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A B S T R A C T   

The impervious surface area is a critical component of anthropogenic environment that can be utilized as a proxy 
for assessing urbanization sustainability. However, there remains a lack of global high-precision product of 
impervious surface area, especially in the arid and semi-arid regions, due to the difficulty of human settlement 
extraction from remote sensing data. The complexity and variability of human settlements makes it difficult to 
identify and delineate impervious surfaces by using a single data source or classifier. In this paper, we employed 
Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 optical images, in conjunction with a range of ancillary 
datasets that were publicly available (such as nighttime light data and ecological zone information), to develop 
an accurate extraction and updating approach for global impervious surface area mapping across various 
geographical regions. We generated two high-resolution global impervious surface area (Hi-GISA) maps for 2015 
and 2018 with the Google Earth Engine (GEE) platform. The resultant Hi-GISA maps not only provided a detailed 
distribution of human settlements in both urban and rural areas, but also helped quantitative change analysis in 
terms of both expansion and reduction. Conventionally, we randomly selected 3,980 and 4,354 blocks with a size 
of 300 m × 300 m for the respective datasets in 2015 and 2018, to compare the accuracy of our product with 
other products. The validation results show that the Hi-GISA data in in each year reached a R2 higher than 0.8 
and achieved a mean overall accuracy over 88%. The areal estimations demonstrated that global impervious 
surfaces rose from 1.27 million km2 in 2015 to 1.29 million km2 in 2018 with an increase of 20,000 km2. Nearly 
80% of global impervious surfaces was contributed by 20 nations led by China, USA, and Russia. At the same 
time, South America had experienced the most significant growth (~3.35%) among all continents, followed by 
Africa (~2.59%). The Hi-GISA datasets provide new baseline products of global impervious surface area at 10 m 
resolution. These maps combined with other socioeconomic data could contribute to monitoring and analysis of 
the United Nations (UN) Sustainable Development Goals (SDGs), in particular, SDG 11.1, 11.2, and 11.3, and 
would also be valuable in assessing other SDG targets related to “Sustainable cities and communities”. Further 
development of the Hi-GISA data with a longer time series could be potentially used to examine urban sprawl and 
its environmental impacts.   
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1. Introduction 

Our planet Earth has been urbanizing rapidly over recent decades. 
The proportion of world’s population living in cities rises from 46.7% in 
2000 to 55.3% in 2018, and it is anticipated to reach 60.4% in 2030 (UN, 
2018). Meanwhile, fast urbanization causes resultant problems to 
human habitats, such as unplanned urban expansion, ground and air 
pollution, water shortages, inadequate infrastructure, urban–rural gap 
and so on (UN, 2017; Thomas et al., 2019). Well-managed urbanization, 
informed by a thoughtful understanding of long-term social, economic, 
and environmental trends, can help to maximize the benefits of 
agglomeration while minimizing ecosystem degradation and other 
potentially adverse impact amplified by an increasing number of urban 
dwellers. The UN thus proposes the Sustainable Development Goal 11 

(SDG 11) aiming to bring about the sustainability of cities and other 
human settlements (UN, 2015). Particularly for SDG indicator 11.3.1 
that is formulated by “the ratio of land consumption rate to population 
growth rate”, it currently belongs to Tier II category, which means that 
the indicator is conceptually defined with established methodologies 
and available standards, but lacks regularly and normatively produced 
data by all countries (UN-Habitat, 2019). To this end, improved map-
ping of global impervious surface area is essentially needed to provide 
preliminary semantic information of human settlement to meet the 
SDGs, given that the impervious surfaces derived from satellite images 
can provide an accurate delineation of anthropogenic environment. 

As more satellite remote sensing datasets are open, there has been 
increasing interest in impervious surface area mapping with a range of 
methods at various scales. These methods consist of decision tree (Weng 

Table 1 
Current mainstream medium and high-resolution long-term human settlement products.  

Name Download URL Producer Definition Resolution Data source Coverage 

MODIS Land Cover 
Type Yearly Global 
500 m (MCD12Q1 
V6) 

https://e4ftl01.cr.usgs.go 
v/MOTA/MCD12Q1.006/ 

National Aeronautics 
and Space 
Administration 

Built environment (>50%), 
including non-vegetated and 
human-constructed elements, with 
a minimum area > 1 km2 

493-m MODIS 463-m data Global 

Global Human 
Settlement Layer 
(GHSL) 

https://ghsl.jrc.ec.europa. 
eu/datasets.php 

European Commission 
Joint Research Center 

Human settlements and built-up 
layers (urban/rural) 

38-m Global remote sensing 
data streams, census 
data, crowd or 
volunteered geographic 
information sources 

Global 

Global Land Cover 
Map (GlobCover V2) 

https://dup.esrin.esa.int 
/page_globcover.php 

European Commission 
Joint Research Center 

Artificial surfaces and associated 
areas (urban areas > 50%) 

309-m Envisat-MERIS Global 

National Land Cover 
Data (NLCD) 

https://www.mrlc.gov/data?f 
%5B0%5D = category%3Aland 
%20cover 

United States 
Geological Survey 

Built-up areas and urban 
imperviousness  

30-m Landsat data USA 

Corine Land Cover 
(CLC) 

https://land.copernicus.eu/pan 
-european/corine-land-cover/ 

European Commission 
Joint Research Center 

Artificial surfaces and associated 
areas 

20-m IRS Resourcesat 1/2, 
SPOT 4/5, RapidEye 
constellation 

Europe 

GlobeLand30 https://www.globallandcover. 
com/defaults.html?src=/Script 
s/map/defaults/download.ht 
ml&head = download&type =
data 

National Geomatics 
Center of China 

Artificial surfaces 30-m  Landsat (TM5, ETM + ), 
HJ-1 

Global 

Global Urban 
Footprint (GUF) 

https://urban-tep.eu/puma 
/tool/?id = 567873922# 

German Aerospace 
Center 

Human settlements and built-up 
layers (urban/rural) 

12/84-m TerraSAR-X data, 
TanDEM-X data 

Global 

Finer Resolution 
Observation and 
Monitoring-Global 
Land Cover (FROM- 
GLC) 

https://data.ess.tsinghua.edu. 
cn/fromglc10_2017v01.html 

Tsinghua University Impervious surfaces 10-m Sentinel-2 data, FROM- 
GLC2015-v1 

Global 

Normalized Urban 
Areas Composite 
Index (NUACI) 

https://www.geosimulation.cn 
/GlobalUrbanLand.html 

East China Normal 
University 

Impervious surfaces 30-m Landsat data, DMSP- 
OLS 500-m data 

Global 

Global Artificial 
Impervious Area 
(GAIA) 

https://data.ess.tsinghua.edu. 
cn/gaia.html 

Tsinghua University Impervious surfaces 30-m Landsat data, Sentinel-1 
data, DMSP-OLS data 

Global 

Global Annual Urban 
Dynamics (GAUD) 

https://figshare.com/articles 
/dataset/High_spatiotempor 
al_resolution_mapping_of_glo 
bal_urban_change_from_1985_ 
to_2015/11513178/1 

Sun Yat-Sen 
University 

Impervious surfaces 30-m Landsat data, DMSP- 
OLS 500-m data 

Global 

Multisource, 
Multitemporal 
Random Forest 
(MSMT-RF) 

https://doi.org/10.5281/zenod 
o.3505079 

Aerospace 
Information Research 
Institute, Chinese 
Academy of Sciences 

Impervious surfaces 30-m Landsat-8 images, 
Sentinel-1 data, VIIRS 
NTL data, MODIS EVI 
imagery (MYD13Q1) 

Global 

Global Impervious 
Surface Area (GISA) 

https://irsip.whu.edu.cn/resou 
rces/dataweb.php 

Wuhan University Impervious surfaces 30-m Landsat data Global 

ESA WorldCover https://esa-worldcover.org/en European Space 
Agency 

Built-up land covered by buildings, 
roads, and other man-made 
structures with urban green (e.g., 
parks, sport facilities), waste dump 
deposits, and extraction sites 
excluded 

10-m Sentinel-1 and 2 data Global 

ESRI Land Use/Land 
Cover 

https://livingatlas.arcgis.com/l 
andcover/ 

Environmental 
Systems Research 
Institute 

Built area including human made 
structures, major road and rail 
networks, and large homogenous 
impervious surfaces 

10-m Sentinel-2 data Global  
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and Hu, 2008; Zhang et al., 2018; Wu et al., 2019), threshold-based 
segmentation (Xu et al., 2010; Liu et al., 2013; Wang et al., 2015; 
Deng and Wu, 2012), spectral mixture analysis (Wu et al., 2003; Civco 
et al., 2002; Li et al., 2013; Lu and Weng, 2004) and regression (Yang 
et al., 2003; Shao et al., 2015), among which the threshold-based seg-
mentation method is considered a promising one with several advan-
tages for large-scale operation and convenient implementation (Deng 
and Wu, 2012; Lu et al., 2014). Many satellite-derived products of 
impervious surface area or human settlement, which we consider to be 
two interchangeable jargons to delineate anthropogenic environment, 
have been generated during the last decade, although these products 
differ significantly in terms of spatiotemporal resolution and scale 
(Schneider et al., 2010; Xian and Homer, 2010; Pesaresi et al., 2013; 
Esch et al., 2013; Ban et al., 2015; Chen et al., 2015; Liu et al., 2018; 
Gong et al., 2019; Corbane, et al., 2019; Sun et al., 2019; Zhang et al., 
2020; Huang et al., 2021), as displayed in Table 1. Among the existing 
products, Landsat imagery has proven to be one of the most optimal data 
sources to generate global products because of its long-term records 
since 1972, nearly global coverage, open access at 30 m resolution 
(Pesaresi et al., 2013; Chen et al., 2015; Liu et al., 2020; Yang and 
Huang, 2021). Despite reports that 30-m land cover products can pro-
vide sufficiently accurate information required for earth system 
modelling and land management analyses, the diversity and complexity 
of landscapes, as well as the similar spectral characteristics in optical 
imagery for different land cover types, can decrease the accuracy of 
impervious surface area identification (Sun et al., 2019). It seems to be 
problematic for dispersedly distributed human settlements located in 
peri-urban and rural regions, which are not included in most mainstream 
regional and global products. In addition, acquiring adequate high- 
quality optical images at low latitudes remains challenging due to the 
persistent cloudy weather, hindering the ability to monitor human set-
tlement dynamics (Sun et al., 2019). 

Since the synthetic aperture radar (SAR) remote sensing is supposed 
to be capable in observing land surfaces in all weathers, the SAR data 
can be used to overcome the limitation of optical images. The artificial 
landscape with high dielectric property and special geometric structure 
can cause intense backscattered echo in SAR images. Therefore, due to 
its sensitivity to agglomeration geometric aspects, SAR data can acquire 
vital information for cities. With the launch of high-resolution SAR 
satellites, these datasets can provide richer texture and shape features, 
and further delineate detailed information in urban areas (Esch et al., 
2010, 2013, and 2017; Ban et al., 2015). At present, there are two 
representative products. The first one is a regional product from Euro-
pean Space Agency (ESA) in 2015 using the “KTH-Pavia Urban 
Extractor” (Ban et al., 2015). The Global Urban Footprint (GUF) is 
another well-known dataset from German Aerospace Centre based on 
TerraSAR-X (Esch et al., 2017). However, the previous studies mainly 
utilize the single-looking SAR data, which are inadequate for accurately 
mapping in urban areas, because the single-looking imaging will 
encounter problems like shadows and overlays that can impact the ac-
curacy of human settlement extraction (Sun et al., 2019). To address 
such a deficiency caused by the usage of a single data source, integration 
of multisource data (e.g., optical and SAR images) is a promising solu-
tion (Weng, 2012; Sun et al., 2019). 

Thanks to the disparities in methods, definitions, and satellite data 
that are used, various products of global impervious surface area show 
significant discrepancies, particularly true in arid, semi-arid, tropical, 
and sub-tropical regions, and for sparsely distributed human settlements 
with complicated landscapes, where accuracies are relatively lower 
(Gong et al., 2020; Liu et al., 2020), hence restricting the capacity for 
achieving a better understanding of worldwide urbanization process, 
especially for the monitoring and assessment of SDG 11 related in-
dicators. At present, there still exist two major challenges for global 
impervious surface area mapping: (1) Spectral variations among similar 
land cover types complicate the identifying and extraction process; (2) 
Obtaining enough optical and SAR data with a specific time schedule 

remains challenging. To overcome these limitations, we thus employed 
the integrated methods of threshold-based segmentation and change 
detection to create and update the high-resolution global impervious 
surface area (Hi-GISA) maps by fusing multi-orbit SAR data from 
Sentinel-1 (S1) and multitemporal optical data from Sentinel-2 (S2). 

With the advent of various cloud computing platforms such as the 
Google Earth Engine (GEE), rapid and automatic mapping of large-area 
land covers becomes achievable (Cao et al., 2020; Ge et al., 2019; Wang 
et al., 2019). Meanwhile, the emerging big Earth data technology makes 
it possible to conduct the scientific synthesis and comprehensive appli-
cation by combining all kinds of Earth observation data and geospatial 
information (Guo, 2017; Guo et al., 2020). Here we aimed to demon-
strate the effectiveness of using a threshold segmentation procedure to 
extract the human settlements with complicated landscapes, and at the 
same time, we examined the reliability of applying a change detection 
approach to update the Hi-GISA data. To this end, we generated two new 
baseline 10-m products of global impervious surface area for 2015 and 
2018 via the big Earth data technology and with the GEE cloud 
computing platform. We believed that these maps combined with other 
socioeconomic data might contribute to monitoring and assessment of 
the spatially relevant UN SDGs indicators such as SDG 11.3.1. On that 
basis, we also provided an alternative for global impervious surface area 
mapping and offered a fresh comprehension of quantitative estimation 
and spatially explicit distribution of global impervious surfaces at 10 m 
resolution. 

2. Data 

To improve the mapping performance in the middle-lower latitudes, 
we adopted the Interferometric Wide (IW) swath mode to derive a multi- 
look Ground Range Detected (GRD) product based on the double- 
polarized S1 SAR images (Sun et al., 2019). The calibrated, ortho-cor-
rected S1 Level-1 GRD scenes at 10 m resolution are available for 
download on the GEE platform. We selected the scenes spanning from 
2015 to 2018 for the generation of backscatter coefficient (σ◦) in deci-
bels (dB). We also downloaded the supplementary S2 Level-1C products 
from 2015 to 2016 as well as S2 Level-2A products for 2018. Subse-
quently, we employed four spectral bands, i.e., blue, green, red and 
near-infrared (NIR), from the acquired S2 data with less than 20% cloud 
cover. During the filtering process, the S2 Quality Assurance (QA) band 
was utilized to remove clouds and generate cloud-free images, and the 
nighttime light (NTL) images from the Visible Infrared Imaging Radi-
ometer Suite (VIIRS) Day/Night Band (DNB) were employed to ensure 
the full coverage of intensive human activities. Besides, we utilized the 
Digital Elevation Model (DEM) data from Shuttle Radar Topography 
Mission (SRTM) to generate the slope images. 

3. Methodology 

In this study, we proposed a highly automated mapping procedure 
with human interactions on the GEE platform to develop global imper-
vious surface area products at 10 m resolution for 2015 and 2018. There 
were six basic steps in the big Earth data based method: (1) Generate 
time series of backscatter coefficient (σ◦) using the mean and standard 
deviation reduction factors to derive texture images; (2) Delineate po-
tential impervious surface area based on the derived texture data; (3) 
Outline the built-up footprints utilizing the Normalized Difference 
Vegetation Index (NDVI) (Chen and Cihlar, 1996) and Normalized Dif-
ference Water Index (NDWI) (McFeeters, 1996); (4) Identify the optimal 
thresholds applying the “bimodal method” through strong bright/dark 
contrasts. (5) Enhance the mapping performances via the introduction of 
finer-scale global biome maps for arid and semi-arid areas (Olson et al., 
2001), and considering the topographic factors in mountainous regions 
(Esch et al., 2010). (6) Derive the prospective expansion and reduction 
information through a change detection process between two different 
years. Here we employed a tailored change detection procedure to 
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update the Hi-GISA data for 2018 based on the baseline map of global 
impervious surface area for 2015. 

3.1. Extraction method 

The accuracy of impervious surface area mapping can be improved 
by combining multisource remote sensing time series. In this study, four 
satellite products of S1 SAR images, S2 optical images, SRTM DEM data 
and VIIRS NTL data were used collectively for extracting impervious 
surfaces. We followed the algorithm described in our previous studies to 
derive the initial impervious surfaces for 2015, given that the imper-
vious surface area exhibited high-intensity brightness in SAR images 
(Sun et al., 2019). This method can accurately capture the spatial dis-
tribution information on impervious surface area by clearly masking out 
vegetation, water bodies, and bare lands. After excluding such back-
ground land cover types, we can identify these potential impervious 
surfaces (PIS) with complete and fine-scale boundaries, and a 3 pixels ×
3 pixels majority filter was then performed to smooth the final classifi-
cation results for 2015. 

Worldwide human settlements with different landscapes have spec-
tral similarities with other confusing land cover types. For instance, 
urban land and crop land have very similar spectral responses. Because 
of the considerable spectrum diversity, we cannot develop a universal 
classifier or gather a sufficient set of samples, which are applicable for 
operational global impervious surface area mapping (Chen et al., 2015). 
In this study, we reclassified the global landscapes with human settle-
ments into eight representative sample areas and determined the 
empirical thresholds for each sample with specific characteristics. Ta-
bles 2 presents these features and typical examples in Google Earth 
imagery collected from eight sites all over the world. 

We grouped multiple types of impervious surface area into different 
processing units according to their specific characteristics in SAR data 
(Table 2) and employed the corresponding input features for each unit to 
obtain the PIS. These input features included the following:  

(1) NDVImax: Annual maximum NDVI composite, generated from 
time series of S2 imagery;  

(2) MNDWImean: Annual mean MNDWI composite, generated from 
time series of S2 imagery;  

(3) σ◦
mean: Mean background coefficient generated from time series 

of S1 imagery;  
(4) Slope: Extracted from SRTM DEM data;  
(5) Vegetation Adjusted Normalized Urban Index (VANUI): Used to 

alleviate the effects of NTL saturation. The NTL and NDVI are 
combined in the VANUI defined as following (Zhang et al., 2013): 

VANUI = (1 − NDVI) × NTL (1) 

Fig. 1 presents examples for describing the extraction process. Here 
we show the difference between the single orbit and the fusion of double 
orbits of SAR data in Tehran, Iran for 2015 (Fig. 1a, 1b, 1d, and 1e). 
Shadows and overlaps have been nearly eliminated, and human settle-
ment information in urban area is also enhanced. It is worth noting that 
the vegetation and bare rocks remain indistinguishable in optical images 
(Fig. 1f), which is a common situation for the classification in arid and 
semi-arid areas. Therefore, we further exclude areas with complex 
mountainous landforms by incorporating the DEM slope images 
(Fig. 1c). For the built-up areas spread out at low slopes, we can easily 
identify and extract the distinct human settlements from surrounding 
bare rocks due to their high scattering intensities in SAR images 
(Fig. 1g). Usually, a higher resolution mapping procedure provides 
better classification accuracies for scattered impervious surfaces 
(Fig. 1i). 

3.2. Change detection 

Due to the complex geomorphology and the complicated spectrum 

and spatial structure of the artificial land, for regions with different 
climate types (especially arid and semi-arid regions), it does cost much 
for threshold selection and manual editing to fix errors. Here we 
captured spatial changes in impervious surface area between 2015 and 
2018 by adopting an improved update strategy with reference to the 
global baseline map for 2015. In consideration of the fact that imper-
vious surfaces had strong scattering characteristics in SAR images, sig-
nificant changes in scattering intensity caused by the expansion or 
reduction of human settlement can be identified. In addition, pheno-
logical features based on optical images, light data and SRTM topo-
graphic factors were also used to mask speckle noise and potential false 
positive objects (e.g., ships in water). After that, a 3 pixels × 3 pixels 
majority filter was utilized to eliminate the remaining noise and 

Table 2 
Input features for different impervious surfaces with various landscapes.  

ID Impervious surface area Input feature Result 

1 Dense urban area with 
features of high intensity SAR 
image 

NDVImax, 
σ◦

mean, 

2 Scattered human settlements 
covered by dense vegetation 
with features of high intensity 
SAR image 

NDVImax, 
σ◦

mean, 

3 Scattered human settlements 
surrounded by bare rocks and 
sand with features of high 
intensity SAR image 

MNDWImean, 
σ◦

mean 

4 The strip-shaped residential 
areas and rough surface 
covered by trees showing 
strong SAR image features at 
the same time 

NDVImax 

5 Dense urban areas containing 
low-quality SAR image 
features, such as shadows and 
overlays（e.g., skyscraper） 

NDVImax, 
VANUI 

6 Urban in high-slope 
mountainous areas showing 
strong SAR image features 

σ◦
mean, 

MNDWImean, 
Slope 

7 False positives in SAR images 
resulted from artificial 
buildings in water bodies (e. 
g., ships, steel facilities) 

σ◦
mean, 

MNDWImean 

8 False positives in SAR images 
generated by agricultural 
lands (e.g., greenhouses) 

NDVImax 
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geometric errors resulted from edge dislocation when combining SAR 
images. Finally, potential changes in impervious surface area were 
extracted to derive the new global map for 2018. Fig. 2 illustrates the 
processing flow chart. 

In this study, we extracted the potential expansion (PIS1in) or 
reduction (PIS1de) between 2015 and 2018 using the backscattering 
coefficients of SAR images to obtain the impervious surface area 
changes: 

PIS1in = (PIS118 = 1)and(PIS115 = 0) (2)  

PIS1de = (PIS118 = 0)and(PIS115 = 1) (3) 

where PIS115 and PIS118 are the potential impervious surfaces 
derived from the backscattering coefficients for 2015 and 2018, 
respectively. 

When extracting impervious surface area changes from SAR images 
using backscattering coefficients, it is easy to miss residential pixels with 
darker counterscatter values. To this end, we identified the texture 
features of angular second moment, entropy and contrast in SAR images 
using the gray-level co-occurrence matrix, which are effective indicators 
for the texture measurements of urban lands to supplement the back-
scattering coefficients (Esch, et al., 2013). The window sizes that should 
be compatible with the image resolution were selected as 3 pixels × 3 
pixels and 9 pixels × 9 pixels (Zhang et al., 2014). The three texture 
features were thresholded and then a logical operation was performed to 
obtain the potential impervious surfaces (PIS2): 

PIS2 = (Asm < T3)or (Ent > T4) or (Con > T5) (4) 

where T3, T4, and T5 are the empirical thresholds of angular second 
moment (Asm), entropy (Ent) and contrast (Con), respectively. After 
repeated experiments, T3 was set to 1, T4 was set to 0.6, and T5 was set 
to 0.32 in this study. 

Similarly, calculations were also performed based on the potential 
impervious surfaces extracted from SAR image texture features for 2015 
and 2018, so as to capture the prospective impervious surface changes 
including expansion changes (PIS2in) and reduction changes (PIS2de): 

PIS2in = (PIS218 = 1)and(PIS215 = 0) (5)  

PIS2de = (PIS218 = 0)and(PIS215 = 1) (6) 

where PIS215 and PIS218 are the potential impervious surfaces based 
on SAR image texture feature extraction for 2015 and 2018, 
respectively. 

Next, the impervious surface changes extracted based on the back-
scattering coefficients (PIS1in/PIS1de) and those extracted based on the 
SAR image texture features (PIS2in/PIS2de) were jointly used to generate 
the improved results of potential expansion (PISin) or reduction (PISde) 
between 2015 and 2018: 

PISin = (PIS1in = 1)or(PIS2in = 1) (7)  

PISde = (PIS1de = 1)or(PIS2de = 1) (8) 

Meanwhile, the spectral and texture features of the optical images 
were used to mask vegetation and waters before further detecting po-
tential changes of impervious surface area. The existing studies have 
shown that vegetation growing seasons are the best time to extract the 
distribution information of impervious surfaces in temperate continental 
climate zones, and the same to dry seasons in subtropical monsoon re-
gions (Sun et al., 2019; Zhang et al., 2020). When S1 SAR data is com-
bined with S2 opotical data, we can effectively capture the interannual 
variation of impervious surface area that is different from other land 
cover types. Besides, we also employed multitemporal lifting orbit 
image fusion to interpolate the shadowed and saturated pixels in densely 
built areas. 

Fig. 1. Analyses of impervious surfaces in arid and semi-arid areas for 2015. (a) Up-track backscatter intensity; (b) Down-track backscatter intensity; (c) Slope; (d) 
Backscatter intensity calculated using the standard deviation; (e) Backscatter intensity calculated using the mean; (f) Maximum temporal Normalized Vegetation 
Difference Index (NDVImax); (g) The backscatter intensity for a small region identified by the red rectangular inset in (e-f); (h) Google Earth image for the area shown 
in (g); (i) Final impervious surfaces, where the green layer represents the mapping product. 
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According to our previous research (Sun et al., 2019), the maximum 
value of the NDVI and the mean value of the NDWI can be selected as the 
appropriate thresholds to remove the misclassification resulted from 
rough vegetation and bright scatterers in water bodies. The two indices 
are calculated as follows: 

NDVImax(T) = max(NDVI)β
α (9)  

MNDWImean(T) = (MNDWI)β
αmean (10) 

where NDVImax and MNDWImean are the maximum composite NDVI 
and the mean composite MNDWI from S2 acquisitions, respectively; T 
denots the spanning time period; α and β are the foremost and the last 
scenes acquired in the given time period. 

The local texture measurements for S2 optical images were used to 
constrain the impacts of the bright scatterers in the vegetation and water 
bodies on the extraction results. Because there are redundancies and 
similarities in texture features among the S2 data in different time pe-
riods, only the variance (Var) and contrast (Con) textures of the near- 
infrared band from the local windows of 3 by 3 pixels and 9 by 9 
pixels were used in this study (Chen et al., 2015). For expansion 
detection, texture features in 2018 were used as constraints; and for 
reduction detection, texture features in 2015 were used as constraints. 
Through trial and error, the empirical variance threshold (Tvar) and 
contrast threshold (Tcon) of Sentinel-2 images were both set to 3. The 
pixels with variance>3 and contrast over 3 were deemed to be potential 
human settlements in the Sentinel-2 images. 

The SAR images show bright scattering characteristics on bare rocks 
and rough surfaces, such as mountain folds and deserts, which cannot be 
distinguished through optical phenological features as well. Therefore, 
multitemporal VIIRS nightlight data from 2015 were introduced to assist 

with the identification process. The reasonable buffer zone (2 km) 
established based on the global 10-m impervious surface area product in 
2015 further constrained the extent of urban expansion or reduction. 
The potential impervious surface changes using the backscattering co-
efficients and texture features of SAR images were subjected to these 
constrains to create the final impervious surface change information 
between 2015 and 2018. Logical operations were then used to generate 
the output for a grid of 5◦ × 5◦ in latitude and longitude to obtain the 
global impervious surface area product at 10 m resolution for 2018. 

3.3. Post-editing 

The post-editing step was finally conducted to eliminate false alarms 
in the consequent Hi-GISA layers. The pixels were identified and reas-
signed if their zonal statistics regarding the maximum value of the NDVI 
(NDVImax) indicated an erroneous assignment as natural surface area 
while the mean value of the NDVI (NDVImean) indicated an opposite 
assignment as impervious surface area (e.g., the vegetation covered 
areas in Northern Italy). When this was the case, objects would have a 
high NDVImax (>0.6), a low NDVImean (less than0.2) and a high value for 
the mean temporal SAR backscatter intensity (σ◦

mean > 0.1). Other 
typical false alarms occurred when the maximum temporal NDVI was 
too high, especially in the plain areas of America or Southern Italy, and 
when the temporal SAR backscatter intensity was too low, for example, 
in the highly textured rice fields. These misclassifications can be accu-
rately identified and reasonably corrected via post-editing. An exem-
plary case for the rule-based amendments of false alarms is shown in 
Fig. 3, where we substituted the NDVImax (Fig. 3a) with NDVImean 
(Fig. 3b) to conduct the vegetation filtering. 

Fig. 2. Flow chart of global impervious surface mapping for 2018 based on 2015.  
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3.4. Accuracy assessment 

In this study, we employed two different methods to evaluate the 
mapping accuracies of impervious surfaces and compare their perfor-
mances with other existing products that have been extensively applied 
in urbanization studies. For the global map of 2015, massive validation 
points with a size of 10 m × 10 m were randomly generated covering the 
geographical regions of Europe, Africa, North America, South America, 
and Oceania. It should be noted that we carried out the validation 
process via visual interpretation with reference to high-resolution 
Google Earth images. At the same time, a uniform interpretation rule 
was formulated to produce the reference data (Sun et al., 2019). The 
extraction results and reference data were used to develop confusion 
matrix for each geographical region. We further calculated the in-
dicators of user’s accuracy (UA), producer’s accuracy (PA), and overall 

accuracy (OA) to evaluate the mapping accuracy. To facilitate a reliable 
comparison among different global maps, we further generated 3,980 
and 4,354 random blocks of 300 m × 300 m for 2015 and 2018, 
respectively (Fig. 4). For each block, impervious surfaces were visually 
interpreted against the corresponding high-resolution Google Earth 
images, and the proportion of artificial lands was computed to generate 
the reference data. We mainly implemented the cross-product compar-
isons among the datasets of GAIA from Gong et al. (2020), NUACI from 
Liu et al. (2018), GHSL, ESA, ESRI, CLC, and NLCD. After calculating the 
coverage percentage of impervious surfaces in each block for respective 
maps, the determination coefficient (R2) between different products and 
the reference data based on scatter plots was used to complement the 
accuracy assessment (see Fig. 5). 

Fig. 3. A post-editing example for rule-based amendments in the south piedmont of the Alps in Northern Italy. (a) The maximum temporal NDVI for 2015; (b) The 
mean temporal NDVI for 2015; (c) The mean temporal backscatter for 2015; (d) The amending result for 2015. 

Fig. 4. Global validation blocks of 300 m × 300 m for 2015 and 2018.  
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Fig. 5. Scatter plots representing the estimation against reference of impervious surface area percentage for all validation blocks in different global maps.  
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4. Results and analysis 

4.1. Mapping validation 

The detailed results of accuracy assessment about the Hi-GISA data 
in 2015 are shown in Table 3. Globally for this map, the indicators of OA 
and overall kappa were 88.99% and 0.7808, respectively, while the 
indicators of PA and UA were 95.52% and 83.45%, respectively. Overall, 
no significant differences were found between various geographical 
regions. For example, the validation results showed that Asia was 
slightly more accurate than Africa. Specifically, OA, PA, UA were 
88.55%, 94.58% and 81.81% for China, and the accuracies varied from 
province to province with the arid and semi-arid areas showing the 
worst performances (Sun et al., 2019). According to the results revealed 
by the scatter plots, our products demonstrated a better fit with the 
reference data than other urban land cover products across different 
geographical regions (Fig. 6). Except for CLC in Europe and NLCD in 
North America, our global impervious surface area maps reached the 
highest values of R2. In summary, Hi-GISA 2015 had the highest R2 

(0.83) followed by Hi-GISA 2018 (0.81), ESA 2020 (0.71), GAIA 2015 
(0.65), GHSL 2014 (0.64), ESRI 2020 (0.47), and NUACI 2015 (0.46), 
indicating that our results yielded a more fitted regression with the 
reference data. It should be noted that the spatial resolutions of remote 
sensing data sources seemed to have no impact on whether the corre-
sponding satellite-derived global impervious surface maps could achieve 
high accuracies, given that the Hi-GISA, ESA, and ESRI datasets were 
generated based on the same 10-m Sentinel imagery while the GAIA, 
GHSL, and NUACI datasets were generated based on the same 30-m 
Landsat imagery, but their performances differed significantly in terms 
of mapping validation. To our knowledge, the mapping methods might 
play a decisive role in determining the accuracies of final products, 
although the spatial resolution of satellite imagery is also an important 
influencing factor. 

4.2. Mapping performance and spatial variations 

In terms of mapping performance, regional impervious surface 
mapping results were produced for the basic year of 2015 with China, 
USA, and Europe serving as examples in binary images (Fig. 7). The red 
patches represented impervious surfaces while the white ones indicated 
the permeable surface area. Apparently, most of the urban agglomera-
tions located in areas with the best geographical advantages, such as 
seaside and plains. The 2015 product provides spatially explicit infor-
mation about the distribution of human settlement, specifically accurate 
and detailed boundaries between urban and rural impervious surface 
area, which can provide insights into fine-scale urban–rural planning 
and management. 

We compared six representative impervious surface areas from four 
different natural backgrounds to examine their spatial variation derived 
from different products (Fig. 8). These areas range from urban ag-
glomerations to small rural settlements, and they are each illustrated in 
S2 (2018) true color composite images, Hi-GISA (2018), GAIA (2018), 
FROM-GLC (2017), GHSL (2014), NAUCI (2015), ESA (2020), and ESRI 
(2020) maps. For the figures in columns 2–8, human settlements are 
represented in red. Four typical arid areas with impervious surfaces 

were selected to compare the extraction accuracies and distribution 
details of different products (Fig. 8, rows 3–6), including the slum 
districts and industrial areas on flat bare rocks in Morbi, India, the high- 
density city of Dubai, UAE that was located in a vast desert, small 
scattered residential areas in valley folds (e.g., Shannan, China), and 
settlements distributed on flat bare lands (e.g., Yinchuan, China). Other 
regions with dense vegetation were also selected to assess the identifi-
cation capacity of scattered settlements, including dense rural settle-
ments in plains (e.g., Johannesburg, South Africa), and scattered high- 
grade residential areas in the plain basins (e.g., Chicago, USA). 

For semi-arid city clusters (Fig. 8, Row 1), the classifications from 
FROM-GLC and ESA provided a general outline of human settlements, 
but failed to identify impervious surfaces with considerable green 
spaces. This omission possibly came from a lack of adequate training 
samples (Zhang et al., 2020). Conversely, the GHSL, GAIA, NUACI and 
ESRI products tended to overestimate urban expansions for forming a 
continuous distribution pattern. Only the classification from Hi-GISA 
delineated a fine-scale distribution of human settlements with rela-
tively accurate boundaries that conformed to the visual interpretation 
results. For the human settlements concentrated in the plain areas 
(Fig. 8, Row 2), high-grade residential districts scattered on the urban 
fringe, and such areas were densely distributed and connected by 
complex road networks. The NUACI data showed good accuracies in the 
city center but missed narrow roads. GHSL and GAIA wrongly separated 
these scattered settlements into isolated spots while Hi-GISA, FROM- 
GLC, and ESA preserved narrow roads without loss of details and per-
formed well either in urban or peri-urban area. 

For cities growing on bare rocks (Fig. 8, Row 3), scattered human 
settlements were connected by narrow roads. ESRI, NUACI, and FROM- 
GLC had varying degrees of overestimation due to the misclassification 
of bare lands into impervious surfaces in the suburb. ESA, GHSL and 
GAIA failed to extract small villages in peri-urban areas. For cities in the 
desert that was mostly covered by coarse sand and gravels (Fig. 8, Row 
4), GAIA and GHSL missed most of road networks as well as sparsely 
distributed settlements on the urban fringe. FROM-GLC and NUACI 
displayed more spatial details of impervious surfaces but discarded 
small settlements. Comparatively, the Hi-GISA and ESA data provided 
an unbiased delineation for urban and peri-urban features at a higher 
resolution. 

In high-altitude regions, the landscape was characterized by compact 
settlements intermixed with vegetation and water bodies (Fig. 8, Row 
5). For these settlements, Hi-GISA and ESA not only provided an accu-
rate identification, but also gave a clear distinction from other land 
covers. GAIA can only capture the core urban area while FROM-GLC and 
ESRI misclassified bare rocks and shadows both in urban and peri-urban 
areas. Both of NUACI and GHSL failed to give a classification in this kind 
of region. The areas with complicated environmental backgrounds such 
as bare soils and mixed farmlands are shown in Fig. 8, Row 6. As we can 
see, there were also dense industrial sheds and greenhouses near the 
core urban area. For these features, the Hi-GISA and FROM-GLC prod-
ucts performed well, and they can even capture more details about paths 
and small buildings around the greenhouses. GAIA and ESA had the best 
extraction performances of industrial sheds, but small roads and 
greenhouses seemed to be abandoned largely. NUACI underestimated in 
the urban core while GHSL failed to identify the surrounding rural set-
tlements and roads. Meanwhile, ESRI tended to overestimate the human 
settlements, which was the same as above. 

4.3. Quantitative description of Hi-GISA 

Over the past few decades, the total area of impervious surfaces in 
Asia has been rising at an alarming rate with the highest average annual 
growth (Gong et al., 2020). Between 2015 and 2018, the growth rates of 
impervious surfaces in South America and Africa were 3.35% and 
2.59%, respectively, surpassing the rate in Asia (1.38%) (Fig. 9a). For 
Europe and Oceania, the growth rate of impervious surfaces was less 

Table 3 
Accuracies of impervious surface maps across different validation regions for 
2015.  

Region Sample size OA (%) UA (%) PA (%) 

Asia 256,593  88.86  82.94  95.53 
South America 36,556  89.94  83.61  98.51 
Oceania 22,012  89.31  84.29  94.89 
Africa 32,493  88.77  86.00  92.27 
Sum/Average 347,654  88.99  83.21  95.52  
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Fig. 6. Comparisons of R2 in different global maps grouped by geographical regions.  

Fig. 7. Overviews of Hi-GISA products for 2015 in China, USA, and Europe, respectively.  
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than 0.5%; and for North America, the rate was close to 1%. This change 
in trend reveals the unprecedented sprawl of cities in South America and 
Africa in recent years. The global fraction of impervious surfaces in 
North America was close to that in Europe (~20%) in 2018. During the 

period 2015–2018, Asia was dominantly the leader in terms of artificial 
land expansion, the impervious surfaces in Asia accounted for ~ 46% of 
the total areas (Fig. 9b). Specifically, the total area of impervious sur-
faces in Asia increased from 589,011 km2 in 2015 to 597,145 km2 in 

Fig. 7. (continued). 
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2018 with an increase of ~ 10,000 km2. In total, the impervious surfaces 
derived from Hi-GISA was 1,285,179 km2 in 2018, showing a continuous 
rise of ~ 20,000 km2 from 2015. As a country with dramatic growth of 
impervious surfaces in recent years, the increased impervious surfaces in 
India had approached that in China between 2015 and 2018 (~3000 
km2). The largest contribution of impervious surface expansion came 
from China, India, USA, etc. The top 20 estimations of impervious sur-
faces for 2015 and 2018 at the national scale are shown in Fig. 10. 

5. Discussion 

5.1. Reliability and superiority of Hi-GISA 

In this study, we developed an integrated approach to extract and 
update global impervious surfaces using all Sentinel images with the 
GEE platform. The effectiveness of utilizing a cloud computing platform 
and a threshold segmentation procedure to map human settlements 
across various landscapes was tested and confirmed. The Hi-GISA 
products show a superior temporal consistency that encourage the 
relevant application as baseline layers for globally comparative 

Fig. 8. Comparisons among different impervious surface maps derived from Hi-GISA and other products and procedures, including GAIA, FROM-GLC, GHSL, NUACI, 
ESA-WorldCover (https://esa-worldcover.org/en), and ESRI Land Cover (https://livingatlas.arcgis.com/landcover/) for six representative human settlements with 
various landscapes. The Sentinel-2 images were acquired and illustrated in true color with the GEE platform. 

Fig. 9. Growth rates during the period 2015–2018 and the latest fractions of global total at the continental scale.  
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researches at a finer resolution. 
With respect to improvements and advantages, Hi-GISA not only 

provided a spatially detailed delineation of human settlements in both 
urban and rural areas, but also offered quantitative change analyses for 
both expansion and reduction. According to the statistics derived from 
the Hi-GISA data, we identified three different trends: (1) Absolute 
expansion—there is only expansion and no reduction for the baseline 
impervious surface area; (2) Hybrid of expansion and reduc-
tion—expansion is accompanied by reduction; and (3) Absolute reduc-
tion only—existing impervious surfaces have been abandoned or 
demolished. For example, the Hi-GISA can accurately capture the areas 
that were demolished without newly built structures between 2015 and 
2018. This ability makes our products more reliable for monitoring 
urban renewal process. 

The average OA of Hi-GISA is >88% in both years. Although having a 
coverage of more impervious surfaces than others, Hi-GISA is consistent 
with contemporary global products at different spatial resolutions 

(Fig. 11). Gong et al. (2020) compared the contemporary datasets of 
impervious surface area using statistical aggregation and quantitative 
analyses. Similarly, we further carried out the comparison to facilitate 
the accuracy assessment for our products. In terms of total area, Hi-GISA 
is the closest to GlobeLand30 (Chen et al., 2015), which aggregates 
impervious surfaces occupying>1.2 million km2, ~0.88% of the Earth’s 
land surfaces. With respect to the total area for 2015 in China and USA, 
the Hi-GISA estimation approximate to those derived from China Land 
and Resources Bulletin (2016) and NLCD (2016), respectively, whereas 
GAIA (2018) and GHSL (2014) provide a much smaller statistic. The 
estimations from Hi-GISA and GlobeLand30 manifestly exceed the 
others due to the preservation of fine-scale human settlements. It is also 
worth mentioning that the total area of global impervious surfaces for 
2020 was 0.43 million km2 based on the ESA estimation, while this 
statistic could reach 1.41 million km2 as per the ESRI estimation. 
Although it is difficult to compare different products, we might still 
conclude that the Hi-GISA data falls within a reasonable range of the 
mainstream datasets that are widely used in recent years. Furthermore, 
since we plan to produce global maps of impervious surface area from 
2015 to 2030 at three-years intervals in support of monitoring and 
assessment of relevant SDG targets and indicators, the Hi-GISA maps can 
provide a baseline data source for analysis of global urban expansion 
when all the datasets are generated for the other years in the near future. 

The Hi-GISA products with a resolution of 10 m can capture such 
artificial structures as small as cooling towers from thermal power plants 
or wind turbines. It was also found that the weathered landforms in 
limestone mountains or rocky outcrops in the desert might be identified 
as man-made objects wrongly. Here we adopted a thorough quality- 
improvement procedure to weed out these errors using visual interpre-
tation, and this process can be highly automated with human interaction 
based on multisource ancillary data. More significantly, we employed 
the mode filtering method to clean up the edge noises and extract the 
temporal trend of impervious surfaces based on the SAR backscattering 
intensity change, which can facilitate the change detection quickly and 
data updating effectively on the premise of ensuring extraction accu-
racy. It is important to note that there is more to Hi-GISA than just 
identifying and delineating what is already represented in the similar 
datasets. For example, the Hi-GISA products clearly and accurately show 
large-area linear settlements along the coastal zones of Bangladesh and 
ridges of Northern Nairobi that are too small or dispersed to be extracted 
by most of the contemporary datasets as shown in Fig. 12. 

5.2. Why Hi-GISA is better? 

Based on the big Earth data technology, the generation of Hi-GISA 

Fig. 10. The top 20 estimations of impervious surfaces for 2015 and 2018 at the national scale.  

Fig. 11. Comparisons of our high-resolution global impervious surface area 
(Hi-GISA) maps with several representative and reliable products developed 
during the period 2010–2020. 
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data in this study fully used multi-temporal Sentinel-1 SAR images and 
Sentinel-2 optical images at 10 m resolution, and sufficiently considered 
the phenological characteristics of different ecological element layers 
covered by impervious surfaces according to finer-scale global biome 
maps. During the extraction process, we adopted appropriate empirical 
thresholds in a truly targeted and customized manner, and at the same 
time, we devoted meticulous visual interpretation efforts to fix false 
classifications when mapping the human settlements with complicated 
landscapes. To overcome the deficiencies of existing mainstream prod-
ucts, such as the relatively low accuracies in the middle and low lati-
tudes and for arid and semi-arid areas, our Hi-GISA products had 
employed a semi-automatic procedure with intensive human in-
terventions by referring to multisource ancillary data such as the NTL 
imagery and DEM topographic information. Additionally, we applied a 
thorough post-editing quality-improvement procedure to reduce com-
mission errors and omission errors, and to preserve the fine-scale 
boundaries of varying human settlements through heavily manual 

treatments. Thanks to the application of big Earth data technology and 
the usage of highly automated procedures with human interactions, the 
Hi-GISA data could thus have higher mapping accuracy for different 
types of human settlements with various landscapes in both urban and 
rural areas, and demonstrate a better fit with the reference data than 
other urban land cover products across different geographical regions. 

5.3. Limitations and prospects of Hi-GISA 

To our knowledge, there are some limitations in terms of data 
sources and processing approaches, although the proposed procedure 
shows the capability to extract accurate impervious surface area at the 
global scale. In mid-low latitude zones and arid regions, the represen-
tation of impervious surface area utilizing the SAR-based Hi-GISA 
technique differs significantly from the impervious surface area map-
ping solely based on optical remote sensing data. The artificial structures 
such as asphalt highways and manufacturing sheds might not be 

Fig. 12. An example of the linear settlements along the coastal regions of Bangladesh and mountainous ridges of Northern Nairobi. (a) Google Earth images; (b) 
Spatial distributions of the Hi-GISA layers corresponding to satellite images; (c) Detailed overlay of Hi-GISA layer and satellite images referring to black-bordered 
boxes; (d) Spatial distributions of ESA, ESRI, GAIA, GHSL, and NAUCI layers in the same places. 

Z. Sun et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 109 (2022) 102800

15

classified as impervious surfaces in the Hi-GISA layers. We therewith 
used spectral indices based on optical images together with the Open 
Street Map (OSM) data to supplement the identification of airport run-
ways and narrow roads in sparsely populated areas, although some 
omissions might remain. The results of accuracy assessment indicated 
that omission errors occurred more frequently in sparsely populated 
regions (e.g., scattered rural settlements) than in heavily populated 
urban agglomerations (modern metropolises like Beijing, Shanghai, 
Chicago, New York, Los Angeles, etc.). Therefore, future direction will 
target at the omission in sparsely populated regions by using higher 
resolution images. Besides, the Hi-GISA data can be applied to meet the 
data needs of SDG indicator 11.3.1 and serve as a high-quality sample 
library for human settlement machine learning to achieve fully auto-
mated extraction of impervious surfaces worldwide. 

6. Conclusions 

By using the Sentinel data including SAR and optical images within 
the GEE cloud computing platform, we created spatially explicit and 
temporally consistent global maps of impervious surface area at 10-m 
spatial resolution for 2015 and 2018, namely the high-resolution 
global impervious surface area (Hi-GISA) maps. It has been manifested 
that the big Earth data technologies can help to generate a more accurate 
product of global human settlement distribution. During the extraction 
and updating processes, we elaborately selected relevant features to 
suppress background information, which greatly improved the extrac-
tion accuracy and enhanced the updating efficiency for human settle-
ments with various landscapes in both urban and rural areas. The 
relevant research has shown that such Hi-GISA data products can be 
utilized for analysis of urban expansion at the city level (Jiang et al., 
2021a and 2021b). In addition, the Hi-GISA data can be potentially 
useful to examine urban sprawl (Bhatta et al., 2010; Cieślak et al., 2020) 
for estimating urban heat islands (Zhou et al., 2018; Chakraborty et al., 
2020) and for integration with weather and climate models (Bontemps 
et al., 2013). 

The Hi-GISA products are reliable as demonstrated by the validation 
with randomly selected blocks and comparison with contemporary 
global products of impervious surface area. The average OA of Hi-GISA 
is>88% for each period. The cross-product comparison shows that the 
Hi-GISA data does accord with the reasonable range in terms of aggre-
gation statistics. In addition, the improved procedure can identify and 
preserve more spatial details, especially for small and scattered human 
settlements. Based on the aggregation results derived from Hi-GISA, a 
continuous and steady growth in global impervious surfaces has been 
substantiated between 2015 and 2018. The total area of global imper-
vious surfaces grew from 1.27 million km2 in 2015 to 1.29 million km2 

in 2018 with an increase of 20,000 km2. South America showed the 
greatest growth (~3.35%) among continents, followed by Africa 
(~2.59%). China, USA, and Russia collectively accounted for ~ 50% of 
the global impervious surfaces in 2018, and there are only 2 countries 
from Africa among the top 20 countries, namely Nigeria and South 
Africa. 

In summary, the Hi-GISA maps can provide finer human settlement 
footprint and preliminary semantic information about anthropogenic 
environment to satisfy the monitoring and assessment requirements of 
SDG 11 related indicators. Meanwhile, this dataset can also portray the 
spatiotemporal evolution of urban–rural human settlement expansion, 
which will serve as a high-quality benchmark for urbanization sustain-
ability assessment. 
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