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ABSTRACT

Brain-inspired spiking neural networks (SNNs) have demon-
strated great potential for temporal signal processing. How-
ever, their performance in speech processing remains limited
due to the lack of an effective auditory front-end. To address
this limitation, we introduce Spiking-LEAF, a learnable audi-
tory front-end meticulously designed for SNN-based speech
processing. Spiking-LEAF combines a learnable filter bank
with a novel two-compartment spiking neuron model called
IHC-LIF. The IHC-LIF neurons draw inspiration from the
structure of inner hair cells (IHC) and they leverage segre-
gated dendritic and somatic compartments to effectively cap-
ture multi-scale temporal dynamics of speech signals. Addi-
tionally, the IHC-LIF neurons incorporate the lateral feedback
mechanism along with spike regularization loss to enhance
spike encoding efficiency. On keyword spotting and speaker
identification tasks, the proposed Spiking-LEAF outperforms
both SOTA spiking auditory front-ends and conventional real-
valued acoustic features in terms of classification accuracy,
noise robustness, and encoding efficiency.

Index Terms— Spiking neural networks, speech recogni-
tion, learnable audio front-end, spike encoding

1 Introduction
Recently, the brain-inspired spiking neural networks (SNNs)
have demonstrated superior performance in sequential mod-
eling [1, 2]. However, their performance in speech process-
ing tasks still lags behind that of state-of-the-art (SOTA) non-
spiking artificial neural networks (ANNs) [3, 4, 5, 6, 7, 8,
9, 10, 11]. This is primarily due to the lack of an effective
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auditory front-end that can synergistically perform acoustic
feature extraction and neural encoding with high efficacy and
efficiency.

The existing SNN-based auditory front-ends first extract
acoustic features from raw audio signals, followed by en-
coding these real-valued acoustic features into spike patterns
that can be processed by the SNN. For feature extraction,
many works directly adopt the frequently used acoustic fea-
tures based on the Mel-scaled filter-bank [3, 4, 5] or the Gam-
maTone filter-bank [12]. Despite the simplicity of this ap-
proach, these handcrafted filter-bank are found to be subop-
timal in many tasks when compared to learnable filter-bank
[13, 14, 15, 16]. In another vein of research, recent works
have also looked into the neurophysiological process happen-
ing in the peripheral auditory system and developed more
complex biophysical models to enhance the effectiveness of
feature extraction [17, 18]. However, these methods not only
require fine-tuning a large number of hyperparameters but are
also computationally expensive for resource-constrained neu-
romorphic platforms.

For neural encoding, several methods have been pro-
posed that follow the neurophysiological processes within
the cochlea [17, 18]. For instance, Cramer et al. proposed a
biologically inspired cochlear model with the model parame-
ters directly taken from biological studies [17]. Additionally,
other methods propose to encode the temporal variations of
the speech signals that are critical for speech recognition.
The Send on Delta (SOD) [19] and threshold coding meth-
ods [12, 20, 21], for instance, encode the positive and nega-
tive variations of signal amplitude into spike trains. However,
these neural encoding methods lack many essential charac-
teristics as seen in the human’s peripheral auditory system
that are known to be important for speech processing, such as
feedback adaptation [22].

To address these limitations, we introduce a Spiking
LEarnable Audio front-end model, called Spiking-LEAF.
The Spiking-LEAF leverages a learnable auditory filter-bank
to extract discriminative acoustic features. Furthermore,
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Fig. 1: The overall architecture of the proposed SNN-based
speech processing framework.

inspired by the structure and dynamics of the inner hair
cells (IHCs) within the cochlea, we further proposed a two-
compartment neuron model for neural encoding, namely
IHC-LIF neuron. Its two neuronal compartments work syn-
ergistically to capture the multi-scale temporal dynamics of
speech signals. Additionally, the lateral inhibition mecha-
nism along with spike regularization loss is incorporated to
enhance the encoding efficiency. The main contributions of
this paper can be summarized as follows:

• We propose a learnable auditory front-end for SNNs,
enabling the joint optimization of feature extraction and
neural encoding processes to achieve optimal perfor-
mance in the given task.

• We propose a two-compartment spiking neuron model
for neural encoding, called IHC-LIF, which can effec-
tively extract multi-scale temporal information with
high efficiency and noise robustness.

• Our proposed Spiking-LEAF shows high classification
accuracy, noise robustness, and encoding efficiency on
both keyword spotting and speaker identification tasks.

2 Methods
As shown in Fig. 1, similar to other existing auditory front-
ends, the proposed Spiking-LEAF model consists of two parts
responsible for feature extraction and neural encoding, re-
spectively. For feature extraction, we apply the Gabor 1d-
convolution filter bank along with the Per-Channel Energy
Normalization (PCEN) to perform frequency analysis. Sub-
sequently, the extracted acoustic feature is processed by the
IHC-LIF neurons for neural encoding. Given that both the
feature extraction and neural encoding parts are parameter-
ized, they can be optimized jointly with the backend SNN
classifier.

2.1 Parameterized acoustic feature extraction
In Spiking-LEAF, the feature extraction is performed with a
1d-convolution Gabor filter bank along with the PCEN that
is tailored for dynamic range compression [23]. The Gabor
1d-convolution filters have been widely used in speech pro-

Fig. 2: Computational graphs of LIF and IHC-LIF neurons.

cessing [24, 16], and its formulation can be expressed as per:

φn(t) = ei2πηnt
1√

2πσn
e
− t2

2σ2n (1)

where ηn and σn denote learnable parameters that character-
ize the center frequency and bandwidth of filter n, respec-
tively. In particular, for input audio with a sampling rate of 16
kHz, there are a total of 40 convolution filters, with a window
length of 25ms ranging over t = −L/2, ..., L/2 (L = 401
samples), have been employed in Spiking-LEAF. These 1d-
convolution filters are applied directly to the audio waveform
x to get the time-frequency representation F .

Following the neurophysiological process in the periph-
eral auditory system, the PCEN [16, 23] has been applied
subsequently to further compress the dynamic range of the
obtained acoustic features:

PCEN(F (t, n)) =

(
F (t, n)

(ε+M(t, n))αn + δn

)rn
− δrnn

(2)

M(t, n) = (1− s)M(t− 1, n) + sF (t, n) (3)

In Eqs. 2 and 3, F (t, n) represents the time-frequency
representation for channel n at time step t. rn and αn are co-
efficients that control the compression rate. The termM(t, n)
is the moving average of the time-frequency feature with a
smoothing rate of s. Meanwhile, ε and δn stands for a posi-
tive offset introduced specifically to prevent the occurrence of
imaginary numbers in PCEN.

2.2 Two-compartment spiking neuron model
The Leaky Integrate-and-Fire (LIF) neuron model [25], with
a single neuronal compartment, has been widely used in brain
simulation and neuromorphic computing [3, 4, 5, 7, 8]. The
internal operations of a LIF neuron, as illustrated in Fig. 2 (a),
can be expressed by the following discrete-time formulation:

I[t] = ΣiwiS[t− 1] + b (4)
U [t] = β ∗ U [t− 1] + I[t]− VthS[t− 1] (5)
S[t] = H(U [t]− Vth) (6)



where S[t − 1] represents the input spike at time step t. I[t]
and U [t] denote the transduced synaptic current and mem-
brane potential, respectively. β is the membrane decaying
constant that governs the information decaying rate within the
LIF neuron. As the Heaviside step function indicated in Eq.
6, once the membrane potential exceeds the firing threshold
Vth, an output spike will be emitted.

Despite its ubiquity and simplicity, the LIF model pos-
sesses inherent limitations when it comes to long-term infor-
mation storage. These limitations arise from two main fac-
tors: the exponential leakage of its membrane potential and
the resetting mechanism. These factors significantly affect
the model’s efficacy in sequential modeling. Motivated by
the intricate structure of biological neurons, recent work has
developed a two-compartment spiking neuron model, called
TC-LIF, to address the limitations of the LIF neuron [26]. The
neuronal dynamics of TC-LIF neurons are given as follows:

I[t] = ΣiwiS[t− 1] + b (7)

Ud[t] = Ud[t− 1] + βd ∗ Us[t− 1] + I[t]

− γ ∗ S[t− 1]
(8)

Us[t] = Us[t− 1] + βs ∗ Ud[t− 1]− VthS[t− 1] (9)
S[t] = H(U [t]− Vth) (10)

where Ud[t] and Us[t] represent the membrane potential of
the dendritic and somatic compartments. The βd and βs are
two learnable parameters that govern the interaction between
dendritic and somatic compartments. Facilitated by the syner-
gistic interaction between these two neuronal compartments,
TC-LIF can retain both short-term and long-term information
which is crucial for effective speech processing [26].

2.3 IHC-LIF neurons with lateral feedback
Neuroscience studies reveal that lateral feedback connections
are pervasive in the peripheral auditory system, and they play
an essential role in adjusting frequency sensitivity of audi-
tory neurons [27]. Inspired by this finding, as depicted in
Figure 2 (b), we further incorporate lateral feedback compo-
nents into the dendritic compartment and somatic compart-
ment of the TC-LIF neuron, represented by If [t] and ILI [t]
respectively. Specifically, each output spike will modulate the
neighboring frequency bands with learnable weight matrices
ZeroDiag(Wf ) and ZeroDiag(WLI), whose diagonal en-
tries are all zeros.

The lateral inhibition feedback of hair cells within the
cochlea is found to detect sounds below the thermal noise
level and in the presence of noise or masking sounds [28, 29].
Motivated by this finding, we further constrain the weight ma-
trix WLI ≥ 0 to enforce lateral inhibitory feedback at the
somatic compartment, which is responsible for spike genera-
tion. This will suppress the activity of neighboring neurons
after the spike generation, amplifying the signal of the most
activated neuron while suppressing other neurons. This re-
sults in a sparse yet informative spike representation of in-

Tasks Front-end
Classifier
Structure

Classifier
Type

Test
Accuracy (%)

Fbank [3] 512-512 Feedforward 83.03
Fbank+LIF 512-512 Feedforward 85.24
Heidelberg[17] 512-512 Feedforward 68.14
Spiking-LEAF 512-512 Feedforward 92.24
Speech2spike [30] 256-256-256 Feedforward 88.5
Spiking-LEAF 256-256-256 Feedforward 90.47
Fbank [3] 512-512 Recurrent 93.58
Fbank+LIF 512-512 Recurrent 92.04

KWS

Spiking-LEAF 512-512 Recurrent 93.95
Fbank 512-512 Feedforward 29.42
Fbank+LIF 512-512 Feedforward 27.23
Spiking-LEAF 512-512 Feedforward 30.17
Fbank 512-512 Recurrent 31.76
Fbank+LIF 512-512 Recurrent 29.74

SI

Spiking-LEAF 512-512 Recurrent 32.45
Table 1: Comparison of different auditory front-ends on
KWS and SI tasks. The bold color denotes the best model
for each network configuration.

put signals. The neuronal dynamics of the resulting IHC-LIF
model can be described as follows:

Is[t] = ΣiwiS[t− 1] + b (11)
If [t] = ZeroDiag(Wf ) ∗ S[t− 1] (12)
ILI [t] = ZeroDiag(WLI) ∗ S[t− 1] (13)

Ud[t] = Ud[t− 1] + βd ∗ Us[t− 1] + Is[t]

− γ ∗ S[t− 1] + If [t]
(14)

Us[t] = Us[t− 1] + βs ∗ Ud[t− 1]− VthS[t− 1])

− ILI [t]
(15)

S[t] = H(Us[t]− Vth) (16)

To further enhance the encoding efficiency, we incorporate
a spike rate regularization term LSR into the loss function
L. It has been applied alongside the classification loss Lcls :
L = Lcls + λLSR where LSR = ReLU(R − SR). Here, R
represents the average spike rate per neuron per timestep and
SR denotes the expected spike rate. Any spike rate higher
than SR will incur a penalty, and λ is the penalty coefficient.

3 Experimental Results
In this section, we evaluate our model on keyword spotting
(KWS) and speaker identification task. For keyword spotting,
we use Google Speech Command Dataset V2 [31], which
contains 105,829 one-second utterances of 35 commands. For
speaker identification (SI), we use the Voxceleb1 dataset [32]
with 153,516 utterances from 1,251 speakers, resulting in a
classification task with 1,251 classes. We focus our evalua-
tions on the auditory front-end by keeping model architecture
and hyperparameters of the backend SNN classifier fixed.

3.1 Superior feature representation
Table 1 compares our proposed Spiking-LEAF model with
other existing auditory front-ends on both KWS and SI tasks.
Our results reveal that the Spiking-LEAF consistently outper-
forms the SOTA spike encoding methods as well as the fbank



Acoustic features Neuron type If ILI LSR Firing rate Accuracy
Fbank LIF - - - 17.94% 85.24%

Learnable LIF - - - 18.25% 90.73%
Learnable TC-LIF - - - 34.21% 91.89%
Learnable TC-LIF X - - 40.35% 92.24%
Learnable TC-LIF X X - 34.54% 92.43%
Learnable TC-LIF X - X 15.03% 90.82%
Learnable TC-LIF X X X 11.96% 92.04%

Table 2: Ablation studies of various components of the pro-
posed Spiking-LEAF model on the KWS task.

Fig. 3: Test accuracy on the KWS task with varying SNRs.

features [3], demonstrating a superior feature representation
power. In the following section, we validate the effective-
ness of key components of Spiking-LEAF: learnable acous-
tic feature extraction, two-compartment LIF (TC-LIF) neuron
model, lateral feedback If , lateral inhibition ILI , and firing
rate regulation loss LSR.

3.2 Ablation studies
Learnable filter bank and two-compartment neuron. As
illustrated in row 1 and row 2 of Table 2, the proposed learn-
able filter bank achieves substantial enhancement in feature
representation when compared to the widely adopted Fbank
feature. Notably, further improvements in classification ac-
curacy are observed (see row 3) when replacing LIF neu-
rons with TC-LIF neurons that offer richer neuronal dynam-
ics. However, it is important to acknowledge that this im-
provement comes at the expense of an elevated firing rate,
which has a detrimental effect on the encoding efficiency.

Lateral feedback. Row 4 and row 5 of Table 2 highlight
the potential of lateral feedback mechanisms in enhancing
classification accuracy, which can be explained by the en-
hanced frequency sensitivity facilitated by the lateral feed-
back. Furthermore, the incorporation of lateral feedback is
also anticipated to enhance the neuron’s robustness in noisy
environments. To substantiate this claim, our model is trained
on clean samples and subsequently tested on noisy test sam-
ples contaminated with noise from the NOISEX-92 [33] and
CHiME-3 [34] datasets. Fig. 3 illustrates the results of this
evaluation, demonstrating that both the learnable filter bank
and lateral feedback mechanisms contribute to enhanced
noise robustness. This observation aligns with prior studies
that have elucidated the role of the PCEN in fostering noise
robustness [16]. Simultaneously, Fig. 4 showcases how the
lateral feedback aids in filtering out unwanted spikes.

Lateral inhibition and spike rate regularization loss.

Fig. 4: This figure illustrates the Fbank feature and spike rep-
resentation generated by Spiking-LEAF without and with lat-
eral inhibition and spike rate regularization loss.

As seen in Fig. 4 (b), when the spike regularization loss and
lateral inhibition are not applied, the output spike representa-
tion involves a substantial amount of noise during non-speech
periods. Introducing lateral inhibition or spike regularization
loss alone can not suppress the noise that appeared during
such periods (Figs. (b) and (c)). Particularly, introducing
the spike regularization loss alone results in a uniform reduc-
tion in the output spikes (Fig. 4 (d)). However, this comes
along with a notable reduction in accuracy as highlighted in
Table 2 row 6. Notably, the combination of lateral inhibition
and spike rate regularization (Fig. 4 (e)) can effectively sup-
press the unwanted spike during non-speech periods, yielding
a sparse and yet informative spike representation.

4 Conclusion
In this paper, we presented a fully learnable audio front-end
for SNN-based speech processing, dubbed Spiking-LEAF.
The Spiking-LEAF integrated a learnable filter bank with a
novel IHC-LIF neuron model to achieve effective feature ex-
traction and neural encoding. Our experimental evaluation on
KWS and SI tasks demonstrated enhanced feature represen-
tation power, noise robustness, and encoding efficiency over
SOTA auditory front-ends. It, therefore, opens up a myriad
of opportunities for ultra-low-power speech processing at the
edge with neuromorphic solutions.
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