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Translating color fundus photography to
indocyanine green angiography using
deep-learning for age-related macular
degeneration screening
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Mingguang He1,2,5 & Danli Shi 1,2

Age-related macular degeneration (AMD) is the leading cause of central vision impairment among the
elderly. Effective and accurate AMD screening tools are urgently needed. Indocyanine green
angiography (ICGA) is a well-established technique for detecting chorioretinal diseases, but its
invasive nature and potential risks impede its routine clinical application. Here, we innovatively
developed a deep-learning model capable of generating realistic ICGA images from color fundus
photography (CF) using generative adversarial networks (GANs) and evaluated its performance in
AMD classification. The model was developed with 99,002 CF-ICGA pairs from a tertiary center. The
quality of the generated ICGA images underwent objective evaluation using mean absolute error
(MAE), peak signal-to-noise ratio (PSNR), structural similarity measures (SSIM), etc., and subjective
evaluation by two experienced ophthalmologists. The model generated realistic early, mid and late-
phase ICGA images, with SSIM spanned from 0.57 to 0.65. The subjective quality scores ranged from
1.46 to 2.74 on the five-point scale (1 refers to the real ICGA image quality, Kappa 0.79–0.84).
Moreover, we assessed the application of translated ICGA images in AMD screening on an external
dataset (n = 13887) by calculating area under the ROC curve (AUC) in classifying AMD. Combining
generated ICGAwith real CF images improved the accuracy of AMDclassificationwith AUC increased
from 0.93 to 0.97 (P < 0.001). These results suggested that CF-to-ICGA translation can serve as a
cross-modal data augmentation method to address the data hunger often encountered in deep-
learning research, and as a promising add-on for population-based AMD screening. Real-world
validation is warranted before clinical usage.

Age-related macular degeneration (AMD) is the leading cause of central
vision loss in the aging population1, mainly consisting of atrophic (“dry”)
AMDandneovascular (“wet”)AMD.DryAMDmayprogress towetAMD,
which is characterized by central choroidal neovascularization (CNV),
resulting in hemorrhaging within the macular region and profound visual

impairment. Effective and accurate AMD screening tools are urgently
needed, especially as the aging population intensifies2. Over the past few
years, applying color fundus (CF) photography to develop deep learning
algorithms for automatedAMD screening is of great interest3–5. However, it
is worthmentioning that onlyCF images provide limited information in the
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real clinical scenario, because of the unstable image quality and common
characteristics shared by several chorioretinal diseases on CF images.

Indocyanine green angiography (ICGA) is a well-established fundus
imaging technique for detecting and distinguishing AMD from other
chorioretinal diseases6–9. Compared to CF images, ICGA owns its unique
advantages in dynamically visualizing deeper choroidal vasculature and
lesionsbehind retinal pigment epithelium10,11.However, ICGA is an invasive
imaging modality with potential adverse reactions, including nausea,
vomiting, hypotensive shock, etc12–15. In addition, the complex operating
procedures impede its widespread implementation in clinical settings.
Limited and imbalanced ICGA images pose challenges to the development
of relevant automated AMD detection models.

Recently, generative adversarial networks (GANs) have showcased
remarkable performance in image-to-image translation through two com-
peting types of deep neural networks16–18, which inspire generating multiple
ICGA images fromnon-invasive CF images. Several exploratory studies have
verified the feasibility of cross-modality image translation in the ophthalmic
field via GANs, such as CF to fundus fluorescein angiography (FFA)
translation19,20. However, few studies have considered detailed phase features
and diverse pathological lesions during the process of generating angio-
graphic images,whichwas essential indiagnosing chorioretinal vasculopathy.
Besides, there is no study aimed at achieving CF-to-ICGA translation.

The purpose of our study is to train aGAN-basedmodel for generating
realistic ICGA images from CF images using a large clinical dataset and to
validate its robustness in AMD screening via external dataset. Our CF-to-
ICGA algorithm is expected to provide an effective alternative for addres-
sing the inadequacy and imbalance of ICGA images in deep-learning
research, while also promoting the advancement of more accurate AMD
screening models.

Results
Images that were not centered on the macula were excluded. The final
dataset contains 3195 CF images and 53,264 ICGA images from 1172
patients. Thus, an average of 3 CF images and 45 ICGA images were
obtained from each patient. To fully utilize the large number size of ICGA
images, we matched each ICGA image with each CF pairwisely (paired
imageswere all from the samepatient and visit). After excluding images that

failed to be pairwiselymatched, wefinally yielded 99,002CF-ICGApairs for
model development, in which there were 56596 pairs in early-phase, 25,298
pairs in mid-phase, and 16,794 in late-phase (Fig. 1). The median (inter-
quartile range) age of the participants was 53.04 (±17.31) years, and 676
(57.7%) were male. The majority of these participates were diagnosed with
chorioretinal diseases, including AMD, choroidal neovascularization
(CNV), PCV, and pathologic myopia, etc. In the AMD dataset, CF images
were classified as no AMD, early or intermediate dry AMD, late dry AMD,
and late wet AMD. The study flow chart is shown in Fig. 1. Detailed
characteristics of the dataset are presented in Table 1.

Objective evaluation
Pixel-wise comparison between the real and CF-translated ICGA was
conducted on the internal test set. For the generated early-phase ICGA, the
mean absolute error (MAE), peak signal to noise ratio (PSNR), structural
similarity measures (SSIM), and multi-scale structural similarity measures
(MS-SSIM) were 86.81, 20.01, 0.57, and 0.68. For the generated mid-phase
ICGA, the MAE, PSNR, SSIM, andMS-SSIM were 116.94, 21.74, 0.65, and
0.70. For the generated late-phase ICGA, the MAE, PSNR, SSIM, and MS-
SSIMwere 118.19, 22.83, 0.57, and 0.74. These results are shown in Table 2.

Subjective evaluation
Example-generated images in the internal and external test sets are shown in
Fig. 2. The model efficiently and anatomically achieved CF-ICGA pairwise
matching via retinal vascular features, generating realistic ICGA images
with detailed structures and lesions. Notably, background noise sometimes
present in the real ICGA was learned as unrelated and was effectively
excluded in the translated images. The synthesized output images are
visually very close to real ones. For the internal test set, a blinded evaluation
was conducted using 30 ICGA images with 50% real ICGA images by
removing the tags of “Original” and “Generated” on these images. Two
experienced ophthalmologists (R.C. and F.S.) selected ICGA images in
random order for identification. Among these unlabeled ICGA images,
6.6% and 13.3% generated ICGA images could be differentiated from the
real ones. The distinguishing features encompassed the blurry boundary of
lesions, strange lesions that are apparently against established clinical
knowledge, vascular discontinuity, and the blurry texture of choroidal

GAN

CF-ICGA pairs

Matching

CF-ICGA translation

1172 patients
3195   CF
53264 ICGA images
99002 CF-ICGA pairs
Early-phase CF-ICGA      56596
Mid-phase CF-ICGA        25298
Late-phase CF-ICGA       16794

Exclusion criteria:
Not macular centered
Fail to pairwise matching

3094 patients
3552 CF
228000 ICGA images

CF-ICGA translation

Model development

CF-ICGA 
Translation Performance

� Objective evaluation: MAE, PSNR, SSIM, MS-SSIM
� Subjective evaluation: Real CF-ICGA pairs as references（n=50）

� AMD classification: CF images and annotations from Labelme dataset (n=13887)
No AMD                                             6000
Early or intermediate AMD             4456
Late dry AMD                                   304
Late wet AMD                                   3127
Train: Validation: Test                      3:1:1

Fig. 1 | Flow chart of the study. GAN generative adversarial networks, CF color
fundus photography, ICGA indocyanine green angiography, AMD age-related
macular degeneration, MAE mean absolute error, PSNR peak signal-to-noise ratio,

SSIM structural similarity measures, MS-SSIM multi-scale structural similarity
measures.
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vessels (Supplementary Fig. 5). For the external test set, the dissimilarities in
image characteristics between the training dataset and the external dataset
were readily apparent. Consequently, the real and generated ICGA images
could be discerned based on image style alone, and nearly all the generated
ICGA images could be distinguished from the authentic ones (as illustrated
in Fig. 2, 4th row). Thus, we did not conduct blind evaluations in this case.

Image quality assessment, which considers chorioretinal structure and
lesions, was based on a five-point scale. Themean (standard deviation [SD])
of the scores for early-phase ICGA was 1.46 (0.76), 2.08 (0.85) for the
internal and external test set respectively, assessed by the first grader, and
1.48 (0.76), 2.12 (0.77) by the secondgrader. Themean (SD)of the scores for
mid-phase ICGA were 2.02 (0.84) and 2.56 (0.91) in the internal and
external test sets respectively, assessed by the first grader, and 1.94 (0.89),
2.66 (0.98) by the second grader. Themean (SD) of the scores for late-phase
ICGA were 2.04 (0.81) and 2.74 (0.82) in the internal and external test sets
respectively, assessed by the first grader, and 1.96 (0.78), 2.64 (0.74) by the
second grader. Cohen’s kappa values indicate an excellent agreement
between the two graders for assessing image quality, with theKappa value of
0.79, 0.81 for early-phase ICGA, 0.81, 0.80 for mid-phase ICGA, and 0.81,
0.84 for late-phase ICGA in the internal and external test sets, respectively
(Table 3). This reflects the high quality of synthesized images for anatomical
features (vessel, optic disc, and macula) and lesions (drusen, choroidal
neovascular, atrophy, subretinal fluid, and hemorrhage).

In the internal and external test sets, 5.3% and 12.0% of the generated
ICGA imageswere of poor quality (>=4points) due to the following reasons:
blurry CF images impact the quality of synthetic ICGA. Besides, choroidal
lesions could be sheltered by extremely thick subretinal hemorrhage and
scar, resulting in the generation of false negative or positive lesions, as
demonstrated in Supplementary Fig. 3.

While this study primarily focused on AMD, Supplementary Fig. 4
provides generation examples for normal fundus and other diseases, such as

polypoidal choroidal vasculopathy, central serous chorioretinopathy,
pathologic myopia, and punctate inner choroidopathy to further demon-
strate the comprehensiveness of this model.

AMD classification
The addition of generated ICGA on top of CF significantly improved the
accuracy of AMD classification on the inhouse AMD datasets21, as illu-
strated in Table 4 and Fig. 3. The integration of generated ICGA images
significantly reduced error rates for AMD categories (Fig. 4). In the test set,
219 (18.3%) non-AMD cases, 180 (20.2%) early or intermediate dry AMD
cases, 5 (8.2%) late dry AMD cases, and 49 (7.9%) late wet AMD cases were
falsely predicted based on CF alone. Among these false prediction cases,
21.0%-48.9% with no AMD, 52.2–61.1% with early or intermediate dry
AMD, 20.0–60.0% with late dry AMD, and 42.9–44.9% with late wet AMD
could be accurately predicted after adding generated ICGA images (Table 5
and Supplementary Fig. 6). In addition, significant differences in AMD
classification accuracies were found between CF alone and CF+generated
early-phase ICGA+generatedmid-phase ICGA, as well as CF alone andCF
+generated early-phase ICGA+generated mid-phase+generated late-
phase ICGA (P < 0.001). However, there were no statistical differences
between CF alone and CF+early-phase ICGA (P = 0.44) (Table 4). In
general, these results demonstrated that incorporating synthetic ICGA
images with CF significantly enhances AMD classification accuracy.

Discussion
In the present study, we innovatively demonstrated that high-resolution
ICGA images could be synthesized based on CF images using GANs. The
reliability of this model in generating authentic ICGA images has been
proven through both internal and external validation. Additionally, we have
illustrated that the integration of the translated ICGA images with CF
images significantly improves the accuracy of AMD screening. Our study
not only established the feasibility of predicting choroidal abnormalities
more accurately from the more accessible CF images via GANs but also
introduced a cross-modality approach to augment data for AMD-related
deep learning research.

Image-to-image translation has garnered significant attention within
the domain of fundusmultimodal imaging systems16,22,23. The generation of
realistic ICGA images from CF images posed a significant challenge due to
the masking effect of the retinal pigment epithelium and the intricate ana-
tomical structure of the choroid. To address this challenge, our algorithm
leveraged the power of Pix2pixHD,which belongs to the conditional GANs
family, and demonstrates excellent performance in image-to-image trans-
lation via reducing adversarial loss and pixel-reconstruction error24. Its
strong ability in denoising, super-resolution, and feature extraction has

Table 1 | Dataset characteristics

N No

Model development normal AMD PCV CNV PM Other

Patients 1172 267 (22.8%) 320 (27.3%) 158 (13.5%) 141 (12.0%) 104 (8.9%) 182 (15.5%)

External validation

CF-ICGA pairs 50 Dry AMD Wet AMD PCV CSC Others

12 15 5 6 12

(24.0%) (30.0%) (10.0%) (12.0%) (24.0%)

AMD Classification (AMD Dataset) No AMD Early or intermediate dry AMD Late dry AMD Late wet AMD

Train 8331 3600 (43.2%) 2673 (32.1%) 182 (2.2%) 1876 (22.5%)

Validation 2781 1200 (43.2%) 891 (32.0%) 61 (2.2%) 629 (22.6%)

Test 2775 1200 (43.2%) 892 (32.1%) 61 (2.2%) 622 (22.4%)

Total 13887 6000 (43.2%) 4456 (32.1%) 304 (2.2%) 3127 (22.5%)

CF color fundus photography, ICGA indocyanine green angiography, AMD age-related macular degeneration, PCV polypoidal choroidal vasculopathy, CNV choroidal neovascularization, CSC central
serous chorioretinopathy, N number of patients/images.

Table 2 | Objective evaluation of real and translated indocya-
nine green angiography (ICGA) images

MAE PSNR SSIM MS-SSIM

Early-
phase ICGA

86.81 20.01 0.57 0.68

Mid-phase ICGA 116.94 21.74 0.65 0.70

Late-phase ICGA 118.19 22.83 0.57 0.74

MAEmean absolute error, PSNR peak signal-to-noise ratio, SSIM structural similarity measures,
MS-SSIMmulti-scale structural similarity measures.

https://doi.org/10.1038/s41746-024-01018-7 Article

npj Digital Medicine |            (2024) 7:34 3



provided a robust foundation for accurate CF-to-ICGA translation25.
Considering exudation, hemorrhage, and other abnormalities may result in
poor generation, we applied an additional Gradient Variance Loss to gen-
erate high-resolution details with sharp edges by minimizing the distance
between the computed variance maps and enforcing the model to produce
high-variance gradient maps26.

ICGA is a unique modality for detecting choroidal abnormalities
because of its strong penetration and high contrast characteristics, offering

much more information on choroidal circulation than other non-invasive
approaches, such as CF and optic coherence tomography angiography
(OCTA)27–29. In the current study, the detailed phase information of ICGA
images, such as cut-off time and fluorescence characteristics of each phase
were considered in model training. The current GAN-based model could
authentically generate ICGA images of early, medium, and late phases
respectively from a single CF image, suggesting an effective alternative for
observing choroidal lesions dynamically and non-invasively. Our results

Table 3 | Subjective evaluation of real and translated indocyanine green angiography (ICGA) image quality

Internal test set (N = 50) External test set (N = 50)

Rater 1 Mean (SD) Rater 2 Mean (SD) Kappa Rater 1 Mean (SD) Rater 2 Mean (SD) Kappa

early-phase ICGA 1.46 (0.76) 1.48 (0.76) 0.79 2.08 (0.85) 2.12 (0.77) 0.81

mid-phase ICGA 2.02 (0.84) 1.94 (0.89) 0.81 2.56 (0.91) 2.66 (0.98) 0.80

late-phase ICGA 2.04 (0.81) 1.96 (0.78) 0.81 2.74 (0.82) 2.64 (0.74) 0.84

SD standard deviation.

Input
Real 

early-phase ICGA
Real

mid-phase ICGA
Generated 

early-phase ICGA
Generated 

mid-phase ICGA
Real

late-phase ICGA
Generated

late-phase ICGA

Fig. 2 | Examples of real and translated indocyanine green angiography (ICGA).
1st row, early dry age-related macular degeneration (AMD), 2nd row, intermediate
dry AMD, 3rd row, wet AMD, 4th row, wet AMD. 1 – 3 rows: internal test set, CF

were registered with ICGA, rotation occurs during this process. 4th row: external
test set.

Table 4 | Age-related macular degeneration (AMD) classification based on color fundus photography (CF) and CF+ translated
indocyanine green angiography (ICGA) images on the AMD dataset (n = 13887)

F1-score Sensitivity Specificity Accuracy AUC P value*

CF 0.8386 0.8368 0.9323 0.8368 0.9312

CF+early 0.8601 0.8598 0.9428 0.8598 0.9407 0.4400

CF+early+mid 0.8854 0.8850 0.9466 0.8850 0.9632 <0.0001**

CF+early+mid+late 0.8875 0.8872 0.9474 0.8872 0.9688 <0.0001**

*The distinctions of ROC curves were evaluated using the bootstrapmethod in the R package pROCbetween the following scenarios: CF alone versus CF+generated early-phase ICGA images, CF alone
versus CF+generated early-phase ICGA+generated mid-phase ICGA, CF alone versus generated early-phase ICGA+generated mid-phase ICGA+generated late-phase ICGA. **P < 0.05. The AMD
dataset, train: validation: test = 6:2:2.
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illustrated that the addition of generated ICGA images significantly
improves the accuracy of AMD classification within an external dataset
compared to CF alone. The comparable performance between CF and CF
plus early-phase ICGAmay result from the limited informationprovidedby
early-phase ICGA alone.

AMD shares many common features with PCV, but significant
disparities in treatment response and prognosis are also found in these
two diseases, emphasizing the need for distinguishing PCV from
AMD30,31. In our study, the branch vascular networks and polyps, which
are the landmarks for diagnosing PCV, can be realistically generated
(Supplementary Fig. 4, 1st row). In addition, normal fundus and char-
acteristic lesions of other chorioretinal diseases could also be well
translated on ICGA images (Supplementary Fig. 4, 2rd–5th row). Our
findings also demonstrated that 42.9% to 60.0% of the cases misclassified
by CF alone could be correctly predicted after adding all-phase generated
ICGA, further showcasing that these synthesized ICGA can effectively
reduce classification errors and facilitate more accurate AMD screening
in the current research background. Nevertheless, generative technology
is still at the exploratory stage in ophthalmic research with yet unclear
clinical relevance16,32. Prospective trials and clinician-engineer

collaboration are necessary to prove whether the application of synthetic
images will optimize clinical practice.

The inadequacy of ICGA images represents a challenge in deep
learning research aimed at developing automated tools for detecting chor-
ioretinal conditions. In the past few decades, GANs-based technology has
been introduced to expand datasets and protect patient privacy via gen-
erating realistic images, especially of uncommon diseases33–35. Several stu-
dies have reported that integrating synthetic images could enhance the
performance of machine-learning models in the ophthalmic field36–38. In
addition, synthetic data could be incorporated into various research tasks,
such as lesion segmentation, image denoising, super-resolution, etc16. Thus,
translated ICGA images may also expected to address data shortages and
imbalances, enabling low-shot or zero-shot training in ICGA relevant deep-
learningmodel. The cross-modality image translationmay be a good choice
inmaximizing the potential of existing datasets for the development of deep
learning systems.

This research also has limitations. Firstly, the presence of extremely
thick subretinal hemorrhage and scars, along with blurry CF images can
potentially impact the quality of the generated ICGA images, resulting in
false negative or false positive lesions due to incorrect matching of blurry

Original CF Original CF+early

Original CF+early+mid Original CF+early+mid+late

Fig. 3 | ROC curves of age-related macular degeneration (AMD) classification on
the AMD dataset (n= 13887) with and without the addition of translated
indocyanine green angiography (ICGA) on top of color fundus
photography (CF). The classification is based on four categories: 0 = no AMD,
1 = early or intermediate dryAMD, 2 = late dryAMD, and 3 = latewetAMD. 1st row

(left) = Original CF, 1st row (right) = Original CF plus generated early-phase ICGA
images, 2nd row (left) = Original CF plus generated early-phase plus mid-phase
ICGA images, 2nd row (right) = Original CF plus generated early-phase plus mid-
phase plus late-phase ICGA images.
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images in translation procedure. Secondly, though a large-scale dataset was
utilized for training in the current study, more variable real-world datasets
are critical for improving the diversity and applicability of generated ICGA
images. Most importantly, the current research aims to explore the
authenticity and limitations of synthetic images in a controlled research
context, future validation is warranted to evaluate whether synthetic ICGA
images could assist clinical decision-making.

In conclusion, we innovatively developed a deep-learningmodel for
generating ICGA images of early, medium, and late phases from CF
images. The algorithm showed high authenticity in generating

anatomical structures and pathological lesions in both internal and
external datasets. These findings highlight the potential of the CF-to-
ICGA model as a valuable approach for evaluating chorioretinal circu-
lation and abnormalities non-invasively, as well as a promising tool for
overcoming data shortages inmachine-learningmodel training. Further
clinical trials are required to translate this research discovery into clinical
benefit in real-world practice.

Methods
Data
We collected a total of 3552 CF images and 228,000 ICGA images from a
tertiary center between 2016 and 2019. These images were sourced from
3094 patients who had been diagnosed with a range of ocular diseases,
including age-related macular degeneration (AMD), polypoidal choroidal
vasculopathy (PCV), choroidal neovascularization (CNV), central serous
chorioretinopathy (CSCR), pathologic myopia (PM), and ocular inflam-
matory diseases, etc. All patient data underwent anonymization and de-
identification processes. The CF images were captured using Topcon TRC-
50XF and Zeiss FF450 Plus (Carl Zeiss, Inc., Jena, Germany) cameras, with
resolutions spanning from 1110 × 1467 to 2600 × 3200. The ICGA images
were acquired using Heidelberg Spectralis cameras (Heidelberg, Germany)
at a resolution of 768 × 768.

To assess the reliability of our model, we conducted a retrospective
collection of 50 paired CF and ICGA images specifically focusing on
choroidal conditions fromGuangdongProvincial People’sHospital. TheCF
images were captured using Topcon TRC-50XF cameras, while the ICGA
imageswere obtained usingHeidelberg Spectralis cameras fromHeidelberg,
Germany.

To assess the efficacy of translated ICGA images in enhancing AMD
detection,weutilized a separateddataset procured fromaweb-based, cloud-
sourcing platform situated in Guangzhou, China21. This dataset encom-
passed macular and disc-centered CF images sourced from 36

% Predicted

0 1 2 3

0 81.75 6.42 1.17 10.66

1 8.86 79.82 1.34 9.98

Actual
Class

2 4.92 0 91.80 3.28

3 3.54 2.73 1.61 92.12

Original CF Original CF+early

Original CF+early+mid Original CF+early+mid+late

% Predicted

0 1 2 3

0 78.33 13.50 1.00 7.17

1 2.24 90.70 0.45 6.61

Actual
Class

2 1.64 0 95.08 3.28

3 2.57 3.70 0.64 93.09

% Predicted

0 1 2 3

0 87.33 6.92 0.75 5.00

1 6.95 88.23 0.22 4.60

Actual
Class

2 0 4.92 93.44 1.64

3 3.38 4.82 1.12 90.68

% Predicted

0 1 2 3

0 87.59 7.08 0.58 4.75

1 6.61 87.78 0.34 5.27

Actual
Class

2 4.92 0 90.16 4.92

3 3.54 3.54 0.80 92.12

Fig. 4 | Confusion matrix of age-related macular degeneration (AMD) classifi-
cation results on the AMD dataset (n= 13887) with and without the addition of
translated indocyanine green angiography (ICGA) on top of color fundus
photography (CF). The classification is based on four categories: 0 = no AMD,
1 = early or intermediate dryAMD, 2 = late dryAMD, and 3 = latewetAMD. 1st row

(left) = Original CF, 1st row (right) = Original CF plus generated early-phase ICGA
images, 2nd row (left) = Original CF plus generated early-phase plus mid-phase
ICGA images, 2nd row (right) = Original CF plus generated early-phase plus mid-
phase plus late-phase ICGA images.

Table 5 | Comparison of false prediction cases on different
age-relatedmacular degeneration (AMD)categoriesbasedon
color fundus photography (CF) only but were correctly pre-
dicted after the addition of translated indocyanine green
angiography (ICGA) images in the test set of AMD data-
set (n = 2775)

No AMD Early or intermediate
dry AMD

Late
dry AMD

Late
wet AMD

Total, N 1200 892 61 622

False prediction, N (%)

CF only 219 (18.3) 180 (20.2) 5 (8.2) 49 (7.9)

Correct prediction rate after adding generated ICGA images, N (%)

CF+early 46 (21.0) 110 (61.1) 2 (40.0) 22 (44.9)

CF
+early+mid

107 (48.9) 94 (52.2) 1 (20.0) 21 (42.9)

CF+early
+mid+late

101 (46.1) 94 (52.2) 3 (60.0) 21 (42.9)

N number of cases, CF+early CF+generated early-phase ICGA images, CF+mid CF+generated
mid-phase ICGA images, CF+late CF+generated late-phase ICGA images.
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ophthalmology departments, optometry clinics, and screening facilities
spanning various regions of China. The grading of AMD followed the
Beckman clinical classification system which involved categorizing patients
into groups based on the absence of AMD, early-stage AMD, intermediate-
stage AMD, and late-stage AMD (atrophic or neovascular), considering the
severity and pathological progression39. A detailed overview of the dataset
characteristics is presented in Table 1.

The study adheres to the tenets of the Declaration of Helsinki. The
InstitutionalReviewBoardapproved the studyand individual consent for this
retrospective analysis was waived (Approval Number: 2021KYPJ164 – 3).

CF and ICGAmatching
We conducted a pairwise matching process between CF and ICGA images
obtained from the same eye and visit. CF and ICGA images captured from
the same eye and eye position share common retinal vessel features, which
are stable and easily detectable in both modalities. Thus, we utilized the
retinal vessel features to achieve CF-ICGA pairwise matching. We applied
the Retina-based Microvascular Health Assessment System (RMHAS)
segmentationmodule to extract retinal vessels fromCF and ICGA images40.
The cross-modality matching process follows previous work41. Initially, key
points from both modalities were identified from the corresponding vessel
maps using the AKAZE key point detector through feature matching42.
Then the RANSAC (random sample consensus) algorithm was utilized to
generate homography matrices and eliminate outliers to facilitate
registration43. In addition, we implemented a validity restriction to ensure
the accuracy of the registration. This restriction enforced a rotation scale
value between 0.8 and 1.3, and an absolute rotation radian value less than 2
before thewarping transformation.Additionally, wefiltered out image pairs
with poor registration performance by setting a dice coefficient threshold of
0.5, which was determined empirically based on our dataset during
experiment.

CF to ICGA translation
In our training process, we utilized CF images as input and the corre-
sponding early-phase, mid-phase, and late-phase ICGA images as the
ground truth to train three separatemodels with CF-ICGApairs. To reduce
variation, we established specific time ranges for each phase of ICGA
images: 25 s to 3min for early-phase, 3 to 15min for mid-phase, and after
15min for late-phase. The dataset was split into three sets: training, vali-
dation, and testing, following a 6:2:2 ratio based on patient level. During
training, the images were resized to 512 × 512 and fed into pix2pixHD44, a
popularGANmodel consisting of generatorG,which synthesizes candidate
samples based on the data distribution of the original dataset, and a dis-
criminator D, which distinguishes the synthesized candidate samples from
the original samples. The discriminator employed a multi-scale convolu-
tional neural network that divided the image into patches and evaluated the
fidelity of each patch. This approach contributed to the generation of high-
resolution ICGAimages that closely resembled the real ones.To enhance the
generation of high-frequency components, such as chorioretinal structure
and lesions, we incorporated Gradient Variance Loss to prevent
overfitting26. Additionally, extensive data augmentations were applied
during training, including random resized crops within a scale range of
0.3–3.5, random horizontal or vertical flipping, and random rotations
within a range of 0–45 degrees. Individual CF images and their corre-
sponding generated ICGA images all underwent the same augmentation
process. Themodelswere trainedwith a batch size of 4 and a learning rate of
0.0002. Each training session was preset to run for a total of 50 epochs,
ensuring an adequate number of iterations for convergence and optimiza-
tion in our experiments.

Assessment of CF-to-ICGA Translation Performance.

Objective evaluation
For the evaluation of image authenticity, we employed four standard
objective measures widely used in image generation for our internal test
set. MAE computes the average absolute pixel difference between the

generated image and the corresponding real image. It quantifies the
overall discrepancy in pixel values, indicating the level of fidelity in
generating accurate details. PSNR is the approximation of human
perception regarding reconstruction quality. It measures the ratio
between the maximum possible power of a signal and the power of the
noise interfering with it. SSIM45 assesses the structural similarity
between images, with a value of 1 representing complete similarity and 0
indicating no similarity. SSIM provides insights into the visual resem-
blance and coherence between the generated and real images. MS-
SSIM46 supplies more flexibility in incorporating the variations of
viewing conditions and image resolution. The higher the SSIM, MS-
SSIM, and PSNR, the better the quality of the generated images.

Subjective evaluation
Fifty images from the internal and external test sets were randomly
assigned to two experienced ophthalmologists (R.C. and F.S.) for visual
quality assessment. The ophthalmologists assessed the translated
images subjectively, considering factors such as the global similarity,
the fidelity of anatomical structures, and the depiction of fluorescence-
based pathological lesions, on a scale of 1 to 5 (1 = excellent, 2 = good,
3 = normal, 4 = poor, and 5 = very poor), with score 1 referring to the
image quality of the real ICGA image. The detailed grading criteria and
examples of different quality were demonstrated in Supplementary
Figs. 1 and 2. To determine the agreement between the ophthalmolo-
gists, we calculated Cohen’s linearly weighted kappa score47. This score
ranges from −1 to 1, with values between 0.40 and 0.60 indicating
moderate agreement, 0.60 and 0.80 indicating substantial agreement,
and 0.80 and 1.00 indicating almost perfect agreement. The inter-rater
agreement was assessed based on this evaluation metric. Besides, blind
assessment was conducted using ICGA images without tags of “Ori-
ginal” and “Generated” to investigate whether it is possible to reliably
distinguish between real and generated ICGA images for
ophthalmologists.

AMD classification
CF-ICGA translation performance was also evaluated using an external
AMD dataset, which consists of real CF images and AMD annotations.
Our GAN-based model generated corresponding early-phase, mid-
phase, and late-phase ICGA images respectively from each real CF
image. We did experiments using the Swin-transformer to explore
whether the addition of ICGA images generated by our model could
improve the classification accuracy of AMD48. The same hyperpara-
meters were set in each experiment to classify AMD based on CF, CF
+generated early-phase ICGA, CF+generated early-phase+mid-phase
ICGA images, and CF+generated early-phase+mid-phase+late-phase
ICGA images. Four relevant embedding models were initialized with
pretrained weights from ImageNet49, and the classifier shared the same
training data with the embedding model. Specifically, the features from
different images were extracted by Swin-transformer into 512-
dimensional embeddings, these embeddings were then concatenated
and passed through a fully-connected layer, followed by a softmax layer
to obtain the classification output. The dataset was divided into train-
ing, validation, and test sets in a ratio of 6:2:2. During training, the
images were resized to 512 × 512 and augmented with random hor-
izontal flips and rotations ranging from −30 to 30 degrees. The Adam
optimizer with a learning rate of 1e-5 and a batch size of 4 was
employed. Each experiment was trained for 30 epochs, and the models
with the highest area under the ROC curve (AUC) value on the vali-
dation set were selected for testing. The performance of AMD classifi-
cation was assessed on the test set using various metrics, including F1-
score, Sensitivity, Specificity, Accuracy, and AUC. Confusion matrices
were utilized to analyze the fine-grained class-level performance as well.
Additionally, to verify whether the addition of generated ICGA images
could improve AMD prediction performance, we conducted a com-
parative analysis of ROC curves using the bootstrap method in the R
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package pROC50. Specifically, we examined the distinctions of ROC
curves between the following scenarios: CF alone versus CF+generated
early-phase ICGA images, CF alone versus CF+generated early-phase
ICGA+generated mid-phase ICGA, CF alone versus generated early-
phase ICGA+generated mid-phase ICGA+generated late-phase
ICGA. Reported P values are two-sided and the results were con-
sidered statistically significant with P < 0.05.

Data availability
The data used for model development of this study are not openly available
due to reasons of privacy and are available from the corresponding author
upon reasonable request. The AMD dataset used for external validation is
located on a controlled access data platform. Interested researchers can
contact M.H. (mingguang.he@polyu.edu.hk) for more information.

Code availability
The deep-learning model was developed using PyTorch (http://pytorch.
org). We trained the model on an NVIDIA GeForce RTX 3090 card. The
code for deep learningmodel development can be accessed at https://github.
com/NVIDIA/pix2pixHD).
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