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Abstract—Autonomous driving has become a prominent topic
with the rise of intelligent urban vision in communities. Ad-
vancements in automated driving technology play a significant
role in the intelligent transportation system. Autonomous vehicles
(AVs) rely heavily on sensor technologies as they are responsible
for navigating safely through their environment and avoiding
obstacles. This paper aims to outline the vital role of sensor
fusion in intelligent transportation systems. Sensor fusion is
the process of combining data from multiple sensors to obtain
more comprehensive measurements and greater cognitive abilities
than a single sensor could achieve. By merging data from
different sensors, it ensures that driving decisions are based on
reliable data, with improved accuracy, reliability, and robustness
in AVs. This paper provides a comprehensive review of AV
capacity, impacts, planning, technological challenges, and omitted
concerns. We used state-of-the-art evaluation tools to check the
performance of different sensor fusion algorithms in AVs. This
paper will help us to determine our position, direction, the
impacts of AVs on society, the need for smart city mobility
outcomes, and the way to solve the auto industry challenges
in the future. The analysis of AV systems from the perspective
of sensor fusion in this research is expected to be beneficial to
current and future researchers.

Index Terms—Sensor fusion, Autonomous vehicles, RGB cam-
eras, LiDAR points, Radar points, Object detection, and Object
tracking.

I. INTRODUCTION

UTONOMOUS driving is a significant disruptive inno-
vation for the future. It is expected to have a substantial
societal influence in a digital transportation system. A sum-
mary of AV technology and development is provided in this
section to fulfill the customers requirements. According to an
expert (Marlon G. Boarnet) of transportation and urban growth
[1] at the University of Southern California says; “roughly
every two generations, we should reinvent the transportation
infrastructure in our cities in ways that affect the viability of
our communities, our economy, our society, our culture and the
settlement patterns in our cities and countryside.” We believe
AV can significantly change everyone’s life.
AV system has the potential to have a remarkable influence
on environmental benefits, such as lower fuel consumption
(platoon driving might save fuel consumption up to 30%) [11],
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Fig. 1: Example of sensors fusion that used Lidar points, RGB,
and radar data. The right column images show the sensor
fusion applications.
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the highway improvement [2]], [3]], and a 15% decrease in
the number of automobiles needed [1]]. However, according to
John Leonard [4], an MIT professor says: present technology
relies on highly accurate prior maps, which should be kept
up to date instead of changing over time. Another research
scientist at MIT’s Age Lab (Bryan Reimer) believes that the
most significant limiting variables in autonomous driving are
“factors connected to the human experience.” In reality, driving
simulators have been used for full automation trials with
prospective users [].

According to the US traffic department [55]], 22% of vehicle
crashes occur due to adverse weather (i.e., rain, snow, fog,
sleet, severe crosswinds, etc.). Some Asian countries are also
facing smog problems in winter (Pakistan, India, Bangladesh,
etc.). In adverse weather, AVs need different sensors for
navigation and detection purposes. These sensors interact with
their surroundings like human senses (hearing, vision, taste,
smell, and touch). AVs can benefit from the strengths of
several sensors and can make a comprehensive sensor system
in backup (in case one sensor fails, another will operate). The
combination of different sensor domains in AV is known as
sensor fusion, which enables automated vehicles to detect and
recognize the surrounding objects in real time, as shown in Fig.
[} Sensor fusion can help self-driving vehicles better perceive
and respond to their environment.

Several different approaches have been proposed for sensor
fusion in AVs. These approaches produced encouraging results
on commonly available data sets with favorable weather condi-
tions. A Bayesian-based sensor fusion method was proposed
by Ratheesh et al [6]. This research used camera, LiDAR,
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and RADAR sensors using Bayesian neural network (CLR-
BNN) to enhance detection accuracy and minimize uncertainty
in AV. Fuling et al. [7] proposed a Multi-sensor fusion
method based on the estimated motion of nearby objects. This
technique adopted the influence of optical flow tracking, the
complementarity of front and rear visual-inertial odometry,
and a bidirectional loopback strategy to boost the AV system
resilience and adaptability.

Alfred et al. [8] developed a fully convolutional neural
network for LIDAR-camera fusion in AVs for pedestrian de-
tection. It combines Lidar data with several camera images to
deliver the best pedestrian detection solution. Nouar et al. [9]
developed a space object recognition approach that combines
RGB and Depth maps using the CoAtNets network. It used the
lite version of CoAtNet, which is known as CoAtNetO. This
approach had previously been trained on the ImageNet data
set and all of the parameters of all the layers were adjusted
using the SPARK data set.

A. Levels of autonomous vehicles

There are six categories of self-driving vehicles, ranging
from driver assistance to fully AVs. The Society of Automotive
Engineers (SAE) established different levels of AVs, which are
known as the SAE Levels of Automation Driving [10]. These
levels vary according to the level of human engagement in
the act of driving. Fig. 2] shows the six levels of the driving
system (level-0, level-1, level-2, level-3, level-4, and level-5).
The detail of each level is given below.

1) Level-0: This is a basic level in the driving system. It
is managed by a human and has no automation function. In
some vehicles, it has a warning and momentary assistance,
which controls the emergency braking and blind spot warning
features.

2) Level-1: At this level, a driving automation system in
the vehicle supports the steering and acceleration, but not
at the same time. A human driver controls all elements of
vehicle operation at this level, including accelerating, steering,
braking, and keeping an eye on the surroundings.

3) Level-2: At this level, the automation system helps the
driver with steering and acceleration at the same time, but the
majority of protection tasks and environmental monitoring are
still in the hands of the driver. Level 2 AVs are now the most
frequent on the roads.

4) Level-3: At this level, a simple vehicle uses AV sen-
sors to monitor the surroundings and perform more dynamic
driving tasks, such as automatic braking due to unexpected
incidents that occur while driving. The warning alarm, front
vehicle speed, and vehicle distance are also included in this
level. The human driver must be prepared to react at this level.

5) Level-4: Tt shows a high level of automation, where
the vehicle can complete a journey without the driver’s help,
even in difficult conditions. Furthermore, there are certain
restrictions: the driver may only utilize this mode if the
system determines that traffic conditions are safe and no
traffic bottlenecks exist. Recently, the International Standard-
ization Organization (ISO) introduced the new standard (ISO
22737:2021) that devised performance requirements, system

Advanced Driver Assistant System (ADAS)

Autonomous Driving (AD)

Warning and Steering or Steering or Self-driving activate under certain
momentary brake / brake / conditions Self-driving at
assistant acceleration acceleration all time
support support
Automatic Lane centering  Lane centering Traffic jam Local driver ~ Same as level 4
emergency chauffeur less taxi but self driving
braking everywhere

Manual driving and driver should initiate the driver ~ Autonomous features are engaged when a driver is

assistant features not driving manually

Fig. 2: Six levels of autonomous vehicles devised in the SAE
J3016 standard [10].

requirements, and performance test procedures for low-speed
automated driving (LSAD) systems for predefined routes [1].
This standard provides achievable requirements for deploying
level 4 AVs on real roads.

6) Level-5: This is a fully independent vehicle level in
which the driver selects a destination, and the vehicle assumes
all control and accountability for all driving modes. It does
not exist yet, but manufacturers are working toward achieving
level 5 AVs. All human controls, including steering wheels
and pedals, will be removed on level-5 vehicles. This level has
beautiful futures to attract AV lovers to the market. According
to public statements made by automakers such as Ford, Honda,
Toyota, Volvo, and others AVs are likely to hit the market
around 2022-2023 [[L1]. Currently, partially autonomous levels
2 & 3 vehicles dominating the market. The overall registration
share of AVs is expected to reach 12% globally by 2030 [1].

B. Contributions
The main contributions of this article are:

¢ A fundamental analysis of sensors and sensors fusion:
A sensor fusion importance in AV and current challenges
in sensor fusion.

e A complete analysis of recent achievements of sensor
fusion in the light of technical evaluations: It includes
the evaluation of different sensors on the base of advan-
tages and disadvantages in AVs.

e Challenges and in-depth assessment of important au-
tonomous vehicle technologies: It includes deep learning
and traditional approaches for surrounding object detec-
tion, object recognition, and other vehicles movement
detection using different sensors.

e Discussions on present research status and prospective
directions for future researcher: It includes results
comparison of state-of-the-art sensor fusion techniques.
It also includes state-of-the-art assessment matrices to
compare quantitative and qualitative aspects of different
techniques.

The majority of the paper is structured as follows: Section
IT highlights the usage of several sensors in AVs. Section III
explains sensor fusion types and object detection. Section IV
highlights the state-of-the-art sensor fusion networks. Section
V contains the evaluation metrics. Section VI shows the
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Fig. 3: Capability comparison of different sensors in
tonomous vehicles.

au-

performance comparison on different benchmarks. Section VII
explains the discussion and future perspective. Limitations and
conclusions are discussed in Section VIII.

II. SENSORS USED IN AUTONOMOUS VEHICLES

AVs use different types of sensors to navigate safely on
the real road. They behave like people to interact with their
surroundings. According to autonomous car technology en-
gineers (ACTE), [10], self-driving vehicles have high-tech
sensor systems that enable them to see roughly analogous.
Some sensors in self-driving vehicles have overlapping and
redundant functionality, as shown in Fig. 3]

A. Types of sensors:

In this section, we discussed four commonly used sensors
in AV systems, delving into their respective strengths and
weaknesses.

1) RGB camera: The RGB camera is used by different
vehicles to sense their surrounding environment. In order to
capture the entire 360° environment, it is necessary to deploy
multiple cameras on AV. The RGB camera can record the
internal and external views of the vehicles, which is very
helpful for security purposes. The RGB camera images can be
used by self-driving vehicles to see and understand the objects
in their surroundings. The RGB cameras do not operate well
in weather situations such as snowfall, fog, heavy rain, etc.
The RGB cameras only record information that is visible to
the human eye.

2) Ultrasonic sensor: This sensor uses high-frequency
sound waves (like a bat) to estimate distances between obsta-
cles. Ultrasonic sensors can be paired with LiDAR, radar, and
RGB cameras to provide a comprehensive view of a vehicle’s
surroundings, as shown in Fig.[5] They are particularly adept at
locations of poor visibility (e.g. bad weather). For AV systems,
proximity, and moderate speeds are essential. Ultrasonic sen-
sors have been used in vehicle parking for many years. The
parking data is used to train deep-learning models for auto
parking systems. The data gathered from millions of vehicles
is a critical component of the automotive Internet of Things.

Fog Glare

Fig. 4: Illustration of various challenging scenarios for Au-
tonomous Vehicle cognitive system, including interaction with
pedestrians, snow, mist, rain, fog, and glare.

3) LiDAR: 1t is abbreviated for “light detection and rang-
ing.”” It uses pulsed laser beams to measure the distance
between objects. A large number of self-driving vehicles use
it to navigate their surroundings. LiDAR’s advantage lies in its
capability of depth perception, which allows it to determine
the distance between objects from up to 60 meters to within
a few meters. It’s also suitable for 3D mapping in self-
driving technology to navigate the environment safely. Another
advantage of LiDAR is that it covers a large field of view in
360°. In addition, it is cheaper than solid-state sensors and
can measure an object’s velocity and position in 3D space.
The 3D clouds of points from LiDAR are significantly better
at measuring distances than cameras on texture-less surfaces.
For the same purpose, cameras require extensive computer
algorithms to combine several cameras’ views to determine the
distance between objects, such as complicated neural networks
[12].

4) Radar: 1t’s a popular and essential perceptive sensor for
AVs [13]], as shown in Fig. El It is low cost and has a wide mea-
surement range, an advanced capability on target recognition,
and superior adaptability. It maintains the stability, security,
and reliability of a vehicle. Compared to image sensors and
LiDAR [14], radar is able to estimate the relative velocity of
objects up to 250m away with a resolution of 0.1 m/s using
the Doppler effect. It is a key element of safe autonomous
driving and advanced driving-assistance systems (ADAS), due
to its high performance and low cost. Furthermore, it works
well in harsh environments, such as fog, smoke, and dust.
It is highly adaptive to different illumination and weather
conditions.

B. Importance of sensors in Autonomous Vehicles

The idea of a ‘driverless’ vehicle on the road has provoked
the interest of a wide range of people. In autonomous driving,
one sensor failure could be catastrophic. An AV is categorized
into 6 levels, with the driver controlling all parts (brakes,
throttle, steering, etc.) at the most basic level, and an ADAS
system controlling the functions at a higher level. Hundreds
of sensors and actuators are located in various parts of the
vehicle and controlled by a complex system, which is divided
into three parts.
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Fig. 5: Fusion of four different sensors like Camera, LiDAR,
Radar, and Ultrasonic. The right side shows the application of
sensor fusion.

(1) Navigation and guidance: The system that decides where
you are, where you want to go, and how you get there is known
as navigation and guidance. In this area, we use different
instruments and software like Compass, Sextant, LORAN
radio location, and dead reckoning to calculate the degrees
of precision, consistency, and availability, as shown in Fig. [3}

(2) Driving and Safety: The safety of people is the main
concern in AVs. The AV should behave appropriately in all
worst conditions. The AV should be able to see the 360° view
using different sensors. We can put an array of sensors; where
one sensor determines the lane on the road and others detect
the objects in 360° FOV.

(3) Performance: A large amount of the design of an AV and
power management are common challenges. A conventional
vehicle is converted into an autonomous functions vehicle with
the help of specific applications and sub-systems. We need a
proper reliable power system to regulate power management,
total power consumption, and thermal dissipation in AV.

C. Challenges in Autonomous Vehicles

AV systems face several difficulties in devising comprehen-
sive algorithms for sensor fusion in self-driving, as shown
in Fig. ] Research indicates self-driving vehicles have an
increased risk of motion sickness [[15], and passengers who
have never driven feel uncomfortable at lower acceleration
speeds due to the fear of hardware failure. AV technology
brings social implications, e.g. mass employment losses and
changes to health insurance companies and public transporta-
tion systems structures [16]. To tackle the various challenges,
scientists, engineers, and problem solvers are working on light,
and compatible AV algorithms [17]. Over the last decade, nu-
merous research centers and industries have made substantial
progress toward smarter autonomous driving systems [18].

(1) Road conditions: The condition of the roads might be
unpredictable and vary drastically from one region to the next
region. Autonomous driving systems require smooth and well-
marked large highways [17].

(2) Weather conditions: Harsh weather poses a major chal-
lenge for AV driving systems, ranging from sunny days to rain,
fog, smoke, and snowfall. Self-driving vehicles must be able
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Fig. 6: Shows the sensor fusion by Abstraction Level. It has
three sub-types (1) Low-level, (2) Middle-level, and High-level
fusion.

to perform optimally in these conditions, with no margin for
error.

(3) Traffic conditions: Obstacles and too many cars are
common causes of traffic jams [16]]. AVs should be constantly
up-to-date on traffic conditions and be able to navigate varied
traffic jams while sharing the road with other self-driving cars
and interacting with many people. The traffic flow might be
carefully managed and self-regulating. The velocity speed of
AV makes a difference in crowded regions.

(4) Accident liability: In the case of an accident, AV
liability is the most important factor to consider [17]. Who
is accountable for incidents involving self-driving vehicles?
In the case of self-driving vehicles, the software will be the
major component that controls the vehicle and makes all of
the important decisions. In this case, the suggestion is that
a human should physically sit behind the steering wheel.
Unfortunately, Google’s following prototypes do not have a
dashboard and a steering wheel. It is difficult to handle the
vehicle in the case of accident, If there is no steering wheel,
brake pedal, or accelerator pedal. How will the passengers
feel relaxed by using the features of AVs or paying careful
attention to road conditions?

(5) Sensors interference: For navigation, self-driving vehi-
cles employ different types of sensors [18]] like Lidar, RGB
camera, radar, ultrasonic, etc. The lidars are mounted on the
vehicle’s roof, while the other sensors are mounted on the
vehicle’s front end and back end. Radar works by detecting
radio wave that reflects from the surrounding objects. The
reflection time from AV to object is used to compute the
distance between the vehicles and the object. As a result, the
AV driving system takes appropriate action based on the sensor
data.

III. SENSOR FUSION TYPES AND OBJECT DETECTION
A. Sensor fusion types

Sensor fusion is a crucial aspect of self-driving vehicles,
which merges data from multiple sensors to detect, recognize,
and locate objects [19]. It is widely used in the robotic indus-
try, and automated industries for object detection, localization,
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path-planning, and tracking (Fig. ). There are three main
types of sensor fusion:

I - Sensor Fusion by Abstraction Level: It has three sub-
types: low-level, middle-level, and high-level fusion, as shown
in Fig. [6] [20]. Low-level fusion fuses raw data from multiple
sensors (e.g. LIDARs and cameras) and has the potential for
the future fast fusion of hundreds of thousands of points
and pixels in milliseconds. Middle-level fusion combines
independently recognized objects (e.g. obstacles detected by
camera and radar) to get the best estimate of their position,
class, and velocity. High-level fusion merges objects and their
trajectories, but it may lose data if tracking is incorrect.

IT - Sensor Fusion by Centralization Level: It has three
subtypes: (1) centralized (one central unit handles fusion at a
low level), (2) decentralized (each sensor fuses and forwards
data), and (3) distributed (each sensor processes data locally
and sends it to the next unit in late fusion), as shown in Fig.
Aptiv plugs many sensors and fuses them together into
one central unit that handles the intelligence system called
the Active Safety Domain Controller (ASDC) [20].

III - Sensor Fusion by Competition Level: It has three sub
types; competitive, complementary, and coordinated fusion.
(1) Competitive Fusion: When sensors are designed for the
same goal, as shown in Fig. [§] (a). For example, when we
use radar and LiDAR to detect the presence of a pedestrian.
The data fusion process is referred to as redundancy in
this case. (2) Complementary Fusion: It is the process of
employing separate sensors to look at diverse situations in
order to gather information that we wouldn’t have been able
to obtain otherwise. A panorama feature with many cameras
is an example of complimentary fusion, as shown in Fig. [§]
(b). We use the term 'complementary’ because these sensors
complement each other. (3) Coordinated Fusion: It combines
data from two or more sensors to create a new scene that
focuses on the same object, as shown in Fig. [§] (c). Executing
3D reconstruction or 3D scanning using 2D sensors is an
example of coordinated fusion.

B. Sensor Fusion for 2D and 3D Object Detection

1) Sensor fusion for 2D object detection in AV: Sensor
fusion has an important role in object detection 221,
object classification, object analysis, etc. The researcher used
2D cameras and 2D LiDAR points to detect objects on the
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Fig. 8: Shows the sensor fusion by Competition Level. It has
three sub-levels (a) Competitive, (b) Complementary, and (c)
Coordinated Level.

roads. Hsu et al. [23] proposed a sensor fusion strategy for
a collision avoidance system that combined a camera and a
2D LiDAR to achieve high object recognition accuracy using
the pixel analysis technique. The empty area in front of cars
is limited by objects on practically vertical surfaces, therefore
pixel analysis is done with a single camera. Ryu et al.[24]
presented a 2D object detection algorithm to recognize the
object on the road. In this technique, two sensors (camera &
LiDAR) are fused to detect objects. A camera sensor can work
in low-light conditions, and a LiDAR sensor has great near-
field dependability and can determine object location precisely.

Deng et al. [25] combined LiDAR and Camera sensors for
multi-scale object identification, as shown in Fig. [9] Most
of the object detection applications consist of cameras and
LiDAR fusion. Both cameras and LiDAR have certain inherent
flaws. As a result, integrating LiDAR and a camera is a
logical way to overcome each sensory modality’s inherent
weaknesses. Multi-sensor fusion approaches use deep-learning
methods, which have achieved outstanding detection results
on large-scale objects like cars and buses. This is due to the
advancement of deep learning-based approaches. Chellappa
et al. [26] proposed a 2D technique to fuse the video and
auditory sensors for vehicle detection and tracking. In this
technique, an approximate estimate of the target direction-of-
arrival (DOA) is used in the detection phase, which is based on
a beam-forming algorithm. The approximate target position in
the video is designated by this initial DOA estimate. The DOA
is adjusted using video data and moving target detection given
to the original target position. A Markov chain Monte Carlo
method is applied for integrated audio-visual tracking in
this technique.

Silva et al. [28] proposed a sensor fusion technique that
improves the navigation of visually impaired persons using
everyday mobile devices, sensors, and cloud computing re-
sources. In this technique, object detection and recognition
are based on sensor data, including sonar, camera, LiDAR,
and inertial sensors. This method includes grid-based obstacle
localization using sonar sensors and accurate obstacle recogni-
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tion with camera sensors. Song et al. [29] proposed a reliable
Vision-Based Relative-Localization technique using a LIDAR
sensor and RGB-depth camera. A LiDAR and an RGB-D
camera sensor are used to measure the three-dimensional (3-
D) and two-dimensional (2-D) position information of a target
in the proposed method. A low-level vision-LiDAR fusion
algorithm, visual tracking approach, and depth information
from the structured light sensor are employed to find a target
object.

2) Sensor fusion for 3D object detection in AV: 3D
object detection modality is increasing in the vehicle industry.
The existing methods applied fusion methods on recognition
data [30] and also successfully applied using advanced LiDAR
device to detect the 3D object in AVs. The sensor fusion
system proposed by Kim et al. can distinguish numerous
3D objects using 2D projection images and tactile data. This
system aims to increase the rate of object recognition. A tactile
sensor is a device that captures data by interacting with its
surroundings directly. Tactile sensors are often inspired by
the biological sense of cutaneous touch, which can detect
mechanical stimulation, temperature, and pain, among other
things (although pain sensing is not common in artificial
device sensors). Tactile sensors are utilized in hardware,
security systems, robotics, and computers. Tactile sensors are
widely utilized in touchscreen devices like phones and PCs.
The LiDAR sensor is widely used in 3D object detection in
different vehicle industries, as shown in Fig. @ Wen et al. [32]
proposed a single shared voxel-based backbone for fast and
accurate 3D object detection in LiDAR-Camera based AVs.
First, this study offers an early-fusion method for quick 3D
object recognition using only one backbone, which achieves a
good balance of accuracy and efficiency. It comes with a new
point feature fusion module that extracts point-wise features
from raw RGB images and fuses them with their matching
point cloud without using a backbone.

A multi-stage 3D object detection fusion technique was
proposed by Jiarong et al. [33]. This is an end-to-end learnable
architecture that takes LiDAR point clouds and RGB images
as inputs and produces high-precision oriented 3D bounding
box prediction using a second-stage detector and 3D region
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proposal subnet, as illustrated in Fig. [T1]

Hechuang et al. [34] use intelligent machine learning visual
features to make a multi-sensor fusion module for the de-
tection of an object. This approach investigates multi-sensor
fusion approach characteristics in an AV system. According
to the needs of the study, an enhanced efficient semantic
segmentation network model (Enet-CRF) is built with the help
of the efficient neural network (Enet) model. This network
architecture combines the original Enet with a CRF-RNN
back-end optimization network, which boosts the classification
performance by limiting the position relationship between im-
age pixels and RGB data. Experiments show that the developed
Enet-CRF improves the obstacle classification performance of
pedestrians and bicycles. It fuses the higher-order features of
LiDAR and vision sensors using a deep learning network. This
method augments the original Enet-CRF network model with
high-precision radar information.

C. Autonomous Vehicles Data sets

This section describes the public data set of traffic for object
detection and tracking, as shown in Fig. @ Where the number
of new 3D detectors utilize fully supervised models with object
bounding boxes learned from labeled data.

1) nuScenes: 1t is a basic data set that contains visible
and 3D Lidar data. It covers the 360° view of the vehicle by
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SADDF [47], MMWR [48], VNV-IR [49], MGR [50], IEEAD [51]], MMSF [52], DNNAV [53], and SSF-TA [54].
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Fig. 13: The 3D detection approaches in Autonomous Vehicles; Vote3D [55], VeloFCN [56], Vote3Deep [37], 3D FCN [12],
MV3D [58], DoBEM [59], VoxelNet [60], F-Pointnets [61]], PointFusion [62]], SHPL [63], AVOD [64], RT3D [65], Complex Yolo
[66], BirdNet [67], TopNet [68], LMNet [69], PIXOR [70], FAF [71], Yolo3D [72]], SECOND [73], ContFuse [74], HDNET
[75], RoarNet [76], Ipod [77], Point RCNN [78], PointPillars [79], SIRFNet [80]], FConvNet [81], FVNet [82], LaserNet
[83], SHARPNEet [84], VoteNet [85]], MVXNet [86], LaserNet+ [87], SCANNet [88]], MMF [89], STD [90], Voxel-FPN [91]],
PartA [92], FastPointRCNN [37]], MEGV [93], StarNet [94], MLOD [95], AWSF [96], MVF [97], Patch [98], TANet [99],
HoptspotNet [100], PVRCNN [101], SegVoxel [102], 3DSSD [103]], BirdNet+ [[104].

placing different sensors on the vehicle [[105]. It has 23 labeled
categories. This data set has been collected from over 1000
scenes with various object locations across houses, greenery,
road signs, vehicles, and traffic lanes in various illumination
conditions. It collects point cloud data using a Velodyne HDL-
32 LiDAR.

2) ApolloScape: This data set is related to autonomous
driving specifically [106]. It includes a trajectory data set
from a 3D perception LiDAR detection and tracker. A mobile
LiDAR scanning sensor was used to collect point cloud data,
which enables an accurate and solid point than Velodyne
LiDAR. About 100,000 images and 80,000 LiDAR point cloud
images are included in this data set. For 3D point cloud label-

ing, ApolloScape has used a semi-automatic strategy. These
annotations are manually improved after utilizing PointNet
[1O7] to pre-label the over-segmented point cloud clusters. It
is important to note that ApolloScape’s marked 3D box only
confines the observable individual object, not the entire object.

3) Waymo: It consists of 1,000 scenes that are used for
training and validation purposes. For testing purposes, it
contains 150 separate scenes that are not included in 1000
scenes [108]. Waymo is the first company to offer a range
of images that synchronize the camera and the LiDAR data
points. Waymo is working on a LiDAR Honeycomb with a
wide field of view for acquiring point clouds. Elongation is
one of the sensor features that Honeycomb could provide. It
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boasts a 360° horizontal FOV and a 95° vertical field-of-view
(FOV), as well as a zero-degree minimum range, which makes
it simpler to identify and avoid objects in close proximity.

4) FLIR Data: This data set consists of two sensor do-
mains; one is RGB camera, and the second is thermal. It
can detect infrared rays or heat reflected from objects. The
autonomous driving assistant system (ADAS) outperforms
conventional sensor technologies such as visible cameras,
LiDAR, and radars. This data set provides both complimentary
and unique advantages. FLIR has used thermal sensors in
over 500,000 vehicles for driver alert systems. This data
set contains 14,000 images, including brief video clips and
random image samples. FLIR thermal sensors can identify
and categorize people, bikers, animals, and vehicles in tough
environments such as complete darkness, haze, smoke, bad
weather, and intense light. This data set is open-sourced for
training purposes and available at (www.flir.eu).

5) KITTI: Karlsruhe Institute of Technology and Toyota
Inc. (KITTI) developed the first and most popular 3D object
detection data set [1Q9]. It significantly increases the use of
recognition systems in robotics applications. The autonomous
driving platform collects actual urban scene data using LiDAR,
visible cameras, and a localization sensor system. There are
15 vehicles, 30 pedestrians, and varying degrees of obstruc-
tion in each frame, including 2D image annotations and 3D
point cloud annotations. In 2017, KITTI released 3D object
detection benchmarks, which included 3D and bird’s eye view
testing. Hundreds of submissions have been made to the KITTI
3D benchmark, which makes it the most popular benchmark.

IV. STATE-OF-THE-ART SENFUSION NETWORKS

In the last decade, many 2D and 3D sensor fusion networks
have been proposed. Figures ?? show the state-of-the-art 2D
and 3D algorithms, respectively. The related work of 2D
and 3D networks has been shown in this timeline (2014 to
2022). For 3D networks, We divided all algorithms into three
groups based on point cloud featurization methodology: (1)
projection-based approaches, (2) voxel-based approaches, and
(3) point-based approaches, as shown in Fig. [I3] For the 2D
network, we divided all algorithms into four groups (1) deep
learning, (2) non-deep learning, (3) semi-supervised, and (4)
traditional methods as shown in Fig. The 2D networks
are explained in section III (A-I). The methodology, features,
and limits of each approach in 2D and 3D networks are
summarized in Table I. The following subsections examine
the major challenges and technical evaluation of 2D and 3D
fusion networks.

A. Front View Projection Based Networks(FVPBN)

These networks used front-view data of different sensor
domains. Recently, Dario et al. [110] proposed a 2D sensor
fusion technique for an autonomous navigation system. The
vehicular Synthetic Aperture Radar (SAR) is used to improve
radar imaging capacity and vehicle motion, providing two-
dimensional (2D) images of the front view.

Jing et al. [L11] proposed a commodity sensors-based
network for navigation among pedestrians (NAP) in AVs. A

modified velocity-obstacle (VO) algorithm computes velocities
and navigates a robot to a target using probabilistic partial
observations of the environment. In this technique, an optical
flow estimates approach is used to detect the object and sensor
fusion in AV. The NAP system benefit is that it uses common
visual sensors, such as a mono-camera and a 2D LiDAR, to
forecast the velocities and positions of the front view obstacles
explicitly.

Hand-generated Front View (FV) Features: The 2D FV map
is like a cylindrical image with several feature channels in
each pixel. To completely retain the point cloud attributes,
researchers established various statistical FV features, which
can improve object localization and classification accuracy.
The most widely used FV features are shown in Table II.
Li et al. demonstrated the VeloFCN [356], a one-stage vehicle
detector that uses a CNN for 3D vehicle detection in a LiDAR
FV map. They used a 2D fully convolutional network (FCN)
to determine object score and position using a 2-channel FV
map with length and height information [12].

According to Minemura et al. [82], the FV map can store
the 3D information of the vehicle. They suggested LMNet
[112] and created a 5-channel input FV map. This technique
uses optical flow estimates approach parameters. On the CPU,
LMNet does a multi-class detection of cars, pedestrians, and
bikes at a rate of 10 fps (frames per second). It is an
appropriate technique for low-power robotic devices such as
flying drones and housework robots. To reduce data loss during
projection, Zhou et al. proposed the FVNet [82], which is
called a two-stage detector. They make a three-channel FV
map using height, width, and brightness data, then scale it up
through closest neighbor interpolation to provide more detail.

B. Bird Eye View Based (BEVB) Networks

The BEVB projection map is created by projecting the
whole point cloud onto the RGB map. The ground object
length and width are preserved by the BEVB map, which
simplifies the calculation of the object’s yaw angle. Ground
plane projection solves object size and occlusion difficulties in
ground-based outside-scene applications such as autonomous
driving and object location.

Fusing Multi-View Features: The BEVB maps are fre-
quently combined with data from other sensors. It uses late
and deep fusion schemes for fusion frameworks. Chen and his
colleagues were the first to use the BEVB map to recognize 3D
objects in the MV3D [58] network. Where, a Region Proposal
Network (RPN) [84] locates object proposals in BEVB CNN
feature maps, as shown in Fig. [T4 The obtained multi-sensor
characteristics are then merged to enhance the 3D boxes using
a deep fusion approach. A point density feature is sliced into
12 height features, and a reflecting feature map is sliced into
14 channels in the input BEVB map. The maximum height of
the grid points in the current slice is calculated by each map.

BEVB is extrapolated to 3D boxes using various height pri-
ors, which are then projected onto the camera image view and
LiDAR front view map to crop the associated proposal region.
In the second step, a deep fusion network with element-wise
means hierarchically fuses the fixed-length pooled proposal
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Fig. 14: Shows Bird Eye View Projection based network
for 3D object detection MV3D [58]]. It takes three inputs
(LiDAR bird view, LiDAR front view, and RGB image). The
approach begins by generating 3D object proposals from a
LiDAR bird’s-eye-view map and then projecting them over
three views. A deep fusion network is then employed to
combine ROI-pooled region-wise features from each view. The
fused features are used to predict the object class with 3D-
oriented boxes.

features of three perspectives. After that, these fused features
are utilized to anticipate object orientation and enhance 3D
boxes. Three multi-view 3D detection networks have been
discussed in the literature: AVOD [64], MLOD [95]], and
SCANET [88]. For multi-view purposes, they employ the
MV3D [58]] detection architecture.

AVOD [64] does a better job than MV3D [58]] using the
feature extractor to design the BEVB map resolution and
down-sampling duration to produce a high-resolution feature
map with small object features. In order to build highly
expressive feature maps, bottom-up cross-layer connectivity
is applied in the feature extraction layers, as inspired by FPN
[61]. The AVOD only examines the BEVB map and conducts
RPN on both the BEVB and image map at the same time.
Before region-wise fusion, a 1 x 1 convolution [84] is used to
filter the outside scene and minimize the dimension of proposal
features to improve RPN calculation performance. Deng et al.
[95] proposed a multi-sensor network to overcome the problem
of low image feature usage.

C. Voxel-Based (VB) Networks

The purpose of voxel-based techniques is to turn irreg-
ular point cloud data into a uniform matrix that can be
used in an AV system for 3D object detection. The three-
dimensional space is partitioned into voxel grids of varying
sizes. Each voxel has unstructured points. the Voxelization
is three-dimensional, which preserves the underlying point
cloud data in a 3D structure. However, there are many empty
voxels due to the sparse LiDAR point cloud. The 3D spatial
computation rises exponentially as the voxel resolution gets
better. The efficient parsing of sparse voxels is difficult for
voxel-based algorithms.

Object Localization in Large 3D Voxel Space: Object lo-
calization in 3D voxel space is a big challenge. The most

widely used paradigm for object localization in 2D images is
the sliding window. Due to the increased computing burden
caused by the additional dimension of searching space, we
use a 3D voxel technique. Wang and Posner [55] proposed a
voting schema to make use of the sparsity inherent in point
cloud data. They only evaluate the points in each sliding
window position that aren’t empty when calculating the object
classification score. They start by vocalizing the whole point
cloud and assigning a feature vector to every occupied voxel
point.

Engelcke et al. proposed the Vote3D [55] technique that uses
sparse convolutional layers to reproduce the voting schema.
They use the Rectified Linear Unit (ReLU) and the /; norm
to urge the intermediate layer in CNN. Nonlinear CNN is
more complicated and expressive than the linear model, and
it greatly improves detection accuracy. The same authors
describe a 3D FCN network [12] that automatically recognizes
objects on the whole output map without the need for an
object selection phase by expanding the prior 2D [[12] that
is performed in a 2D FV map.

Combining Image Features: Two primary networks are
proposed to merge voxel and camera image characteristics.
The first is the vertical voxel features that are obtained and
stored in each BEVB pixel position, and the second is to fuse
the pseudo-BEVB map network.

D. Point-Based (PB) Networks

Both voxel-based and projection-based approaches regular-
ize the raw point cloud into image grids or 3D voxel points
to perform dense convolution for feature extraction and object
recognition. The regularity procedure is complicated in this
scenario, and natural point geometry is lost. To minimize
information loss, it is appealing to model the raw point cloud
feature directly. Since 2017, the point segmentation approach
PointNet [61] has created a unified deep network architecture
that collects local and global point characteristics by directly
consuming unordered point sets. The idea of directly process-
ing point clouds has quickly extended to 3D networks. As a
result, 3D object detection is accessible and independent of
point cloud type. In this section, we first go over some of the
most important related works on point-wise feature extraction.

For point segmentation: PointNet network uses 3D point
cloud coordinates and extracts point features and object class
labels. After extracting the class label, the saliency-guided
transformer network (STN), and multiple layer perceptions
(MLPs) network are employed to learn a high-dimensional
local geometry of each point. For subsequent point-wise
semantic segmentation label prediction, the global semantic
features are merged with the local geometry of each point
as a point feature. Pointnet models outperform the voxel-
based approaches. In a hierarchical approach, the authors
enhance PointNet [61] to PointNet++ [[107] to incorporate
more local neighbor attributes for data points. PointNet++ uses
the Furthest Point Sampling (FPS) approach to create local
regions to aggregate neighboring points in center points.

Point Features for Image Refining: PointNet and PointNet++
were designed for pixel-wise segmentation and single ob-
ject detection applications, respectively. These methods faced
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difficulty to detect the 3D object in 3D space. The image
detectors in PointNet were used to trim objects from camera
images. The object boxes are then refined using the cropped
region attributes. Each 2D bounding box predicted by the
image detector F-point network (FPN) [61] is transformed
to a 3D frustum using the camera projection matrix. Shin
et al. create a variety of networks utilizing RoarNet [76]
to reduce the search space for the 3D object. They begin
by adapting the Faster RCNN [37] 2D detector to generate
2D proposal boxes with 3D postures. To generate 3D box
predictions, the points in the vertical cylinders centered on the
centroid of each box are passed into a simple PointNet [61].
Xu et al. introduced PointFusion [[62], which uses the PointNet
feature and a simple image feature to predict 3D bounding
boxes from 2D image crops. They present a unique dense
fusion architecture that predicts dense 3D boxes using each 3D
point of suggestion. By extracting point-wise information from
PointNet-based networks, PV-RCNN [101]] enhances 3D voxel
CNN proposals. The FPS method encodes a point-wise feature
from a small sample of features selected from the whole point
cloud.

V. EVALUATION METRICS
A. mAP with a Threshold on IoU:

The mAP value with 3D IoU is used to analyze an object’s
overall detection performance. The average precision (AP) is
used to determine the mAP score of all classes C.

mAP = L > AP, )
|C| ceC

where C is the set of classes. A series of ranked detection
is used to determine the AP. Ranking detection is usually
assigned iteratively in most circumstances. The intersection
over union technique is used to calculate the 3D IoU, which
employs a 3D prediction box and 3D ground truth values.
The IoU is used to calculate the precision of object position
[L09l [113]]. For overall performance, we used the TP (true
positive) and FP (false positive) values for each object. We
apply a certain threshold on the IoU score to calculate the
TP and FP scores. It’s a TP if the threshold matches the
IoU threshold value; else, it’s an FP. The KITTI benchmark
has a 3D IoU threshold of 0.5 for motorcycles and 0.7 for
automobiles. The proportion of all correct detection (TP) in
all detection N,;; is known as precision, which represents the
total number of detection that is calculated as:

_ Nrp
Nai’
The recall is defined as the percentage of all accurate de-

tections (TP) in ground truth divided by the total number of
ground truths:

2

N
p=_——1r 3)
Nai-cr
Precision and recall are one-sided descriptions of model per-
formance. The P-R (Precision-Recall) curve might be param-
eterized by increasing the number of ranked detection used in

computing precision and recall. The model’s accuracy and per-
formance were assessed using the P-R curve. AUC represents
the area of the P-R curve. In reality, there are primarily two
AP approximations: (1) the N-point interpolated AP metric
used in the KITTI and ApolloScape benchmarks, and (2) the
AUC-based AP metric used in the Waymo benchmark [[108]].

1) N-Point Interpolated AP Metric: The average precision
(AP) is a measure of the mean precision at a set of N equally-
spaced recall levels [qo, go+ 42, qo+ 2(?\}:30) , -, q1], Which
is denoted as S. This begins at the recall point ¢y and finishes
at the recall point ¢;:

1
AP = N Z ]Dinter(r) 4)
reS

The precision Pjyscr(r) at each recall level r is interpolated
by the highest precision at a score larger or equal to r to
maintain the monotonicity of the P-R curve, which is described
as:

P)im‘/e'r(r) = %&;ﬁp(’lﬁ) (5
where 7 is the highest precision score at recall level r. The
11-Points Interpolated AP measure is a subset of 11 recall
levels S11 =[0,0.1,0.2,...1]. It is used in the early edition of
the KITTI benchmark. Simonelli et al. [[114] proposed a 40-
point Interpolated AP metric to use additional information to
approximate the P-R curve and eliminate precise computation
of the O recall location for properly judging the quality of
detection algorithms. S40 = [1/40,2/40,3/40,...1] denotes
the subset of 40 tested recall levels. All object recognition
task analyses in the KITTI benchmark will use the 40-Point
interpolated AP measure started in 2019.

In some cases, the AP measure is incapable of distinguish-
ing between the heads and tails of the objects. The orientation
of the 3D box must be evaluated to determine detection quality.
KITTI presents an average orientation similarity (AOS) metric
that determines the mean orientation similarity s at recall r
to quantify the orientation prediction. AOS is a term used to
define a group of persons who share some features.

1
AOS = N 2 max s(r) (6)

resS

The normalized cosine of the orientation similarity s[0, 1]
is defined as:

1+005V96i75i:{0,2'6TP }

1,i€ FP
i€D(r)

)
Where D(r) is the set of all object detection with a recall
rate of r and J; is the angle variation between the recognition
1 and the ground truth. §; determines whether the detection 4
has been assigned to a ground truth or not.
2) Area Under Curve (AUC) Based AP Metric: AP is
calculated by the AUC curve of PR in large-scale Waymo
benchmark [108]]. It is defined as:

1
AP = 100/ max {p(r)|r > r}dr (8)
0
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To avoid excessive AP caused by excessively sparse P-R curve
sampling, the maximum gap between two consecutive points
in recall value is kept to a pre-set threshold (set to 0.05).
If this is not done, further points are added between the two
consecutive points. To measure the orientation predictions, the
average precision heading (APH) metric is proposed, which is
defined as:

1
APH = 100/ max {h(r)|r > r}dr )
0

where h(r) is calculated in the same way as p(r), but each
TP is weighted by its heading accuracy min(|0|, 27w|0|)/7s.

B. nuScenes 3D Detection Metric

The nuScenes benchmark builds a TP by measuring the
2D center distance d on the ground plane between detection
and ground truth instead of utilizing IoU. We can differentiate
detection performance from object size and orientation when
we apply the IoU measure to minimize the mismatch of TP
objects with small areas. The AUC of a normalized P-R curve
is used to generate AP, which excludes points with a recall or
accuracy of less than 10% to eliminate noise in low precision
and recall regions. Averaging the AP across the D threshold
generates the mAP.

mAP

PIPIE

CEC deD

(10

e H

A set of true positives (TP) are quantified in terms of

size, orientation, characteristics, box position, and velocity, in
addition to the mAP metric.

VI. PERFORMANCE COMPARISON ON DIFFERENT
BENCHMARKS

This section contains the comparisons of algorithm perfor-
mance in various scenarios, such as average precision, detec-
tion accuracy, LiDAR point cloud sparsity, object densities,
etc. Tables I, II, and III compare the algorithms’ performance
in three public benchmarks: KITTI [109], nuScenes [105]], and
Waymo [108]. The distribution of data in these three data sets
varies. Based on the object height, occlusion, and truncation
rate, KITTI has three primary object classes (vehicle, pedes-
trian, and bike) and shows three categories (Easy, Moderate,
and Hard). The nuScenes benchmark comprises eleven object
classes that are imbalanced.

The nuScenes benchmark has seven times more annota-
tions and fifty times more scenes as compared to the KITTI
benchmark. It has a few LiDAR points as compared to other
benchmarks, which are explained in Section IV, and it employs
the nuScenes detection score (NDS) as the ultimate assessment
metric. There are four object classes in the Waymo benchmark.
It contains the most LiDAR points per frame and 3D box
annotations and collects training data from a variety of weather
scenarios. We compared algorithm accuracy to calculate the
algorithm speed in the most recently submitted benchmark
KITTI, as illustrated in Table I. Early project-based techniques
have a fast detection speed because they compress 3D input
to 2D and employ mature 2D CNNss to detect objects. Despite

Networks AP(%) Runtime ek
(sec) Projection Voxel Point
TopNet 10 0.10 v X X
RT3D 20 0.80 v X X
BirdNet 28 0.12 v X X
BirdNet+ 52 0.10 v X X
MV3D 63 0.36 v X X
AVOD 63 0.11 v X X
MLOD 68 0.13 o X X
SCANet 69 0.18 v X X
MMF 78 0.08 v X X
VoxelFPN 78 0.02 X v X
PointPillars 74 0.018 X v X
TANet 76 0.030 X v X
SECOND 76 0.04 X v X
SegVoxel 76.5 0.04 X v X
SARPNet 77 0.05 X v X
FP-R-CNN 78 0.07 X v X
Patch-Ref 80 0.17 X v X
PV-RCNN 82 0.09 X N X
F-COV Net 79 0.047 X X v
F-Point Net 71 0.16 X X v
PA2-Net 79 0.07 X X v
STD 80 0.07 X X v
3DSSD 81 0.08 X X v

Fig. 15: Shows the accuracy and run time of different algo-
rithms in autonomous vehicles on KITTI benchmarks.

its ease of use, the discretization process diminishes accuracy
and leads to information loss. The detector’s accuracy can be
improved by fusing it with a camera image, but its speed can
suffer as a result. PointNet’s performance highlights research
that directly helps the 3D geometry from raw point cloud data.
The detection accuracy of point-based approaches is good.
On the other hand, the processing of point-by-point features
takes time. Voxel-based techniques employ a PointNet-based
module to extract local point characteristics in each voxel after
downsampling the z-axis, which is followed by an efficient 2D
detector in an organized voxel grid. These methods improve
the speed and accuracy of detection.

Tables I, II, and III clearly indicate that detection perfor-
mance varies with item type. The average AP of a car is
30% greater than the AP of a pedestal and 25% higher than
the AP of a bike in the KITTI benchmark. The difficulty is
increased by the nuScenes data set, which has more categories
and uneven training samples. The nuScenes with the biggest
AP difference from the same detection algorithm are 70%.
This issue might be explained in three distinct ways. First, the
LiDAR points are more susceptible to occlusion, and small-
size object classes. This also shows that average detection
precision (AP) in the KITTI benchmark is lower in the hard
and moderate difficulty levels as compared to the simple
difficulty level. Furthermore, due to fewer points, a vehicle
of distant objects performs worse in the Waymo benchmark
as the distance increases. Second, the training on an unbal-
anced sample generates uneven detection results across object
classes. The sample has a significant amount of vehicle data
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TABLE I. Object detection algorithms evaluation on KITTI data set: Vote3D [55], VeloFCN [56], Vote3Deep [57], 3D FCN
[12], MV3D [58]], DoBEM [359]], VoxelNet [60], F-Pointnets [61], PointFusion [62]], SHPL [63]], AVOD [64], RT3D [63],
ComplexYolo [66], BirdNet [67], TopNet [68], LMNet [69], PIXOR [70], FAF [71], Yolo3D [72]], SECOND [73]], ContFuse

[74], HDNET (73], RoarNet [76], Ipod [[77], Point RCNN [/78],

PointPillars [[79], SIRFNet [80], FConvNet [81], FVNet [82],

LaserNet [83], SHARPNet [84], VoteNet [83], MVXNet [86], LaserNet+ [87], SCANNet [88]], MMF [89], STD [90], Voxel-
FPN [91]], PartA [92]], FastPointRCNN [37]], MEGYV [93]], StarNet [94], MLOD [93], AWSF [96], MVF [97]], Patch [98]], TANet
[99], HoptspotNet [100], PVRCNN [101]], SegVoxel [102], 3DSSD [103]], BirdNet+ [104].

Lidar Camera Car Pedestrian Cyclist mAP Time
Method Data Easy Mod Hard Easy Mod Hard Easy Mod Hard

TopNet BEV No 12.67 9.28 7.95 10.40 6.92 6.63 2.49 1.67 1.88 5.96 0.101
RT3D BEV No 23.74 19.14 18.86 - - - - - - - 0.09
BirdNet BEV No 40.99 27.26 25.32 2.04 17.08 15.82 43.98 30.25 27.02 24.86 0.11
BirdNet++ BEV No 70.14 51.58 50.03 37.99 31.46 29.46 67.38 47.72 42.89 43.68 0.100
MV3D BEV Yes 74.97 63.63 54.00 - - - - - - - 0.36
MLOD BEV Yes 77.24 67.76 62.05 47.58 37.47 35.07 68.81 49.43 42.84 51.55 0.120
SCANet BEV Yes 78.65 68.12 61.44 48.41 37.93 34.10 68.71 53.38 47.59 53.14 0.17
F-PointNet Point Yes 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.02 56.02 0.17
AVOD-FPN BEV Yes 77.63 63.78 55.89 50.46 42.27 39.04 63.76 50.55 44.93 56.02 0.100

PointPillars Voxel No 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 44.93 52.2 0.1

PointRCNN Point No 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53 57.94 0.1
TANet Voxel No 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53 59.91 0.035
SECOND Voxel No 84.65 75.96 68.71 - - - - - - - 0.04
SegVoxelNet Voxel No 86.04 76.13 70.76 - - - - - - - 0.04
F-CNET Point Yes 87.36 76.39 66.69 52.16 43.38 38.80 81.98 65.07 56.54 61.61 0.47
SARPNET Voxel No 85.63 76.64 71.31 - - - - - - - 0.05
VoxelFPN Voxel No 85.64 76.70 69.44 - - - - - - - 0.02
Patch R Voxel No 89.84 78.41 73.15 - - - - - - - 0.15
FP RCNN Point No 85.29 77.40 70.24 - - - - - -- - 0.06
MMF BEV Yes 88.40 77.43 70.22 - - - - - - - 0.08
Part ANet Point No 87.81 78.49 73.51 53.10 43.35 40.00 79.17 63.52 56.93 61.82 0.08
3DSsD Point No 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90 62.65 0.04
STD Point No 87.95 79.71 75.09 53.29 42.47 38.35 78.69 61.59 55.30 61.26 0.08
PV-RCNN Point No 90.25 76.82 52.17 52.17 43.29 40.29 78.60 63.71 57.65 62.81 0.08

TABLE II: Object detection algorithms evaluation on

nuScene data set:

MEGVII [93]], SHARPNEet [84]], PointPillars [[79].

Method Lidar Data|Camera| Car Truck Bus Troller | Vehicle | Person Motor Bike Cone Barrier mAP NDS Time (s)

MEGVII Voxel No 81.10 | 48.50 54.90 42.90 10.50 80.10 51.50 22.30 70.90 65.70 52.80 63.60 -
SHARPNET Voxel No 59.90 | 18.70 19.40 18.00 11.60 69.40 29.80 14.20 44.60 38.30 32.40 48.40 0.070
PointPillar Voxel No 68.40 | 23.00 28.20 23.40 4.10 59.70 27.40 1.100 30.80 38.90 30.50 45.30 0.020

TABLE III: Object detection algorithms evaluation on Waymo
RCNN [78]].

data set: PointPillars [[79], MVF [97], PVRCNN [101]], Point

due to the high frequency of vehicles on real roads. Robust
object detection may be learned by using learning-based
methods from a large number of training examples. However,
developing a model for object classes with small training
data is difficult. Third, the detection network needs to modify
the convolution kernels and hyperparameter sizes for fine-
tuning. In the nuScenes benchmark, MEGVII exhibits a

Difficulty Method Lidar Data Camera 3D mAP (loU=0.7) 3D mAPH (loU=0.7)
Representation w/o 0-30m 30-50m 50- inf Overall 0-30m 30-50m 50- inf Overall
Level-1 PointPillar Voxel No 81.01 51.75 27.94 56.62 - - - -
MVF Voxel No 86.30 60.02 36.02 62.93 - - - -
Level-2 PV-RCNN Voxel No 91.92 69.21 42.17 70.30 91.34 68.53 41.31 69.69
RV-RCNN Voxel No 91.58 65.13 36.46 65.36 91.00 64.49 35.70 64.79

balanced detection performance across distinct object classes.
They improve multi-class detection in a particular way by
using class-balanced data augmentation and training data.

VII. DISCUSSION AND FUTURE PERSPECTIVE

The integration of various sensors domain in autonomous
vehicles provides much-needed support and assistance to the
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vehicle during difficult conditions such as harsh weather, stop
signs, traffic congestion, roadside markers, checkpoints, speed,
etc. However, the accurate detection of objects for commercial
purposes is still a constant dilemma. In this section, we
provide a comprehensive comparison of different sensor fusion
frameworks.

A. Sparsity of Raw Data

As we raised the resolution of LiDAR data in 3D space, the
cost of the device increased. Some projection-based techniques
downscale high-resolution LiDAR points to collect high-level
deep CNN features [L15) [116], but the small-size object
shrinks or vanishes. Critical point sampling exacerbates the
sparsity problem in point-based methods. The synthesis of
3D objects and complete shape geometry information from a
partial point cloud are used to compensate for sparse LiDAR
points.

B. Whether to Fuse Multi-Sensor Data

The camera can record the colors and textures of an object,
which can then be used with LiDAR data to derive higher-level
information [8]. Depending on the use case, there are various
fusion techniques that can be applied. Early 3D detection
systems [31] relied on image detection for sensor fusion,
while current systems leverage deep fusion schemes that add
region-wise detail to objects for more accurate bounding box
regression, as shown in Fig. [I5] Additionally, recent advances
in 3D feature extraction have enabled the evaluation of 3D
boxes solely via point clouds, enabling a high recall rate. The
3D data from LiDAR can also be leveraged to enhance sensors
such as infrared cameras and radars, allowing them to perform
under a variety of conditions. Testing these algorithms in a
laboratory setting is the first step to take on a path toward real-
world applications. However, the evaluation should also factor
in the value of the diverse sensor collaborations, in addition
to the timestamps and calibration matching.

C. Performance Verification in Complex Scenarios

In rainy and foggy conditions, the RGB camera and LiDAR
did not work well. Rain and fog particles are easily reflected
by LiDAR in the real environment, causing noise in the LIDAR
data. Similarly, the RGB camera produces visual information
of poor quality in foggy conditions. On the other hand, thermal
and radar technologies are proven to have positive results in
such inclement situations. So, potential research is necessary
to make robust object detection algorithms that can work with
noisy data. It is also expected that multi-class object detection
[21} 130, [117] methods will be in high demand in the future.
In addition, the intra-class scale difference in the 2D images
induced by the camera viewpoint should have the same 3D
size [103]]. The majority of anchor-based algorithms predict
the object bounding box against a predefined 3D box based
on data set statistics [12, I55]. Furthermore, algorithms must
be capable of handling the learning of disparate classes. As
a result, model construction is a promising research issue for
unsupervised and semi-supervised learning of small sample
data.

D. Perspective of Large-Scale Application of Object Detection

We can’t easily modify network parameters for different in-
put sensors or application settings since detection performance
is heavily dependent on the training data set. Transfer learning
is a simple method for retraining an existing model using a
small amount of additional data. It’s also normal to combine
known and self-learned features to compensate for CNN
[44, [118]. The detecting speed is also a matter of concern.
Point-wise feature extraction and 3D convolutions should be
less expensive to improve performance even further. Existing
algorithms are largely intended for autonomous driving in
congested areas. When LiDAR and 3D detection technology
improves, we expect our research to be useful in a variety of
fields such as agriculture, medicine, education, etc.

E. Promising Future Directions and Tasks

Multi-sensor fusion is a major advantage for many fields,
allowing robots to become more productive and flexible in
industrial applications like material handling, component pro-
duction, inspection, and assembly [17} (18, 22]. In the past
few years, there have been tremendous advances in robotics,
especially around multi-robot cooperative systems, under-
actuated and powered systems, robot-environment interaction,
teleoperation, and visual servicing [17]. All of these are being
realised through multi-sensor integration and fusion to improve
system capabilities and dependability.

Mobile robotics is one of the most important applications for
multi-sensor fusion and integration. Mobile robots can achieve
quick perception for navigation and obstacle avoidance when
working in unknown or unfamiliar dynamic circumstances by
integrating and fusing information from multiple sensors.

VIII. CONCLUSION

Sensors are the important components of autonomous ve-
hicles. The AV technology has been rapidly growing since
the last decade. This paper explains the importance of sensors
in the autonomous industry, sensor fusion challenges in AV,
and the future potential for the new researcher. Sensor fusion
techniques enable autonomous vehicles to accurately perceive
the operating environment, enabling them to make decisions
and control their motions in a safe and reliable manner. The
combination of various sensors, such as cameras, LiDAR,
RADAR, and GPS, enable autonomous vehicles to accurately
identify their surroundings and make decisions that are safe
and reliable. Sensor fusion techniques are a crucial part of
autonomous driving and are likely to continue to be developed
in the future. With further research and development, it is
likely that autonomous vehicles will be able to safely navigate
complex and changing environments with robust cognitive
capability. In the future, we can investigate deeper into the
methods of fusing different sensors including visual cameras,
thermal (IR) cameras, Radar, LiDAR, Ultra-sonic, etc. In
the near future, several directions can be targeted, such as
increasing levels of realism achieved by AV simulation soft-
ware, the recent development of data augmentation techniques
(influence various climatological conditions on collected data
during driver training), or particular algorithmic suggestions
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designed to improve the efficiency of AV models to hidden
environments tasks.
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