𝐸𝐸𝐸𝐸𝐸𝐸,𝑖𝑖   (25) 

Idling   

𝑃𝑃𝐼𝐼𝑘𝑘 ≥ 𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶 − ∑ ∑ 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑖𝑖∈𝐽𝐽𝑖𝑖’𝑖𝑖∈𝐼𝐼   ∀𝑘𝑘 ∈ {1,2, … , |𝑀𝑀|},𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑘𝑘; (26) 
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𝐼𝐼𝐸𝐸 = ∑ (𝐸𝐸𝐼𝐼𝑘𝑘 ×𝑘𝑘∈M 𝑃𝑃𝐼𝐼𝑘𝑘),   (27) 

Auxiliary   

𝐴𝐴𝐸𝐸 = 𝑠𝑠 × 𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶,  (28) 

𝑋𝑋𝑖𝑖𝐽𝐽𝑚𝑚𝑚𝑚 ∈ (0,1), ∀𝑖𝑖,𝑚𝑚 ∈ {1,2, … , |𝐼𝐼| + 1}, 𝑖𝑖 ≠ 𝑚𝑚, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|}, n ∈ {1,2, … , |𝐽𝐽𝑚𝑚’|}, (29) 

𝑌𝑌𝑖𝑖𝑖𝑖(𝑖𝑖+1) ∈ (0,1), ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (30) 

𝑍𝑍𝑖𝑖𝐽𝐽ℎ𝑔𝑔 ∈ (0,1), ∀𝑖𝑖, ℎ, 𝑖𝑖 ≠ ℎ, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|},𝑔𝑔 ∈ {1,2, … , |𝐽𝐽ℎ|}, (31) 

𝑉𝑉𝑀𝑀𝑖𝑖𝑖𝑖𝑘𝑘 ∈ (0,1), ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|},𝑣𝑣 ∈ {1,2, … |V|}, (32) 

𝑉𝑉𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟 ∈ (0,1) ∀𝑖𝑖,𝑚𝑚, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|},𝑛𝑛 ∈ {1,2, … , |𝐽𝐽𝑚𝑚’|}, 𝑟𝑟 ∈ {1,2, … |V|}, (33) 

𝑆𝑆𝑀𝑀𝑖𝑖𝑖𝑖 > 0, ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|}, (34) 

𝐸𝐸𝑀𝑀𝑖𝑖𝑖𝑖 > 0, ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|}, (35) 

𝐴𝐴𝑃𝑃𝐸𝐸𝑖𝑖𝑖𝑖 > 0, ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (36) 

𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 > 0, ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖|}, (37) 

𝐴𝐴𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 > 0, ∀𝑖𝑖, m, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|},𝑛𝑛 ∈ {1,2, … , |𝐽𝐽𝑚𝑚’|}, (38) 

𝑃𝑃𝐼𝐼𝑘𝑘 > 0, ∀𝑘𝑘 ∈ {1,2, … , |𝑀𝑀|}, (39) 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = |𝑃𝑃𝑀𝑀𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑀𝑀𝑚𝑚𝑚𝑚| 𝑣𝑣𝐸𝐸⁄ ,  ∀𝑖𝑖,𝑚𝑚, 𝑗𝑗 ∈ {2,3, … , |𝐽𝐽𝑖𝑖’|},𝑛𝑛 ∈ {1,2, … , |𝐽𝐽𝑚𝑚’|}, (40) 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 = |𝑃𝑃𝑀𝑀𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑀𝑀𝑖𝑖(𝑖𝑖−1)| 𝑣𝑣𝐸𝐸⁄ , ∀𝑖𝑖, 𝑗𝑗 ∈ {2,3, … , |𝐽𝐽𝑖𝑖’|}, (41) 

𝑡𝑡𝑡𝑡𝑖𝑖1 = |𝑃𝑃𝑀𝑀𝑖𝑖1 − 𝑃𝑃𝑀𝑀𝐷𝐷| 𝑣𝑣𝐸𝐸⁄ ,   ∀𝑖𝑖, (42) 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 = |𝑃𝑃𝑀𝑀𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑀𝑀𝐷𝐷| 𝑣𝑣𝐸𝐸⁄  ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝐽𝐽𝑖𝑖’|}. (43) 
 

4.1.5 Other constraints 
Although the makespan minimization is not the optimization objective of the RJSP-E, Constraints (1-

2) calculate the value of makespan to obtain the length of processing and idling time for machines. 

Specifically, makespan is no less than the time when the algorithm reaches the dummy sink node F. 

Constraint (3) provides the entry of the model by specifying 𝑂𝑂11  as the first operation to execute. 

Constraints (4-7) formulate the transportation network. Constraints (8) specify that the first operation 

of job 𝑖𝑖 (𝑖𝑖≠1) should be later than the starting time of 𝑂𝑂𝑚𝑚𝑚𝑚 plus the traveling time of (i) the empty 

movement from 𝑂𝑂𝑚𝑚𝑚𝑚 to D and (ii) the loaded movement from D to 𝑀𝑀𝑖𝑖1, as long as 𝑂𝑂𝑚𝑚𝑚𝑚 is linked to 𝑂𝑂𝑖𝑖1 

by an X arc. Constraints (9-10) integrate the speed scaling framework into the robot transportation and 

machine scheduling processes, which guarantee that the removing time of 𝑂𝑂𝑖𝑖𝑖𝑖 should satisfy two criteria: 

(i) if 𝑂𝑂𝑖𝑖(𝑖𝑖+1) is the next operation to be executed after 𝑂𝑂𝑚𝑚𝑚𝑚, the removing action of 𝑂𝑂𝑖𝑖𝑖𝑖 can happen after 

the empty movement of the robot from 𝑀𝑀𝑚𝑚𝑚𝑚 to 𝑀𝑀𝑖𝑖𝑖𝑖 (the removing time here is denoted by 𝑃𝑃1); (ii) the 

removing action of 𝑂𝑂𝑖𝑖𝑖𝑖 can take place after the operation is completed on the dedicated machine with 

the actual speed (the removing time here is denoted by 𝑃𝑃2). Note that if 𝑃𝑃1 > 𝑃𝑃2, a machine blocking 

appears (the length of the blocking period is 𝑃𝑃1 − 𝑃𝑃2); if 𝑃𝑃1 < 𝑃𝑃2, a partial-blocking of the robot occurs 



17 
 

(the length of the robot partial-blocking period is 𝑃𝑃2 − 𝑃𝑃1); and if 𝑃𝑃1 = 𝑃𝑃2, no blocking or robot partial-

blocking happens since 𝑂𝑂𝑖𝑖𝑖𝑖 is finished exactly when the robot arrives, which is a synchronized situation. 

Constraints (11) obtain the actual processing time 𝐴𝐴𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 of each operation under the selected speed. 

Constraints (12) regulate the operation execution sequence within each job. Constraints (13) make sure 

that there is only one execution sequence for two operations assigned to the same machine, while 

Constraints (14-17) forbid possible deadlock situations in the production process. Constraints (29-43) 

specify the value scope of variables and the calculation methods of parameters. Due to page limits, the 

details of these traditional RJSP constraints are placed in Online Appendix I. 

 

4.2 RJSP-EM  
In the RJSP-E developed in the previous section, the makespan of the production system may increase 

significantly in order to save energy, which might not be welcomed by the industry. Therefore, in this 

section, we further incorporate the makespan considerations into the optimization framework, and thus 

formulate the model named robotic job-shop scheduling with energy consumption and makespan 

limitation (RJSP-EM). Specifically, we are interested in examining the impact of company’s makespan 

growth tolerance on energy saving. Therefore, the RJSP-EM involves an additional Constraint (44), 

which restricts that the increase in makespan should not exceed an upper limit. Note that 𝐶𝐶0  is the 

makespan obtained by the traditional model without energy considerations, while 𝛼𝛼  represents the 

tolerance of the decision-maker on the increase in makespan. This way, it is clear for the company to 

identify how much energy they could save if they encounter a certain makespan growth. 

𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶 ≤ 𝐶𝐶0 × (1 + 𝛼𝛼)  (44) 
 

The logic behind this constraint can be explained as follows. If there is no makespan restriction, 

both machine operation processing and robot empty movements will be carried out at a low speed to 

minimize energy consumption. However, as productivity is another important evaluator for the industry, 

it is crucial to ensure that the makespan will not be compromised much when we try to save energy. 
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In Online Appendix II, we use a numerical example to demonstrate the efficacy of the proposed 

models6. Briefly, the RJSP-E saves the most energy by selecting slow production/moving speeds by 

sacrificing makespan. Differently, the RJSP-EM is able to reduce energy consumption by selecting the 

most appropriate speeds for both machines and the robot to realize coordination, thus achieving energy 

saving without much compromise in productivity. Prominently, even when the makespan is not allowed 

to increase (α=0), the RJSP-EM can reduce the system energy consumption. Please refer to Online 

Appendix II for more details. 

 

5. Computational Experiments 

In this section, we conduct computational experiments to examine the performances of the proposed 

models. The traditional RJSP model without energy considerations (see Sun et al. (2021)), the RJSP-E, 

and the RJSP-EM are coded in OPL and solved in the IBM commercial solver CPLEX Studio IDE 

12.10 on a desktop MacBook Pro with 1.4 GHz Intel Core i5 processor and 8 GB of RAM. The running 

time limit is set as 3600s. Ten job instances are tested, which are generated based on the classical work 

in Bilge and Ulusoy (1995). The problem scales are presented in Table 3, denoted by i×j×k (the number 

of jobs, the number of operations in the job, and the number of machines). Details of the tested data are 

provided in Online Appendix III. Table 4 and Table 5 show energy-related parameters for machines 

and robot movements. Specially, a three-scale speed framework is applied to machines and robot. 

Specifically, the normal speed 𝑣𝑣𝑘𝑘 is defined as level 3, which is the fastest. Machines can turn to slower 

speeds 5
6
𝑣𝑣𝑘𝑘 and 2

3
𝑣𝑣𝑘𝑘. While the robot can change to 2

3
𝑣𝑣𝑅𝑅 and 1

3
𝑣𝑣𝑅𝑅. 

 

Table 3. Instances 
Instance Code Problem Scale Instance Code Problem Scale 

1 5×3×4 6 6×3×4 

2 6×3×4 7 8×3×4 

3 6×4×4 8 6×4×4 

4 5×5×4 9 5×4×4 

 
6 Due to the word limit imposed by the journal, the numerical illustration example is moved to online 
appendix. 
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5 5×3×4 10 6×4×4 

 

Table 4. Parameters for machine energy consumption. 

 

Processing power (w)  

Idling power (w) Level 3  
(Normal speed 

𝑣𝑣𝑘𝑘) 

Level 2  
( 5
6
𝑣𝑣𝑘𝑘) 

Level 1 
( 2
3
𝑣𝑣𝑘𝑘) 

machine 1 2270 1665 1139 370 

machine 2 1820 1335 914 350 

machine 3 1880 1379 944 350 

machine 4 2340 1717 1175 383 

 

 

Table 5. Parameters for robot movement energy consumption. 

 Loaded 
movement 

Empty movement 

Level 3 
(Normal 

speed 𝑣𝑣𝑅𝑅) 

Level 2  
(2
3
𝑣𝑣𝑅𝑅) 

Level 1  
( 1
3
𝑣𝑣𝑅𝑅) 

Energy consumption 
(KJ/unit distance) 47 28 18 8 

 

 

We test and compare the performance of the traditional model, the RJSP-E, and the RJSP-EM with 

four different tolerance increasing levels (α=0, 5%, 10%, 15%). The models are evaluated from various 

perspectives, including the total energy consumption, the energy consumed by machine and transport 

processes, the makespan, and the CPU time. Major test results are presented in Table 6, which lists the 

comparison of the above models from three perspectives: overall energy, makespan, and CPU time. 

Full results are available in Online Appendix IV. The following sections unveil the impact of 

incorporating energy considerations in the RJSP decision framework (the performance of RJSP-E) and 

the performance of RJSP-EM compared with RJSP-E and the traditional model.  

 

Table 6. Experiment results. 

Metrics Instance RJSP-E 
(KJ) 

RJSP-EM (KJ) Traditional 
model 
(KJ) α =0 α = 5% α = 10% α = 15% 

Overall 
Energy 

1 25402 26338 25727 25540 25422 30131 
2 26823 29383 28213 27514 27160 32062 
3 28943 31673 30459 30036 29494 34882 
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4 27023 28188 27305 27029 27023 31201 
5 20186 20474 20333 20284 20196 23151 
6 31885 33911 33075 32349 31919 37857 
7 Uns. 29669 28407 27596 27073 32860 
8 38689 38984 38689 38689 38689 44836 
9 31795 33924 33142 32524 32182 36935 

10 37750 41008 39953 39077 38425 44766 

Makespan 

1 122 103 108 111 118 103 
2 131 103 108 113 118 103 
3 134 107 112 117 123 107 
4 139 123 129 135 139 123 
5 112 88 91 94 101 88 
6 155 130 136 143 148 130 
7 Uns. 108 113 118 124 108 
8 172 166 172 172 172 166 
9 166 133 139 146 152 133 

10 197 161 169 177 185 161 

CPU Time 

1 5 0.55 0.74 0.91 1.36 1.36 
2 124 0.91 3.21 4.19 2.26 2.26 
3 440 0.75 4.63 5.93 5.13 5.13 
4 140 8.34 6.82 11.23 3.82 3.82 
5 51 1.27 2.43 2.04 0.88 0.88 
6 33 3.02 7.73 6.4 2.04 2.04 
7  N/A 56.22 85 300 32.75 32.75 
8 540 108 317 694 3.81 3.81 
9 20 2.12 3.86 4.08 2.63 2.63 

10 227 5.69 8.59 12.56 6.08 6.08 
 

5.1 Performance of RJSP-E in energy saving 
First, we analyze the performances of the RJSP-E and the traditional model. Compared with the 

traditional model, RJSP-E can achieve a remarkable 15% (on average) saving in energy. However, such 

an achievement is at a cost of the increase in makespan and CPU time. Since the machines and robots 

tend to select the moderate speed, the makespan averagely grows by 20% based on the traditional model. 

Even though RJSP-E is superior in saving the overall energy consumption, the CPU time required to 

reach optimality is 48 times longer than that of using the traditional model. Besides, Instance 7 is 

unsolvable for the RJSP-E within the given time limit. Therefore, the productivity of the manufacturing 

system is impaired due to a sacrifice in makespan, and the solution efficiency is much lower. 
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5.2 Performance of RJSP-EM in energy and productivity 
To test the performance of RJSP-EM, four makespan increase tolerance levels, 0, 5%, 10%, and 15% 

are examined. Table 7 summarizes the main metrics comparison results between RJSP-EM, EJSP-E 

and the traditional model.  

5.2.1 RJSP-EM vs. RJSP-E 
The RJSP-EM alleviates the disadvantages of the RJSP-E in productivity loss with the makespan 

increase restriction. It is reasonable that a tighter makespan increase tolerance level (i.e., a smaller α) 

leads to a shorter average makespan (Column MSDE). Besides, the makespan increase constraint shows 

the potential to accelerate the solution process. Compared with RJSP-E (Column CRE), the RJSP-EM 

consumes much less CPU time. When α=0, the RJSP-EM even reduces the CPU time by an average of 

96%. However, when α=15%, the figure decreases to 77%, which means the advantage in 

computational time is impaired along with the increase of α. 

Obviously, the RJSP-EM consumes more energy than the RJSP-E due to the compressed 

makespan. Comparing the overall energy consumption between RJSP-EM and RJSP-E (Column 

TECDE), 6% more energy is witnessed in RJSP-EM when the makespan is not allowed to increase. 

While the saving discrepancy is narrowed along with the increase in α. When α equals 15%, the average 

difference in energy consumption between RJSP-EM and RJSP-E is reduced to 1%, demonstrating the 

energy saving efficacy of RJSP-EM approximates the RJSP-E when α increases to 15%. 

 

Table 7. Main metrics comparison. 

Tolerance α 
Energy Makespan CPU Time 

TECDE TECDT PECDT IECDT TECDT MSDE MSIT CRE CRT 
α = 0 6% 10% 10% 13% 7% 16% 0% 96% 7% 
α = 5% 3% 12% 14% 11% 8% 13% 5% 93% -279% 
α = 10% 2% 14% 16% 8% 9% 9% 9% 85% -899% 

α = 15% 1% 15% 18% 3% 10% 6% 13% 77% -1970% 
TECDE: total energy consumption discrepancy compared with RJSP-E; TECDT: total energy consumption discrepancy 

compared with the traditional model; PECDT: processing energy consumption discrepancy compared with the traditional 

model; IECDT: idle energy consumption discrepancy compared with the traditional model; TECDT: transportation energy 

consumption discrepancy compared with the traditional model; MSIT: makespan increase compared with the traditional model; 

MSDE: makespan decrease compared with the RJSP-E; CRE: CPU time reduction based on the RJSP-E. 
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5.2.2 RJSP-EM vs. traditional model 
We further examine the performance of the RJSP-EM over the traditional model to illustrate the 

significance of the proposed model in facilitating processing and transport collaboration. From column 

MSIT, it is obvious that the makespan obtained by the RJSP-EM equals to that of the traditional model 

when α=0. For the RJSP-EM with the other three α, the average makespan increases are prone to reach 

the given upper bound (i.e., 5%, 9%, and 13% under α=5%, 10%, and 15%). This shows that the RJSP-

EM is efficient in adjusting the operating speed for operations or empty movements by fully utilizing 

the allowed makespan relaxation. 

From the perspective of energy saving, the amount of energy saved by the RJSP-EM increases 

along with the growth of α (Column TECDT), which is reasonable because the relaxation in makesapn 

leaves more space for energy-saving solutions. It is valuable to note that when α=0, the RJSP-EM is 

much greener than the traditional model with a significant average energy saving of 10%, demonstrating 

the merits of the EJSP-EM in speed coordination for saving energy. However, with the rise in α, even 

though more energy can be saved, the saving efficacy declines. For example, the energy is saved by 12% 

when α is set as 5%, while the figure only grows to 15% when α is 15%. 

We thus take a closer look into the decomposed energy consumption (i.e., the machine processing 

energy consumption (PE), the machine idling consumption (IE), and the robot movement energy 

consumption (TE)). The RJSP-EM is shown to consume less PE than the traditional model in all 

instances by switching to lower production speeds (Column PECDT). Besides, along with the increase 

in the allowed production time, more energy saving from PE is witnessed, while the saving rate is 

slowed down. For IE (Column IECDT)., the largest saving by RJSP-EM is achieved when α=0. This 

saving efficacy is also weakened with the increased α. Moreover, the TE savings achieved by the RJSP-

EM overall witness a slight growth along with the increase in α (Column TECDT). But it does not show 

a necessary growing trend in individual instances, because under different α the robot can re-design the 

delivery route or accelerate the movement when necessary to better coordinate with the machine 

production process. Thus, the increase in TE can be counteracted by the reduced PE to achieve overall 

energy saving. 
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By comparing the CPU time with the traditional model (Column CRT), we see that the RJSP-EM 

with the tightest makespan upper bound shows higher solution efficiency at an average of 7%. However, 

along with the growth in α, much longer CPU time is required for the RJSP-EM. 

 

5.3 Sustainability analysis 
The RJSP-EM and RJSP-E can facilitate the coordination between machines and robot with the V-scale 

speed framework. However, in a more general view, the coordination of machines and robot depends 

on many factors. Basically, it relates to the number of jobs (batch size), the number of operations in 

each job (processes), and the number of machines. From the machine perspective, it also depends on 

the processing time of operations and machine speed. While from the transport perspective, it relies on 

the layout of machines and the speed of the robot. Therefore, to explore the sustainability of the robotic 

cell, in this section, we further conduct a sustainability analysis for the above covariates. 

To evaluate the sustainability of the entire system (i.e., the coordination between machines and 

robot in performing batches of jobs), machine blocking and robot blocking (both full-blocking and 

partial-blocking) can be adopted as measurements. As the experiments vary in the number of machines 

and the optimal makespan, we use the average machine blocking rate and robot blocking rate as metrics. 

First, Figure 1(a-c) show the optimal schedules of three different scenarios with a variation in the 

number of jobs and machines (operations) at the normal processing speed. In case 1, there are three jobs 

(each job has eight operations) and eight involved machines. Case 2 oppositely schedules eight jobs 

(each job has three operations) on three machines. In the more balanced case 3, five jobs (each job has 

five operations) are planned on five machines.  

Table 8 summarizes the sustainability indicators. As can be seen, in case 1 when machines are in 

a large number while the number of jobs is small (but each job has a large number of operations), the 

machine blocking rate and robot blocking rate are not very high, as the robot can readily handle the 

products. On the other hand, when more jobs are scheduled on a few machines in case 2, the machine 

blocking rate is reduced while the robot’s blocking time increases. This is because jobs should always 

wait for the availability of machines and the robot is often blocked by machines (machines are usually 

occupied). In case 3, the growth in the number of jobs enables parallel processing. The increase in the 
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number of machines facilitates the reduction of robot waiting caused by the high machine occupation 

rate and transport restrictions. Thus, the robot is more occupied. Nevertheless, the machine blocking 

rate becomes larger, showing the struggle of the robot to handle larger workloads but still maintain the 

system efficiency. Consequently, the number of machines and robots should be matched to ensure the 

sustainability of the system.   

 

Table 8. Summary of sustainability indicators.  
 Avg_machine_blocking_rate Robot_blocking_rate 

Case 1  0.08 0.15 
Case 2  0.05 0.45 
Case 3 0.15 0.12 

 
 

 

Figure 1(a). Gantt Chart for Case 1: 3 jobs, 8 operations, and 8 machines. 
 

 

Figure 1(b). Gantt Chart for Case 2: 8 jobs, 3 operations, and 3 machines. 
 

 

Figure 1(c). Gantt Chart for Case 3: 5 jobs, 5 operations, and 5 machines. 
Figure 1 Alt Text: The schedules of operations on machines and robot movement are plotted. The X-
axis is the processing time. Y-axis includes the robot (bottom green bar) and the code of machines.  In 
the bottom green bar, dark green is the loaded robot movement, and light green is the empty robot 
movement. Each job is represented by two colors: the dark one denotes the processing, and the light 
one denotes the machine blocking. 
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We further explore how the speed changes of machines and robot will affect the production process. 

Figure 2 presents the changes in two metrics along with the four factors: (a) controls the number of 

machines, (b) controls the number of jobs, (c) controls the machine speed, and (d) controls the robot 

speed. Similar to the above analysis, when the number of jobs increases, the robot blocking time is 

likely to be reduced (Figure 2 (a)). When the number of machines (also operations in jobs) increases, 

the robot blocking time decreases, while the machine blocking time increases (Figure 2 (b)).   

Figure 2 (c) reflects the changes in two metrics with the machine speed adjustment. Decreasing 

the machine speed has a slight impact on machine blocking time but tends to increase the robot blocking 

rate. This is because the robot needs to wait longer in both full-blocking and partial-blocking. While in 

Figure 2 (d), decreasing the robot speed will increase the robot blocking rate as the robot is less capable 

of processing more operations simultaneously. Instead of turning to other operations, the robot will 

often be blocked by the current operation.  

Therefore, the speed scale also has an impact on the system sustainability. However, by using the 

proposed models, instead of uniformly changing the speed levels, the machines and robot speeds are 

changed for separate operations or transport, which can be seen as system fine-tuning for sustainability 

improvement under the premise of maintaining productivity.  

   

Figure 2 (a)                                                                         Figure 2 (b) 
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Figure 2 (c)                                                                   Figure 2 (d) 

Figure 2. Sustainability measurement and general factors. 
Figure 2 Alt Text: Metrics (machine blocking rate and robot blocking rate) comparison by controlling 
(a) the number of jobs, (b) the number of machines (operations in jobs), (c) machine speed, and (d) 
robot speed.  

           

   

6. Conclusions 

Smart manufacturing has boosted the wide application of mobile robots in robotic cells. However, the 

mismatching between machine production and robot movement causes extensive energy waste. In this 

paper, we innovatively propose to achieve energy saving by enhancing the process coordination 

between machine production and robot movement. Two MILP models are developed with the 

application of a V-scale speed adjustment framework. The RJSP-E minimizes the overall energy 

consumption, while RJSP-EM simultaneously considers makespan and energy consumption. 

Computational experiments are conducted to verify the model performance. The RJSP-E demonstrates 

superior performances in reducing overall energy consumption (with an average of 15%) but at a loss 

of makespan (20% on average) due to the slow operating speeds. On the other hand, the RJSP-EM is 

able to select the most suitable operating speeds to achieve energy saving without much sacrifice in 

productivity. Notably, the RJSP-EM reduces energy consumption by a mean of 10% with no 

compromise in makespan. However, the energy saving efficacy of the RJSP-EM declines with the 

enlarged permitted makespan duration, as the energy saved from machine processing is counteracted 
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by the additional prolonged idling consumption. It is believed that the novel RJSP approaches 

developed in this work can enhance the energy efficiency of modern robotic cells, thus promoting the 

healthy and sustainable development of smart manufacturing. Specifically, robotic cells with 

configurations similar to our problem setting can directly apply our model and fine-tune the parameters 

(like the distances among machines, machine production speeds, robot movement speeds) to determine 

their own job assignments, job sequences, machine processing speeds, and robot moving speeds. On 

the other hand, job shops with more robots can take our model as a benchmark to adjust their production 

schedules. 

 

Future research 

In this study, to examine the impact of company’s tolerance against the increase in makespan on energy 

saving, we apply an 𝛼𝛼 tolerance in makespan growth (as in Constraint (44)). One interesting future 

research direction is thus to apply the epsilon-constraint approach to identify the trade-off between 

energy and makespan. Besides, the current robotic cell only considers one robot transporting products. 

It will be valuable to involve more mobile robots which can better simulate the reality. Moreover, it is 

valuable to separately consider machine setup times and robot reconfiguration times. However, 

considering that the modelling of the current system is already very complicated, it will be extremely 

challenging to formulate the assignment and sequencing decisions, as well as to depict the deadlock and 

blocking situations when more mobile robots exist. 
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