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We investigate a stochastic distributed appointment assignment and scheduling problem, which consists of

assigning appointments to distributed service units and determining service sequences at each service unit.

In particular, the service time duration and release time uncertainties are well-considered. The solution to

this generic problem finds interesting applications in distributed production systems, healthcare systems,

and post-disaster operations. We formulate the problem as a two-stage stochastic program to minimize the

total transportation cost and expected makespan, and apply the sample average approximation method

to make the problem tractable. We then develop a stochastic logic-based Benders decomposition method,

decomposing the problem into a master problem and a subproblem. The master problem determines the

appointment assignment variables, and the subproblem handles the sequence variables and the service start

time variables. Benders optimality cuts are generated from the solution of the subproblem and are added

to the master problem. The developed stochastic logic-based method is advantageous since it can manage

many scenarios in parallel. We further consider the due date of each appointment and minimize the total

weighted earliness and tardiness and adjust the developed method to solve this variant. Experiments on

random instances demonstrate the excellent performance of the proposed model and methods.

Key words : Appointment scheduling; uncertainty; sample average approximation; stochastic programming;

logic-based Benders decomposition.

1. Introduction

With the popularization of information technology and smartphones, online reservation systems

are adopted by more service agencies. The application of reservation systems can significantly

improve service efficiency and customer satisfaction. To implement the service model with reserva-

tion systems, one must solve a class of appointment scheduling problems to provide optimal service

solutions.
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We investigate the appointment (job, task) scheduling problem arising from the operational

practice of reservation systems, in which multiple appointments must be assigned to distributed

service units (hospitals, service agencies). In particular, the service units and customers that make

appointments are dispersed on a network and the customer must travel to the allocated service

unit to get service. We consider a practical situation where the release (ready) time and service

duration of appointments are uncertain. An optimal solution to this interesting problem finds

various applications in healthcare, production, transportation, and post-disaster operations.

In the healthcare system, patients make reservations online and get service offline at the hospi-

tal. In a traditional single-hospital service model, the patient makes a reservation indicating the

preferable service date and time, and decision-makers then arrange medical resources (healthcare

workers, doctors) to serve the appointments. A recent challenge is the hospital strain during the

carnivorous pandemic. Medical demand surges have stressed hospital systems and result in the

crisis-level shortage of beds and staff to provide adequate care for patients. As a result, medical

consortium became a new tendency in public healthcare systems, where multiple clinics and hos-

pitals are integrated to provide healthcare services. One of the biggest advantages of the medical

consortium compared with the traditional single-hospital one is that appointments can be sched-

uled among different hospitals. The implementation of this new model impels the decision-maker

to solve a distributed appointment scheduling problem (DASP), which makes full use of medi-

cal resources to release the hospital strain and avoid the potential risk of cross infections during

epidemics.

Another interesting application of the DASP is the large-scale vaccination campaign undergoing

during the outbreak of the COVID-19 pandemic. Recipients make appointments online and get

vaccinated offline. Decision-makers must assign appointments made by recipients to vaccination

sites and sequence these appointments (Zhang et al. 2022). In the production system, one appli-

cation of the DASP comes from the medical resources production scheduling during epidemics (Li

et al. 2021), where orders (appointments) must be assigned to production plants, and the produc-

tion schedule at each plant must be determined. We can easily find applications of the DASP in

various systems. A notable feature of the DASP is that the release time and the service duration

frequently correspond to uncertainty. For example, the release time of an appointment may be

impacted by the traffic condition and other factors, and the service duration of an appointment

may be uncertain due to the material preparation, fatigue level of the service provider, and other

factors. Therefore, it is essential to include uncertainty when solving the DASP problem.

The literature seems to focus on solving the appointment assignment and scheduling problem

applied to the outpatient and other healthcare services (Marynissen and Demeulemeester 2019,

Yu et al. 2020). Most studies aim to schedule the patients’ service sequences to optimize a specific
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quality standard in healthcare systems like to minimize the patient waiting times and hospital work

time. However, most appointment scheduling studies in the literature focus on a single hospital

or outpatient clinic (Li et al. 2022). There is a lack of flexibility for assigning patients to differ-

ent hospitals to reduce potential operational costs and guarantee service quality. Moreover, most

address the deterministic appointment scheduling problem and the variability and unpredictability

in medical service duration and patient arrival time, which may be incurred by various practical

situations such as health conditions and medical equipment faults, have received less attention.

To fill the research gap, this paper addresses a stochastic distributed appointment assignment

and scheduling problem (SDASP) to minimize the total travel (transportation) cost and expected

makespan. Decision-makers must make a plan that determines the appointments’ allocation to

service centers and the service sequences of appointments at each service center. The total cost

component represents the distance-related cost when the service recipients travel from their homes

to the corresponding service center. The makespan represents the key performance indicator of

the whole service system, which can be considered as an index to evaluate the efficiency or cost

of the system. In particular, the appointment release time and service duration uncertainty are

integrated into the model. To solve the SDASP, we first develop a two-stage stochastic program-

ming model. The model is intractable due to the continuous feature of uncertain parameters,

leading to many scenarios. In this case, we apply the popular sample average approximation (SAA)

method to approximate the original model. The approximated SAA model can then be solved

using off-the-shelf commercial solvers. However, given the NP-hardness of the studied scheduling

problem, commercial solvers lose efficiency when practical-sized instances are involved. We pro-

pose a stochastic logic-based Benders Decomposition (SLBBD) method to solve the approximate

SAA model. The SLBBD method decomposes the SAA model into a master problem (MP) and

subproblem (SP). The MP determines the assignments of appointments to testing sites. The SP

can be further decomposed by each testing site and scenario, resulting in a series of single-machine

scheduling problems. An optimality Benders cut derived from the SP is introduced to strengthen

the MP solution. The MP is then iteratively solved with cuts added during each iteration. We

extend the model to solve an interesting variant of the SDASP where the due date of appointments

is considered and we optimize a different objective, i.e., the expected total eraliness and tardiness

of all appointments. Numerical experiments on randomly generated instances are conducted to

demonstrate the effectiveness and efficiency of the proposed approaches.

The remainder of the paper is structured as follows. Section 2 reviews related literature on

scheduling applications in healthcare and scheduling problems under uncertainty, respectively. Sec-

tion 3 presents the description of the considered problem and proposes a two-stage stochastic

programming formulation. In Section 4, the classical SAA method and the newly proposed SLBBD
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method are depicted. Computational experiments on randomly generated instances are conducted

and reported in Section 5. In Section 6, we summarise this work and suggest some future research

directions.

2. Literature review

Appointment scheduling is a common challenge in many industries, such as production systems,

machine scheduling and healthcare. We next review the related literature, including the scheduling

applications in healthcare and scheduling problems under uncertainty.

2.1. Scheduling applications in healthcare

Scheduling studies involved in healthcare system are receiving increasing attention in the literature

(Abdalkareem et al. 2021). Recent studies focus on scheduling medical resources like surgery, beds,

operating rooms, and human resources. such as patient admission scheduling (Demeester et al.

2010, Turhan and Bilgen 2017, Bastos et al. 2019), nurse restoring (Santos et al. 2016, Mischek

and Musliu 2019, Ceschia et al. 2020) and operating room scheduling (May et al. 2011, Turhan

and Bilgen 2020, Sigurpalsson et al. 2020). Abdalkareem et al. (2021) gives a comprehensive review

of healthcare scheduling research in the optimization context. We next briefly review appointment

scheduling problems closely related to the current study.

Most appointment scheduling studies in the healthcare field focus on one single service provider.

De Vuyst et al. (2014) studied a healthcare appointment scheduling problem with a healthcare

facility and a fixed-length session. An algorithm based on the discrete-time setting and Lindley’s

recursion was designed to minimize the patient waiting time and physician idle time. Feldman et al.

(2014) investigated an appointment scheduling problem considering patients’ time preferences.

Patients with appointments may fail to appear due to the unpredictability of patient behavior,

which is called no-shows. Static and dynamic programs are presented to maximize the expected

daily profit. Alizadeh et al. (2020) studied a scheduling problem concerning the booking of non-

emergency outpatient appointments with limited medical staff. They proposed a MILP model

considering the different duration of the appointments and priorities of patients. Besides, A genetic

algorithm was designed, which outperforms the model through computational experiments. Some

researchers consider how to schedule patients for multiple and serial assessments in a healthcare

program. In this scenario, patients take a series of assessments once at their appointment time,

and the hospital must consider the capacity and utilization of each assessment. Diamant et al.

(2018) investigated appointment scheduling in a multidisciplinary, multistage health care program.

In this problem, the clinic assigns patients to an appointment day and schedules assessments order

pending the patients’ arrival situation. The authors presented an MDP model of this problem

and an approximate dynamic programming was proposed to solve it. Yu et al. (2020) studied the
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appointment scheduling problem with series patients, where patients must take serial treatments

after their first appointment day. An MDP model and the Index Policy based on a one-step policy

improvement algorithm are proposed to solve this problem.

The studies on the appointment scheduling problem with multiple service providers are limited.

Zhou et al. (2021) studied patient-and-physician matching and appointment scheduling in spe-

cialty care to minimize the matching and operational costs. A two-stage formulation was proposed,

where the first stage was the patient–physician assignments, and each service provider decided the

appointment scheduling in the second stage. The sample average approximation (SAA) method and

an improved Benders decomposition method were designed for the problem. Soltani et al. (2019)

considered an appointment scheduling problem with multiple identical providers, stochastic ser-

vice times, and customer no-shows. The authors used a time-in homogeneous discrete-time Markov

chain process to minimize the weighted sum of customers’ waiting time, providers’ idle time, and

overtime. A load-based appointment scheduling heuristic based on some optimal conditions was

proposed to find near-optimal solutions. Shnits et al. (2020) investigated appointment scheduling

with parallel servers and pre-sequenced patients. The randomly distributed service duration and

no-shows are also considered. The objective is to minimize the end of day and increase resource

utilization while a minimal probability of each appointment starting on time is required. A deter-

ministic MILP model was formulated, and a sequential multi-server numerical-based algorithm was

developed to overcome the model’s limitations. The studies above only consider the random service

time and omit the impact of patients’ uncertain arrival time, i.e., the delay of arrivals. Besides,

with the outbreak of the COVID-19 pandemic, decision-makers frequently face the problem of

organizing a large scale of the population to perform rapid testing or vaccination activities, which

also involve multiple service providers(Li et al. 2022, Zhang et al. 2022).

2.2. Scheduling problems under uncertainty

The scheduling theory and its applications have been widely studied in the literature. Most studies

assume that the processing (service) time of jobs is deterministic (Pinedo and Hadavi 2012, Cao

et al. 2005, Tran et al. 2016, Dolgui et al. 2018, Wu and Che 2020). In recent years, an increasing

amount of literature generalizes the deterministic scheduling problem to consider uncertain factors

in industrial practice (Aydilek et al. 2015, Feng et al. 2016, Liu et al. 2019b).

Current literature mostly focuses on situations where job processing times are uncertain (Liu

et al. 2021). Peng and Liu (2004) develop a methodology for modeling parallel machine scheduling

problems with fuzzy processing times. Aydilek et al. (2015) propose a fuzzy mathematical pro-

gramming model of parallel machines scheduling problems to minimize the setup cost and develop
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an approximated method. The scheduling problem with processing time uncertainty is more com-

plicated than its deterministic counterpart. Most methods developed for it are heuristics (Torabi

et al. 2013, Mir and Rezaeian 2016).

Many works assume that the probability distributions of job processing times are known. Tang

et al. (2010) consider a stochastic scheduling problem of minimizing the total weighted completion

time on preemptive identical parallel machines and develop an algorithm based on a multi-machine

list scheduling policy. Ranjbar et al. (2012) develop two branch-and-bound algorithms to solve a

robust scheduling problem to maximize the customer service level, which is represented by the

probability of the makespan not exceeding the due date. Two exact algorithms are developed by

using a general iterative relaxation procedure. Xu et al. (2013) study an identical parallel machine

scheduling problem to minimize the makespan, in which the job processing times are stochastic

within known closed intervals. Skutella et al. (2016) propose a novel time-indexed linear program-

ming relaxation of the stochastic unrelated parallel machine scheduling problem with minimizing

the weighted sum of completion times. Liu et al. (2019a) investigates a stochastic parallel machine

scheduling problem and assumes that only the mean and covariance matrix of the processing times

are known. SAA method and hierarchical approach based on mixed-integer second-order cone pro-

gramming formulation are designed. The above literature generally deals with the uncertainty of

job processing times. In the rapid-testing scheduling problem, we must include the release time

uncertainty in the model.

The literature on scheduling problems considering uncertain job release times is generally scarce.

Shen et al. (2016) study a multi-objective flexible job-shop scheduling problem with release time

uncertainties and develop an improved multi-objective evolutionary algorithm based on decompo-

sition. Yue et al. (2018) investigate a single machine scheduling problem under stochastic release

time within intervals. An efficient two-stage heuristic is proposed to minimize the maximum waiting

time. Zheng et al. (2019) study a single yard crane scheduling to minimize the expected total tar-

diness of tasks with uncertain release times of retrieval tasks. A two-stage stochastic programming

model is proposed, and the SAA approach and a genetic algorithm are developed.

Few works study parallel machine scheduling problems simultaneously considering stochastic job

release times and processing times. Liu and Liu (2019) first address the stochastic parallel machine

scheduling problem to minimize the expected total weighted earliness and tardiness in a Just-in-

Time mode. A two-stage stochastic programming formulation is proposed, and the SAA method is

applied. Liu et al. (2021) then develop a scenario-reduction-based decomposition approach to solve

the problem presented in Liu and Liu (2019).

To sum up, we conclude from the above literature review that although the OR/MS methods have

received increasing attention in healthcare systems, the scheduling problem considering multiple
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service providers and the uncertainties of service duration and release times have not been addressed

yet. In this paper, we tackle the difficulties in solving the SDASP by providing a two-stage stochastic

program, an SAA approximation model, and a logic-based Benders decomposition algorithm.

3. Problem description and formulation

In this section, we describe the studied SDASP in detail and present a two-stage stochastic pro-

gramming formulation.

3.1. Problem description

The SDASP generalizes the parallel machine scheduling problem with release dates by considering

processing (service) time and release (ready) time uncertainties. Consider a a set N = {1, . . . , n}

of appointments. A set M = {1, . . . ,m} of service centers is launched to provide services. There

is a trip cost cjk when an appointment j ∈ N travels from its location to the location of the

service center k ∈M. The travel time between appointment j ∈ N and service center k ∈M is

denoted by tjk. Each appointment j ∈N has a specific release time rj indicating the time when the

recipients in an appointment are ready to set out, and rj + tjk is the arrival time of the recipients

in the appointment arriving at the corresponding service center. The service time of appointment

j is denoted as pj . Due to various reasons, the release time and service time of an appointment

are uncertain. Since no historical data is available, the probability distribution of these uncertain

parameters is unknown. These uncertainties are represented by a set Ω of scenarios. Each scenario

ω ∈ Ω represents a specific realization of the release time and service time denoted by rj(ω) and

pj(ω), respectively. The following assumptions are made according to classic scheduling problems:

1) Each service center can process at most one appointment at a time. This assumption can be

justified because appointments are served sequentially. 2) Each appointment is assigned to exactly

one service center. 3) The service of an appointment cannot be disrupted once being started.

The decisions to be made include allocating appointments to service centers and determining

the service sequences of appointments at each service center. The objective is to minimize the

total trip costs of all appointments and the expected makespan, i.e., the expected time when all

appointments finish services.

We formulate the SDASP as a two-stage stochastic program. In the first stage, we determine the

assignments of appointments to the service centers before the realization of random information

leading to appointments’ release and service times. The total travel costs of all appointments and

the expected makespan are minimized. In the second stage, we determine the serving sequences of

appointments at each service center to minimize the makespan with the realization of appointments’

release and service times. We next depict the proposed model.
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3.2. Problem formulation

To present the model, we define the following notation.

Sets:

N : set of appointments indexed by i, j and N = {1, ..., n};

M: set of service centers indexed by k and M= {1,2, ...,m} ;

Ω: set of independent scenarios indexed by ω.

Parameters:

rj(ω): release time of appointment j under scenario ω;

rj(ω)+ tjk:arrival time of appointment j under scenario ω;

pj(ω): service time of appointment j under scenario ω;

cjk: travel cost from appointment j to service center k;

tjk: travel time of appointment j from its location to the location of service center k;

h: a large enough number.

Decision variables:

vjk: equal to 1 if appointment j ∈N is assigned to service center k ∈M, and 0 otherwise;

xij(ω): equal to 1 if appointment i∈N is tested before appointment j ∈N ;

(not necessarily immediately) at the same testing site, and 0 otherwise;

Cmax(ω): makespan under scenario ω ∈Ω;

Cj(ω): completion time of appointment j ∈N under scenario ω ∈Ω.

The two-stage stochastic programming model (P ) can be formulated as follows:

min
∑
j∈N

∑
k∈M

cjkvjk +Eω∈ΩCmax(ω) (1)

s.t.
∑
k∈K

vjk = 1, ∀j ∈N (2)

xij(ω)+xji(ω)≤ 1, ∀i, j ∈N , i ̸=N , ω ∈Ω (3)

xij(ω)+xji(ω)≥ 1−h (2− vjk − vik) , ∀i, j ∈N , i ̸= j, k ∈M, ω ∈Ω (4)

Cj(ω)≥ pj(ω)+
∑
k∈K

(rj(ω)+ tjk)vjk, ∀j ∈N , ω ∈Ω (5)

Cj(ω)≥Ci(ω)+ pj(ω)−h (3−xij(ω)− vjk − vik) , ∀i, j ∈N , i ̸= j, k ∈M, ω ∈Ω (6)

Cmax(ω)≥Cj(ω), ∀j ∈N , ω ∈Ω (7)

vjk ∈ {0,1}, ∀j ∈N , k ∈M (8)

xij(ω)∈ {0,1}, ∀i, j ∈N , i ̸= j,ω ∈Ω. (9)

The objective function (1) minimizes the sum of travel cost from recipients’ home in an appoint-

ments to service centers, i.e.
∑

j∈N

∑
k∈M cjkvjk, and the expected makespan, i.e. Eω∈ΩCmax(ω).
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Constraints (2) ensure that each appointment j ∈ N must be assigned to exactly one service

center. Constraints (3) ensure that there are three optional test orders of two appointments i and j

under scenario ω ∈Ω: appointment i is processed before appointment j at the same service center

(xij(ω)=1), appointment j is processed before appointment i at the same service center (xji(ω)=1)

or appointment i and j are assigned to different service centers (xij(ω) = xji(ω) = 0). Constraints

(4) denotes that if appointment i and j are processed at the same service center k ∈M, there must

be one successor and one predecessor under each scenario ω ∈Ω. Constraints (5) imply that each

appointment j should be processed after he is ready and transported to the assigned service center

under scenario ω. Constraints (6) denote that if appointment i is processed before appointment j

at a service center k ∈M, appointment j’s completion time must be no less than appointment i’s

completion time plus appointment j’s service time under scenario ω ∈ Ω. Constraints (7) ensure

the makespan must be no less than each appointment j’s completion time under each scenario

ω ∈Ω. Constraints (8)- (9) define the ranges of decision variables.

The studied SRSP is NP-hard in the strong sense since its deterministic counterpart can be

reduced to a parallel machine scheduling problem to minimize the makespan, which is well known

to be strongly NP-hard (Pinedo and Hadavi 1992, Hino et al. 2005). The above model is intractable

due to the continuous nature of stochastic parameters. We next introduce a well-known SAA

method to approximate the model.

4. Solution Method

Since the set Ω of all possible scenarios can be very large, it is difficult to calculate the second

stage expected value function for a given assignment scheme. To overcome this difficulty, we first

apply the popular SAA method to obtain an approximate model that is tractable for off-the-shelf

MIP solvers. We then develop an SLBBD method for solving the SAA model, given that the solver

has difficulties in solving problem instances with many appointments and scenarios.

4.1. Sample Average Approximation

The SSA method is a well-known Monte Carlo-based simulation approach that has been successfully

applied to solve a wide range of stochastic scheduling problems. For our problem, based on Monte

Carlo simulation, a set S = {1,2, ..., |S|} of scenarios is used to approximate the set Ω, where

S ⊂Ω. The second stage expected value Eω∈ΩCmax(ω) is replaced by the sample average function

1
|S|

∑
s∈S C(s). With the above definitions, model P can be reformulated into an SAA-based model,

denoted as model P1:

min
∑
j∈N

∑
k∈M

cjkvjk +
1

|S|
∑
s∈S

Cmax(s) (10)

s.t.(2), (8) and to (11)



10

xij(s)+xji(s)≤ 1, ∀i, j ∈N , i ̸=N , s∈ S (12)

xij(s)+xji(s)≥ 1−h (2− vjk − vik) , ∀i, j ∈N , i ̸= j, k ∈M, s∈ S (13)

Cj(s)≥ pj(s)+
∑
k∈K

(rj(s)+ tjk)vjk, ∀j ∈N , s∈ S (14)

Cj(s)≥Ci(s)+ pj(s)−h (3−xij(s)− vjk − vik) , ∀i, j ∈N , i ̸= j, k ∈M, s∈ S (15)

Cmax(s)≥Cj(s), ∀j ∈N , s∈ S (16)

xij(s)∈ {0,1}, ∀i, j ∈N , i ̸= j, s∈ S. (17)

Model P1 can be solved using off-the-shelf commercial solvers, such as Cplex and Gurobi. The

performance of P1 negatively correlates to the number of scenarios, i.e. |S|, and the optimal objec-

tive value of the SAA model P1 converges to the true optimal value of model P almost surely when

|S| → +∞ (Bertsimas et al. 2018). However, since the deterministic counterpart of model P1 is

strongly NP-hard, solving the SAA model P1 with many scenarios is time-consuming. Therefore,

an SLBBD method is developed in the next section to tackle practical-sized problem instances in

a reasonable computation time.

4.2. The stochastic Logic-based Benders Decomposition

In this section, we develop a stochastic logic-based Benders decomposition (SLBBD) method for

solving the SAA model P1. The logic-based Benders decomposition (LBBD) is widely applied to

solve large-scale deterministic MILPs. The basic idea of the LBBD method is to decompose a

complex problem into a master problem (MP) and subproblem (SP). The MP and SP are then

iteratively solved until they converge to optimality (Hooker 2007). The SP must be linear programs

in the classic Benders decomposition method, and Benders cuts are generated based on the dual

information. The LBBD method relaxes this restriction and allows the SP to take any form. Thus,

the LBBD method has a wider range of applications in solving large-scale optimization problems

as long as the problem fits in the decomposition structure, and Benders cuts can be generated

by the inference dual (Hooker 2019). The SLBBD method generalizes the LBBD method to solve

two-stage stochastic optimization problems. The method shows good performance in solving a

stochastic planning and scheduling problem (Elci and Hooker 2020) and stochastic distributed

operating room scheduling problem (Guo et al. 2021).

The studied SDASP is a variant of the parallel machine scheduling problem with release dates,

which further considers appointments’ and service centers’ locations, stochastic release time, and

service time. The problem implies a good decomposition structure, which motivates us to apply the

SLBBD method. In particular, we formulate an MP that determines the appointments’ assignments

to service centers to minimize the total travel costs and relaxed expected makespan. Given a

feasible solution to the MP, we get the assignment results of appointments to service centers. Each
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service center and scenario can decompose the resulting SP. Thus it is equivalent to solving many

single machine scheduling problems with release time to minimize the makespan, i.e., (1|rj|Cmax).

The 1|rj|Cmax problem can be optimally solved in polynomial time using the earliest release date

(ERD) rule. Next, we introduce the MP, SP, and Benders cuts in detail.

4.2.1. The master problem Following the idea of the LBBD method, let a continuous vari-

able ξmax(s) denote the lower bound of the real makespan Cmax(s) under each scenario s ∈ S

corresponding to a specific assignment of appointments. The MP can be formulated as follows:

min
∑
k∈M

∑
j∈N

cjkvjk +
1

|S|
∑
s∈S

ξmax(s) (18)

s.t.(2), (8) and to (19)

ξmax(s)≥ 0, ∀s∈ S (20)

ξmax(s)≥ rj(s)+ tjvjk + pj(s),∀j ∈N ,∀k ∈M, s∈ S (21)

ξmax(s)≥ τk(s)+
∑
j∈J

pj(s)vjk,∀k ∈M,s∈ S. (22)

The MP aims to minimize the total travel cost and the lower bound of the expected makespan

for all scenarios. Constraints (21) ensure that ξmax(s) must be no less than the earliest completion

time of every appointment j under scenario s. Let τk(s) = minj∈J{tjk + rj(s)},∀k ∈ K,s ∈ S be

the earliest beginning time at site k under scenario s. Constraints (22) ensure that the makespan

ξmax(s) must be no less than the sum of all appointments’ service time assigned to site k under

scenario s.

4.2.2. The subproblem The solution of the MP gives the value of appointment assignment

variables v̂jk. Let Sk be the set of service centers assigned to service center k in the solution, i.e.,

Sk = {j|v̂jk = 1, j ∈N}. The SP can be further decomposed into independent subproblems for each

service center k under each scenario s. Each subproblem corresponds to a 1|rj|Cmax problem, which

can be optimally solved in polynomial time using the ERD rule. Let ξ̂k(s) be the optimal makespan

for the set Sk of appointments assigned to service center k under scenario s. We next introduce

Benders cuts generated from the solution of the SP.

4.2.3. Benders cuts There are generally two kinds of Benders cut, i.e., feasibility cuts and

optimality cuts. As the MP solution is always feasible to the SP, feasibility Benders cuts are

irrelevant here. We generate optimality cuts to improve the lower bound of the MP objective. The

solution of the SP gives the optimal makespan ξ̂k(s) for each set Sk assigned to service center k

under scenario s, we can generate the following optimality cuts.
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ξmax(s)≥ ξ̂k(s)

(∑
j∈Sk

vjk − |Sk|+1

)
,∀k ∈M, s∈ S. (23)

Cuts(23) ensure that if all service centers in a set Sk are assigned to service center k in subsequent

iterations, the makespan under scenario s should be greater than or equal to ξ̂k(s) obtained in the

current iteration. Once the Benders optimality cut (23) is added to the MP, the augmented MP

continues to be solved. The algorithm stops until the MP, and the SP converge to optimality or a

given time limit is reached.

5. Computational study

In this section, we conduct numerical experiments on random instances to evaluate the performance

of the proposed model and the SLBBD method. The tested instances and detailed results are

available at https://www.dmu-yantongli.com/instances. All solution approaches are coded in

Java linked with IBM ILOG CPLEX 12.10. The MP is solved using CPLEX, and the Benders cuts

are added using the embedded lazy callback procedure. All runs are performed on a PC with a

Core i7 CPU at 3.60GHz and 16GB RAM under Windows 10 operating system.

5.1. Instance generation and parameter setting

We randomly generate a set of instances with discrete uniform distribution based on the rules

introduced in Liu et al. (2021). The transportation time tjk between appointments and service

centers is randomly generated from the interval [1, 3]. The ready time rj of appointment j is

randomly generated from the interval [1, 5]. Following Liu et al. (2016), the mean service time is

randomly generated from a discrete uniform distribution from the interval [1, 10]. To reflect the

stochastic variation, the standard deviations of each appointment’s service time and ready time

are set to 0.1E [pj] and 0.1E [rj], respectively. For each instance, a reference set of 1000 scenarios

(Xie and Ahmed 2018), where the release times and service times are randomly generated with

normal distribution under the given mean and standard deviation values.

The computation time for each run is limited to 1800 seconds. The sample size |S| is set to 100

(Xie and Ahmed 2018). The instance size is characterized by the number of appointments n and

service centers m. For each instance with specific n and m, we generate five random instances.

5.2. Results for small-sized instances

First, we test some small-sized instances with up to n= 20 appointments and two service centers.

Table 1 reports the average results of each set with a specific n and m. To evaluate the performance

of the proposed methods, we compare the results obtained by directly solving the SAA model

with CPLEX (SAA-C) and the SLBBD method. We introduce five performance indicators, i.e., the
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mean objective value, variance, 85th percentiles of the objective, 99th percentiles of the objective,

and computation time. Mean objective values over the tested 1000 scenarios are denoted by Obj1

and Obj2 obtained by the SAA-C method and the SLBBD method, respectively. The variances of

the objective values (over 1000 scenarios) are denoted by V1 and V2, respectively, for the SAA-C

and the SLBBD methods. Values PT r
1 and PT r

2 denote the rth percentiles of the objective values

over 1000 scenarios obtained by the SAA-C and the SLBBD methods, respectively. Columns T1

and T2 denote the computation times for the SAA-C and the SLBBD methods, respectively.

Table 1 Numerical results for small-sized instances

The SSA-C method The SLBBD method

n m Obj1 V1 PT 85
1 PT 99

1 T1 (s) Obj2 V2 PT 85
2 PT 99

2 T2 (s)

4 2 22.90 1.03 23.97 25.41 77.76 22.90 1.03 23.97 25.41 0.35

5 2 26.03 1.13 27.22 28.79 1800 26.03 1.13 27.22 28.79 0.37

6 2 28.56 1.11 29.72 31.28 1800 28.43 1.17 29.65 31.31 0.56

7 2 31.87 1.21 33.12 34.81 1800 31.36 1.16 32.55 34.30 0.59

8 2 40.35 1.52 41.93 44.05 1800 38.72 1.31 40.10 41.96 0.54

9 2 43.11 1.42 44.58 46.64 1800 41.79 1.32 43.13 45.05 0.35

10 2 52.98 1.77 54.81 57.19 1800 48.97 1.50 50.53 52.61 0.36

11 2 55.53 1.77 57.37 59.63 1800 52.86 1.47 54.38 56.55 0.57

12 2 58.29 1.75 60.12 62.54 1800 56.64 1.57 58.32 60.53 0.79

13 2 67.58 2.02 69.74 72.44 1800 62.73 1.65 64.46 66.80 0.57

14 2 69.52 1.97 71.58 74.39 1800 67.48 1.79 69.35 72.05 0.61

15 2 69.72 1.94 71.77 74.37 1800 65.17 1.69 66.89 69.36 2.11

16 2 77.97 2.17 80.26 83.18 1800 69.98 1.71 71.73 74.20 1.06

17 2 91.32 2.47 93.89 97.13 1800 75.44 1.83 77.34 80.02 0.83

18 2 79.70 2.21 82.00 84.96 1800 74.87 1.80 76.73 79.35 1.02

19 2 87.29 2.22 89.62 92.44 1800 82.41 1.88 84.41 87.04 0.88

20 2 105.56 2.65 108.34 111.72 1800 90.92 2.00 93.02 95.88 2.31

Average 59.31 1.79 61.18 63.59 1698.69 55.10 1.53 56.69 58.89 0.82

From Table 1, we observe that the SAA-C method only solves instances with four appointments

to optimality within the 1800s, and the average computation time is 1698.69 seconds. However,

the proposed SLBBD method can solve all instances to optimality and the average computation

time is only 0.82 seconds. The average objective value obtained by the SAA-C method is 59.31,

about 7.64% larger than that of the SLBBD method. The average variance of the objective value

obtained by the SAA-C method is 1.79, about 16.99% larger than that of the SLBBD method.

In addition, the average 85th and 99th percentiles of the objective values obtained by the SAA-

C method are 111.56 and 114.83, which are about 26.49% and 26.17% larger than those of the

SLBBD method, respectively. In summary, the SAA-C method is far more time-consuming than

the SLBBD method. The SLBBD method outperforms the SAA regarding the five performance

indicators.
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5.3. Results for practical-sized instances

In practice, the studied SDASP involves dozens of appointments and several service centers. We

further generate some practical-sized instances. We consider the number of es n= {20,40, . . . ,100}
and the number of testing sites m= {2,4, . . . ,10}. Our preliminary results indicate that the SAA-C

method cannot obtain any feasible solution within the given time limit of 3600 seconds. Therefore,

these instances are only solved using the proposed SLBBD method with a time limit of 3600 seconds

for each run. The results are presented in Table 2. We can observe from the table that the objective

value, variance, 85th percentile, and 99th percentile increase with the number of appointments and

the number of service centers. This is reasonable since the SDASP involves binary variables vjk

whose number is positively related to n and m. The SLBBD method can optimally solve instances

with 70 appointments and two service centers within 3600 seconds. However, when the number of

service centers increases to 4, it can only solve instances with 30 appointments to optimality within

3600s. Moreover, the SLBBD method can not find feasible solutions to instances with six service

centers and more than 60 appointments. A similar conclusion can be drawn by observing the results

for instances with eight testing sites and more than 50 appointments. The results indicate that the

number of service centers has a more substantial impact on the computation efficiency than the

number of appointments.

5.4. Sensitivity analysis

We next conduct sensitivity analysis based on the results of an instance with eight appointments

and two service centers. The detailed results are shown in Table 3 to illustrate the differences in

the results obtained by the SAA-C and SLBBD methods. In each row j ∈ {1,2, ...,8}, a symbol ′✓′

denotes the appointment j is assigned to service center k, i.e. vjk = 1. We can see from Table 3

that the assignments of appointments obtained by the SAA-C and SLBBD methods are different.

Figure 1 Analysis on the standard deviation E [pj ]

We further examine the impact of the standard deviation of service times by varying its value

in the range of 0.1E [pj] , . . . ,0.9E [pj]. We then solve the instance using the SLBBD method and
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Table 2 Numerical results for practical-sized instances

Instance Obj V PT85 PT95 T (s)

10-2 46.48 1.46 48.03 50.32 0.35

20-2 92.80 1.92 94.77 97.64 0.39

30-2 137.46 2.39 140.02 143.45 1.83

40-2 189.74 2.90 192.77 196.74 115.43

50-2 223.11 3.17 226.38 231.07 546.40

60-2 277.41 3.31 280.91 285.75 868.26

70-2 299.16 3.47 302.56 307.91 3544.32

80-2 356.65 3.85 360.75 365.64 3600

90-2 380.84 4.05 384.90 391.41 3600

100-2 439.42 4.31 443.69 449.73 3600

10-4 33.13 1.23 34.40 36.09 1.50

20-4 64.00 1.36 65.41 67.31 5.63

30-4 89.46 1.62 91.16 93.74 80.55

40-4 105.83 1.75 107.78 109.98 3600

50-4 136.89 1.92 138.87 141.66 3600

60-4 163.73 2.08 165.94 168.99 3600

70-4 188.17 2.13 190.38 193.30 3600

80-4 207.99 2.30 210.29 214.16 3600

90-4 229.89 2.36 232.27 235.94 3600

100-4 264.56 2.63 267.33 271.33 3600

10-6 27.73 0.94 28.73 30.15 0.48

20-6 42.13 0.92 43.02 44.54 603.39

30-6 64.45 1.18 65.70 67.65 3600

40-6 84.67 1.53 86.27 88.75 3600

50-6 109.81 1.60 111.47 114.19 3600

60-6 133.60 1.63 135.27 137.91 3600

10-8 28.00 1.16 29.23 30.67 0.44

20-8 42.44 0.84 43.34 44.64 2723.57

30-8 57.63 0.96 58.66 60.21 3600

40-8 74.50 1.13 75.74 77.22 3600

50-8 92.62 1.23 93.95 96.00 3600

10-10 25.62 0.91 26.59 27.80 2.30

20-10 37.99 0.82 38.86 40.30 13.90

30-10 54.67 0.86 55.49 57.29 3600

Table 3 Results for the illustrative example

The SSA-C method The SLBBD method

Appointment\Service center 1 2 1 2

1 ✓ ✓

2 ✓ ✓

3 ✓ ✓

4 ✓ ✓

5 ✓ ✓

6 ✓ ✓

7 ✓ ✓

8 ✓ ✓
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reports the results of the four performance indicators in Figure 1. It can be seen that there has

been a gradual increase in the number of objective values, variances, and percentiles, along with

the increase of the standard deviation of service time. When the standard deviation of service time

increases, long service times are more likely generated, leading to a longer makespan. Besides, the

service time range becomes wider with the standard deviation increase, resulting in larger variances

and larger objective values in extreme cases.

Figure 2 Analysis on the standard deviation E [rj ]

We also analyze the impact of the standard deviation of release times by varying its value in

the range of 0.1E [rj] , . . . ,0.9E [rj]. The obtained results are shown in Figure 2, from which we see

that no significant difference can be observed regarding the mentioned performance indicators. A

reasonable explanation is that the range of release times is smaller than the service time (Liu et al.

2021). Hence, the above results suggest that the standard deviation of service time has a larger

effect on the performance, i.e., larger objective values and weak robustness in extreme cases.

5.5. Extend the model to consider due dates of appointments

We extend the studied SDASP to include due time of appointments’ service. The due time of a

appointment specifies the time that the appointment expects to finish service. Then the SDASP

with due time consideration is closely related to the stochastic parallel machine scheduling problem

(denoted as S-PMSP) with uncertain processing and release times presented in Liu et al. (2021). The

S-PMSP minimizes the setup cost of assignments and the expected penalty cost of jobs’ tardiness

and earliness. While our SDASP aims to minimize the travel costs (equivalent to the setup costs

in the S-PMSP) and the expected makespan. We refer to Liu et al. (2021) for a formulation and

the SAA model for the problem. We further devise the proposed SLBBD method to solve the SAA

model of S-PMSP.

Following the same framework presented in Section 4.2, we decompose the S-PMSP into a MP

and a SP, which are iteratively solved to obtain the optimal solution. Let wk(s) be a lower bound
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of penalty cost for earliness and tardiness of all jobs (appointments) assigned on machine (service

center) k under scenario s. The MP of the S-PMSP can be formulated as follows:

min
∑
j∈N

∑
k∈M

cjkvjk +
1

|S|
∑
s∈S

∑
k∈K

wk(s) (24)

s.t.
∑
k∈K

vjk = 1, ∀j ∈N (25)

wk(s)≥ 0 ∀k ∈K,∀s∈ S. (26)

The MP of S-PMSP can be solved using the branch-and-cut method. Once the MP is solved,

we get the assignments of jobs to machines. The SP corresponds to sequencing jobs on each

machine and each scenario, generating many single machine scheduling problems with release time

to minimize the total weighted earliness and tardiness, i.e., 1 |rj|θEj Ej + θTj Tj. The notations Ej

and Ej denote the earliness and tardiness of job j, and θEj and θTj denote the corresponding

weights, respectively. The 1 |rj|θEj Ej + θTj Tj problem can be optimally solved using the dynamic

programming method proposed in Tanaka and Fujikuma (2012). We use the implementation of

SiPS/SiPSi C libraries devised by Shunji Tanaka, which is publicly available at https://sites.

google.com/site/shunjitanaka/sips. Êj(s) and T̂j(s) are the value of earliness and tardiness

of job j in the current assignment under scenario s, which can be calculated by applying SiPSi

C libraries. Let Sk be the set of jobs assigned to machine k in the solution of the MP. Let ŵk(s)

represent the weighted penalty cost of jobs’ tardiness and earliness of jobs assigned to machine k

under scenario s. ŵk(s) can be formulated as (27). The optimality Benders cut can be formulated

as cut (28).

ŵk(s) =
∑
j∈Sk

(
θEj · Êj(s)+ θTj · T̂j(s)

)
(27)

wk(s)≥ ŵk(s)

(∑
j∈Sk

xjk − |Sk|+1

)
,∀k ∈M,s∈ S. (28)

The MP is then continued to be solved upon adding the Benders cuts. The above procedure is

repeated until the method converges to optimality or a given time limit is reached.

We generate instances using the same scheme proposed in Liu et al. (2021). We then solve

these instances using SAA-C and the SLBBD methods. The computation time for each run is

limited to 3600 seconds. The results are presented in Table 4, from which we can observe that

the average computation time of SAA-C is 3180 seconds, about 30.25% larger than the SLBBD

method. The average objective value obtained by the SAA-C method is 94.28, about 53.35% larger

than that obtained by the SLBBD method. Moreover, the average variance (V ), average 85th
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percentiles (PT 85), and average 99th percentiles (PT 99) of the objective values obtained by the

SAA-C method are all significantly larger than those obtained by the SLBBD method. Therefore,

the results demonstrate that the proposed SLBBD method outperforms the SAA-C method.

Table 4 Numerical results for the S-PMSP instances

The SAA-C Method The SLBBD Method

set n obj1 V1 PT 85
1 PT 99

1 T1 (s) obj2 V2 PT 85
2 PT 99

2 T2 (s)

1 4 8.97 2.74 11.98 17.68 9 8.97 2.74 11.98 17.68 2

2 5 14.58 1.57 16.23 18.51 51 14.58 1.57 16.23 18.51 4

3 6 15.72 2.94 19.06 24.72 3600 15.72 2.94 19.06 24.72 9

4 7 16.18 0.89 16.81 19.97 3600 14.58 1.57 16.23 18.51 10

5 8 68.91 5.37 74.06 79.13 3600 47.63 6.80 54.82 64.02 283

6 9 96.33 8.56 105.04 115.61 3600 68.93 8.84 77.94 91.09 854

7 10 63.58 9.51 73.99 86.43 3600 56.07 6.20 62.21 71.68 3600

8 11 85.23 4.41 89.35 95.63 3600 37.61 3.61 40.84 49.57 3600

9 12 84.82 10.65 96.14 113.75 3600 56.00 8.67 65.05 77.57 3600

10 13 188.91 11.18 200.37 218.80 3600 98.58 15.26 115.05 133.77 3600

11 14 110.21 6.94 117.59 129.65 3600 84.16 7.47 91.86 105.79 3600

12 15 104.13 8.45 113.49 124.72 3600 65.77 5.45 70.9 79.35 3600

13 16 125.51 14.75 141.59 162.49 3600 81.25 9.39 91.96 104.58 3600

14 17 132.97 11.13 144.75 163.94 3600 103.63 6.91 111.08 120.3 3600

15 18 159.58 16.1 176.99 196.8 3600 57.11 5.51 63.12 70.03 3600

16 19 200.24 10.97 211.44 226.93 3600 135.00 12.22 148.61 163.33 3600

17 20 126.92 7.70 134.35 148.18 3600 99.66 6.84 106.46 118.28 3600

Average 94.28 7.87 102.54 114.29 3180 61.48 6.59 68.44 78.16 2398

In summary, we conclude that 1) the proposed model and SLBBD method can provide practical

optimal solutions for the studied SDASP; 2) the SLBBD method outperforms the SAA-C method

in solving both the SDASP and the S-PMSP; and 3) the SDASP becomes more challenging to

solve when the uncertain level of processing time increases.

6. Conclusion

We have investigated the stochastic distributed appointment assignment and scheduling problem.

The aim is to provide an optimal plan that minimizes the total travel costs and the expected

makespan. We have considered two critical uncertain factors, i.e., the uncertain appointment service

time and release time. By analyzing the problem, we have abstracted the problem as a parallel

machine scheduling problem with release dates to minimize the total cost and expected makespan.

The studied problem is complex due to its NP-hard and stochastic nature. We first propose a

two-stage stochastic programming formulation for this problem. The first stage makes assignments

decisions without realizing the service and release times of appointments, and the second stage

optimizes the makespan with the assignments variables given and fixed. We apply the widely-used
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SAA method to reformulate the problem with a set of sample scenarios to make the problem

tractable. The reformulated SAA model can be directly solved using off-the-shelf solvers, denoted

as the SAA-C method. However, the SAA-C method loses efficiency when the instance size becomes

large. We develop a novel SLBBD method that decomposes the approximate SAA model into an

MP and SP to handle practical-sized instances. Benders cuts are added to the MP upon finding each

feasible solution of the SP. We perform extensive numerical experiments to validate the proposed

model and solution methods. Results on the SDAASP instances show that our proposed model

can provide optimal solutions. In particular, our SLBBD manages to solve practical-sized instances

with up to 100 appointments within an acceptable time limit. We further extend the model to

consider the due date of appointments to minimize the expected earliness and tardiness. We devise

our SLBBD method to solve this variant. Numerical results consistently demonstrate the excellent

performance of the SLBBD method. These experiments confirm that the SLBBD method is efficient

in solving such kinds of scheduling problems under uncertainty.

The studied distributed appointment assignment and scheduling problem is a timely and essential

topic and finds a wide range of applications in healthcare, production, and transportation systems.

The current study focus on a single period planning. Future research may involve multiple periods.

In this case, decision-makers must assign appointments to different dates and service centers, and

decide the operational time and work schedule of each service center. Efficient algorithms should be

developed to solve this variant. In addition, We find that the SLBBD method degenerates quickly

as the number of testing sites increases. Therefore, a future study may focus on developing efficient

heuristics to address large-sized instances.
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