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Abstract
It is unclear how metabolomic age is associated with the risk of a wide range of chronic 
diseases. Our analysis included 110,692 participants (training: n = 27,673; testing: 
n = 27,673; validating: n = 55,346) aged 39–71 years at baseline (2006–2010) from 
the UK Biobank. Incident chronic diseases were identified using inpatient records, or 
death registers until January 2021. Predicted metabolomic age was trained and tested 
based on 168 metabolomics. Metabolomic age was linked to the risk of 50 diseases in 
the validation dataset. The median follow-up duration for individual diseases ranged 
from 11.2 years to 11.9 years. After controlling for false discovery rate, chronological 
age-adjusted age gap (CAAG) was significantly associated with the incidence of 25 
out of 50 chronic diseases. After adjustment for full covariates, associations with 15 
chronic diseases remained significant. Greater CAAG was associated with increased 
risk of eight cardiometabolic disorders (including cardiovascular diseases and dia-
betes), some cancers, alcohol use disorder, chronic obstructive pulmonary disease, 
chronic kidney disease, chronic liver disease and age-related macular degeneration. 
The association between CAAG and risk of peripheral vascular disease, other cardiac 
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1  |  INTRODUC TION

Chronological age is one of the most important risk factors for 
chronic disorders and mortality (Beard et  al.,  2016; López-Otín 
et al., 2013). People with the same chronological age may differ in 
biological health, and biological ageing may be a better predictor for 
health (Horvath, 2013; Jylhävä et al., 2017). Biological age has been 
developed based on omics including genomics, telomere length, 
transcriptomics and proteomics and it has been shown to be a strong 
predictor of chronic diseases and mortality (Jylhävä et al., 2017; Kuo 
et al., 2022). In the global ageing population, it is important to un-
derstand biological age for the prevention of chronic diseases and 
promoting healthy ageing.

Metabolism plays an important role not only in the development 
of metabolic disorders but also in cardiovascular disease (CVD), 
neurogenerative disorders, musculoskeletal disorders, mental dis-
orders, respiratory conditions and cancers (Amorim et  al.,  2022; 
Eckel et al., 2018; Lumsden et al., 2022). Metabolomic state added 
predictive value even over established clinical variables in the devel-
opment of multiple chronic diseases (Buergel et al., 2022). A cohort 
study from Germany (discovery cohort: 2162 participants and rep-
lication cohort: 724 women) identified multiple metabolomics that 
were highly correlated with chronological age (Yu et  al., 2012). A 
cohort study of 2239 participants from the UK showed that metab-
olomic age developed based on metabolic profiles was associated 
with the prevalence of obesity, diabetes, heavy alcohol use and de-
pression (Robinson et al., 2020). Several other studies have demon-
strated that metabolomic age acceleration was associated with an 
increased risk of mortality (Deelen et al., 2019; Fischer et al., 2014), 
and CVD (van den Akker et al., 2020). As previous studies have fo-
cused on one or several diseases, whether metabolomic age acceler-
ation is associated with the risk of a wide range of chronic diseases 
remains to be explored. These studies are also limited by the rela-
tively small sample sizes or cross-sectional design, while biological 
clock estimates using machine learning can be improved by increas-
ing the training sample size (Zhang et al., 2019).

Using the UK Biobank, we aimed to develop metabolomic age 
based on metabolomics measured by nuclear magnetic resonance 
spectroscopy using machine learning. We then examined the as-
sociation between metabolomic age and a wide range of individual 

chronic diseases. The interplay between metabolomic age and age, 
sex, diet and metabolic disorders for chronic diseases was then 
examined.

2  |  METHODS

2.1  |  Study population

The present study was based on the UK Biobank, which is a 
population-based cohort of more than 500,000 participants aged 
39–73 years at enrolment (Sudlow et  al.,  2015). Data on demo-
graphic factors, lifestyle and medical history were collected using 
self-administered questionnaires from 502,505 participants out of 
approximately 9.2 million invited people. Details of the study design 
have been shown elsewhere (Sudlow et al., 2015).

The UK Biobank Study's ethical approval has been granted 
by the National Information Governance Board for Health and 
Social Care and the NHS North West Multicenter Research 
Ethics Committee (REC reference: 16/NW/0274). All partici-
pants provided informed consent through electronic signature at 
recruitment.

2.2  |  Ascertainment of diseases

Individual diseases were defined if participants reported that they 
had ever been told by a doctor that they had the disease (Field code: 
Table S1). Fifty major diseases (all important conditions of interest) 
such as cardiometabolic disorders (CMD) (including diabetes, coro-
nary heart disease (CHD), heart failure, atrial fibrillation and stroke), 
cancer (including melanoma, lung cancer and stomach cancer), 
chronic obstructive pulmonary disease (COPD) and chronic kidney 
disease (CKD) were included in the analysis.

Inpatient data were used to identify additional disease cases 
at baseline. Inpatient hospital records were captured using the 
Hospital Episode Statistics database, the Scottish Morbidity Record, 
and the Patient Episode Database in England, Scotland and Wales 
(Sudlow et al., 2015). In the UK Biobank, the inpatient hospital data 
were available since 1997 (Sudlow et  al., 2015). The international 

diseases, fracture, cataract and thyroid disorder was stronger among individuals with 
unhealthy diet than in those with healthy diet. The association between CAAG and 
risk of some conditions was stronger in younger individuals, those with metabolic dis-
orders or low education. Metabolomic age plays an important role in the development 
of multiple chronic diseases. Healthy diet and high education may mitigate the risk for 
some chronic diseases due to metabolomic age acceleration.

K E Y W O R D S
cardiometabolic disorder, chronic kidney disease, chronic obstructive pulmonary disease, liver 
disease, metabolomic age, moderation analysis, oesophageal cancer
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classification diseases codes for each of the 50 diseases are listed 
in Table S2. Incident cases of these diseases were defined using in-
patient and mortality data. The onset date of diseases was defined 
as the earliest recorded date regardless of sources. Person-years 
for each disease were calculated from the date of baseline assess-
ment to the date of onset, date of death or the end of follow-up (31 
December 2020 for England and Wales and 31 January 2021 for 
Scotland), whichever came first.

2.3  |  Metabolomic profiling

In the UK Biobank, metabolomic profiles were measured according 
to the structure and chemical properties of molecules using a high-
throughput nuclear magnetic resonance-based metabolic biomarker 
profiling platform (Würtz et al., 2017). EDTA plasma samples were 
collected from a randomly selected subset of 117,121 participants 
at baseline and 5000+ participants at the first repeat visit. Venous 
blood sampling was collected and transported to a central labora-
tory and stored in ultra-low temperature archives. The measure-
ments at baseline were used in our analysis. Measurements were 
conducted for 249 metabolic traits (168 concentrations and 81 
ratios) including the lipoprotein lipids, fatty acids, amino acids, gly-
colysis, organic acids and nucleotides. Automated quality control 
was performed, and biomarker values substantially affected by in-
terfering substances were removed (https://​bioba​nk.​ctsu.​ox.​ac.​uk/​
cryst​al/​label.​cgi?​id=​220) (Soininen et al., 2015; Würtz et al., 2017). 
Metabolomic levels were normalized with mean = 0 and standard de-
viation (SD) = 1.

2.4  |  Covariates

Demographic information on age, sex, ethnicity, education and an-
nual household income was self-reported. Sleep duration was as-
sessed based on the question ‘About how many hours' sleep do 
you get in every 24 h?’ Physical activity was assessed using a short 
form of the International Physical Activity Questionnaire. Diet score 
was computed based on seven commonly eaten food groups with 
a higher score representing a healthier diet (Lourida et  al., 2019). 
Healthy diet was defined as diet score ≥4 and unhealthy diet as diet 
score <4 (Lourida et al., 2019). Medication use for antihypertension, 
lipid-lowering and glucose-lowering was self-reported. Body mass 
index (BMI) was calculated based on measured height and weight. A 
genetic risk score (GRS) for longevity was computed using 78 single-
nucleotide polymorphisms with a higher score representing longer 
longevity (Timmers et al., 2020).

2.5  |  Statistical analysis

We randomly selected 50% of the population with metabolomic 
data stratified by the assessment center to train (25% randomly 

selected participants) and test (the remaining 25% participants) 
the chronological age prediction model based on 168 metabolomic 
profiling concentrations. Data from the remaining 50% participants 
were used to develop metabolomic age and examine the association 
between metabolomic age and the risk of multiple diseases. Multiple 
linear regression models with the chronological age as the depend-
ent variable were used to develop metabolomic age. We selected 
Gaussian family distribution when establishing prediction model 
using machine learning (Figure 1). The hyper-parameters alpha and 
lambda specify the regularization strength and the regularization 
distribution between L1 (LASSO) and (ridge regression) L2 penalties, 
respectively. In this study, we used the R-square to determine the 
best prediction performance.

Age gap was calculated by subtracting chronological age from 
metabolomic age. Given the age gap for individuals with different 
ages might represent different metabolomic ageing levels, chrono-
logical age-adjusted age gap (CAAG) was calculated with the use 
of regression models (Willett et  al., 1997). Baseline characteris-
tics were expressed as frequency (%) or means ± SDs. ANOVA for 
continuous variables and chi-square test for categorical variables 
were used to test the difference of characteristics by quintiles of 
CAAG.

The association between CAAG and incidence of each chronic 
disease was examined using the Cox proportional regression mod-
els. For each individual chronic disease, participants with the cor-
responding disease at baseline were excluded from the analysis. 
Three models were tested: (1) Model 1 was unadjusted; (2) Model 
2 was adjusted for age, sex, ethnicity, education, household income, 
diet score, alcohol consumption, physical activity, smoking, sleep 
duration, fasting duration and GRS for longevity; (3) Model 3 was 
adjusted for Model 2 plus BMI, high cholesterol, hypertension, di-
abetes and antihypertensive, glucose-lowering, and lipid-lowering 
medications. CAAG was analysed in quintiles as well as a continuous 
variable (each year). Benjamin-Hochberg's procedure was used to 
control the false discovery rate at a 5% level for multiple compar-
isons (Benjamini & Hochberg, 1995).

Sensitivity analysis of the association between CAAG and risk 
of individual diseases was conducted among individuals by ex-
cluding those developed the disease in the first year of follow-up 
or by excluding those developed in the first 5 years of follow-up. 
Whether associations between CAAG and chronic diseases were 
modified by age, sex, education, diet quality, metabolic disorders or 
GRS for longevity was tested using the Cox proportional regression 
models.

Percentages of individuals with missing data in BMI, physical 
activity, income and education were 2%, 19%, 14% and 1%, respec-
tively. Given that individuals with missing data in outcome/exposure 
variables were excluded from the analysis, multiple imputations for 
missing data in covariates only using the fully conditional specifica-
tion method were conducted to create 10 imputed datasets.

Data analyses were conducted using SAS 9.4 for Windows 
(SAS Institute Inc.) and all p-values were two-sided with statistical 
significance set at <0.05.
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3  |  RESULTS

3.1  |  Population selection

Individuals with no data on metabolomic profiles (n = 391,785), or 
with missing data on inpatient data (n = 18) were excluded from the 
analysis. We included 110,692 participants in the final analysis. The 
analysis for the association between metabolic age and chronic dis-
eases was conducted in the validation dataset (n = 55,346, 54.1% fe-
male, aged 39–71 [mean ± SD: 56.5 ± 8.1] years at baseline).

3.2  |  Metabolomic age and chronological age

In the machine learning analysis, the LASSO and ridge regression 
model with α = 0.2 and λ = 0.0001 showed the best prediction per-
formance in the training and testing datasets. The algorism was then 
used to predict metabolomic age in the validation dataset (Figure 1).

The distribution of predicted metabolomic age is shown in 
Figure 2. The correlation between metabolomic age and chronolog-
ical age was 0.56 (95% CI: 0.55–0.56). The mean gap between me-
tabolomic age and chronological age was 0.02 (SD = 6.93) years and 
the mean absolute error was 5.52 (SD = 4.27) years.

The age gap decreased with increasing age and similar trends 
were seen in both women and men. The age gap was 5.1 ± 5.1 years 
in individuals aged younger than 60 years and −5.0 ± 4.4 years in 
those aged 60 years or older (Figure S1). Therefore, CAAG was used 
in the association analysis.

Top 10 leading determinants of metabolomic age included 
omega-3 fatty acids, docosahexaenoic acid, citrate, triglycerides in 

intermediate-density lipoprotein, triglycerides in large low-density 
lipoprotein, triglycerides in very small very low-density lipoprotein, 
triglycerides in large high-density lipoprotein, triglycerides in low-
density lipoprotein, tyrosine and saturated fatty acids (Figure S2). 
Similar metabolomic profiles that were the strongest predictors of 
chronological age were found (Figure S3).

3.3  |  Baseline characteristics

Individuals with greater CAAG were more likely to be female and 
have lower household income and higher BMI and a higher preva-
lence of hypertension (Table 1).

3.4  |  Chronological age-adjusted age gap and 
incidence of individual diseases

Given the difference in the number of cases at baseline between 
individual diseases, the follow-duration differed between these dis-
eases. The median follow-up duration ranged from 11.2 years for 
dyspepsia to 11.9 years for multiple sclerosis. The number of incident 
cases ranged from 46 for multiple sclerosis to 6484 for dyspepsia.

After controlling for false discovery rate, CAAG was significantly 
associated with the incidence of 25 out of 50 individual chronic dis-
eases in Model 1. After adjustment for demographic factors, lifestyle, 
fasting duration, metabolic disorders and mediations use for hyper-
tension and high cholesterol, the association with 15 chronic diseases 
remained significant. Each year increment of CAAG was associated 
with a 1% (95% CI: 0%–2%), 3% (1%–4%), 2% (1%–4%), 3% (1%–5%), 

F I G U R E  1 Flowchart for the development of metabolomic age and its association with the risk of chronic diseases (a) refers to the 
division of datasets; (b) refers to the development of metabolomic age and its linkage to chronic diseases.
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2% (0.3%–4%) and 2% (1%–3%) higher risk of CHD, heart failure, atrial 
fibrillation, stroke and other cardiac disease, respectively. Greater 
GAAG was associated with an increased risk of diabetes (HR (95% CI): 
1.05 [1.03–1.06]), hypertension (1.01 [1.00–1.02]), dyslipidemia (1.02 
[1.01–1.03]), oesophageal cancer (1.06 [1.02–1.11]), other cancers 
(1.01 [1.00–1.02]), alcohol use disorder (1.04 [1.01–1.06]), chronic liver 
disease (1.07 [1.03–1.11]), COPD (1.02 [1.01–1.03]), CKD (1.05 [1.04–
1.06]) and age related macular degeneration (1.02 [1.00–1.04]).

The association between CAAG and risk of anxiety, asthma, di-
verticulitis, thyroid disorders and eczema was attenuated to be non-
significant after adjustment for metabolic disorders and the use of 
related medications (Figure 3).

This was inconsistent with the results when CAAG was analysed 
in quintiles as categorical variables (Table S3). The survival plots for 
multiple individual diseases by quintiles of CAAG with significant as-
sociations are shown in Figure S4.

3.5  |  Moderation analysis

The association between CAAG and risk of peripheral vascular dis-
ease, other cardiac diseases, fracture, cataract and thyroid disorder 
was stronger among individuals with unhealthy diet. Greater CAAG 
was associated with a lower risk of prostate disorders in individu-
als with healthy diet (HR [95% CI] for each year increment: 0.95 

[0.92–0.99]) but not those with unhealthy diet (1.00 [0.99–1.01], 
Figure 4).

The association between CAAG and risk of heart failure, other 
cardiac diseases, diabetes, hypertension, dyslipidemia, COPD and 
CKD was stronger among younger than in older individuals. Greater 
CAAG was associated with increased risk of depression, schizophre-
nia, dementia, osteoporosis, lung cancer and cataract in younger in-
dividuals only (Figure 5).

The association between CAAG and risk of some CVDs, some 
neurological disorders, and age related macular degeneration was 
stronger in individuals with lower education (Figure 6).

The association between CAAG and risk of melanoma and 
chronic liver disease was stronger among individuals without hyper-
tension than those with hypertension. Larger CAAG was associated 
with an increased risk of peripheral vascular disease, inflammatory 
bowel disease and cataract was significant among those with diabe-
tes only. The association between CAAG and risk of epilepsy, hyper-
tension and dyslipidemia was stronger in individuals with low GRS 
for longevity than those with high GRS (Figure S5).

3.6  |  Sensitivity analysis

Similar results for the association between chronological age-
adjusted age gap and risk of individual diseases were seen among 

F I G U R E  2 Distribution of metabolomic age in women and men. Age gap was calculated by subtracting chronological age from 
metabolomic age. Chronological age-adjusted age gap was calculated with use of regression models. Red curves represent the trend of the 
distribution.
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TA B L E  1 Baseline characteristics across quintiles of chronological age-adjusted age gap.

Chronological age-adjusted age gap (years)a

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 p-valueb

(≤2.90) (−2.90, −0.92) (−0.93, 0.80) (0.81, 2.9) (>2.9)

Age (years) 56.6 ± 8.2 56.5 ± 8.2 56.5 ± 8.1 56.5 ± 8.1 56.6 ± 8.0 1.00
Sex
Women 4994 (45) 5645 (51) 5959 (54) 6373 (58) 6954 (63) <0.0001
Men 6076 (55) 5423 (49) 5110 (46) 4696 (42) 4116 (37)

Ethnicity
White 10,320 (93) 10,410 (94) 10,519 (95) 10,526 (95) 10,452 (94) <0.0001
Non-White 750 (7) 658 (6) 550 (5) 543 (5) 618 (6)

Education
High 3916 (35) 3787 (34) 3671 (33) 3692 (33) 3589 (32) 0.00011
Intermediate 5401 (49) 5452 (49) 5623 (51) 5556 (50) 5581 (51)
Low 1753 (16) 1829 (17) 1775 (16) 1821 (17) 1900 (17)

Household income (pounds)
<18,000 2329 (21) 2326 (21) 2414 (22) 2449 (22) 2798 (25) <0.0001
18,000-30,999 3189 (29) 3164 (29) 3158 (28) 3197 (29) 3329 (30)
31,000-51,999 2932 (27) 2933 (26) 2855 (26) 2842 (26) 2667 (24)
52,000-100,000 2088 (19) 2124 (19) 2094 (19) 2067 (19) 1851 (17)
>100,000 532 (5) 521 (5) 548 (5) 514 (5) 425 (4)

Alcohol consumption
Never 482 (5) 477 (4) 458 (4) 474 (4) 529 (5) 0.0323
Previous 374 (3) 418 (4) 366 (3) 349 (3) 460 (4)
Current 10,214 (92) 10,173 (92) 10,245 (93) 10,246 (93) 10,081 (91)

Smoking
Never 6115 (55) 6058 (55) 6158 (56) 6007 (54) 5926 (53) 0.0277
Former 3777 (34) 3852 (35) 3806 (34) 3908 (35) 3973 (36)
Current 1178 (11) 1158 (10) 1105 (10) 1154 (11) 1171 (11)

Physical activity 
(MET-minutes/week)

2743 ± 2808 2679 ± 2734 2623 ± 2626 2588 ± 2611 2512 ± 2653 <0.0001

Diet scorec

Unhealthy diet 4465 (40) 4341 (39) 4202 (38) 4035 (36) 3903 (35) <0.0001
Healthy diet 6605 (60) 6727 (61) 6867 (62) 7034 (64) 7167 (65)

Sleep duration (hours) 7.13 ± 1.07 7.14 ± 1.08 7.15 ± 1.10 7.18 ± 1.12 7.19 ± 1.20 <0.0001
BMI (kg/m2) 26.47 ± 4.06 27.00 ± 4.27 27.45 ± 4.50 27.79 ± 4.91 28.64 ± 5.52 <0.0001
Genetic risk score for 

longevityd
0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.0195

Fasting duration (hours) 3.80 ± 2.50 3.79 ± 2.47 3.74 ± 2.31 3.75 ± 2.40 3.84 ± 2.45 0.48
Hypertension 2434 (22) 2607 (24) 2863 (26) 3158 (29) 3738 (34) <0.0001
High cholesterol 1805 (16) 2022 (18) 2361 (21) 2559 (23) 3206 (29) <0.0001
Diabetes 322 (3) 378 (3) 445 (4) 599 (5) 1130 (10) <0.0001
Antihypertensive medication 1809 (16) 1969 (18) 2168 (20) 2486 (23) 3145 (28) <0.0001
Lipid lowering medication 1286 (12) 1546 (14) 1807 (16) 2142 (19) 2962 (27) <0.0001
Glucose lowering medication 210 (2) 269 (2) 315 (3) 456 (4) 873 (8) <0.0001

Note: Data are means ± standard deviations, or N (%).
Abbreviations: BMI, body mass index; MET, metabolic equivalent.
aAge gap was calculated by subtracting chronological age from metabolomic age. Chronological age-adjusted age gap was calculated with use of 
regression models.
bANOVA for continuous variables and chi-squared for categorical variables were used to test the difference of baseline characteristics across 
quintiles of chronological age-adjusted age gap.
cDiet score was computed based on seven commonly eaten food groups following recommendations on dietary priorities for cardiometabolic health 
with a higher score representing a healthier diet.
dGenetic risk score was calculated for longevity was calculated using 78 single-nucleotide polymorphisms.
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F I G U R E  3 Legend on next page
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individuals by excluding those developed the disease in the first year 
of follow-up (Figure S6, Table S4) or by excluding those developed in 
the first 5 years of follow-up (Figure S7, Table S5).

4  |  DISCUSSION

Using data from this large cohort study, we found greater CAAG 
was associated with an increased risk of 24 individual chronic dis-
eases. The association with 15 diseases including most CVDs, all 
metabolic disorders, some cancers, alcohol use disorder, CKD, res-
piratory disorders, chronic liver disease and age related macular 
degeneration remained significant after adjustment for metabolic 
disorders and the use of related medications at baseline. The as-
sociation with some CVDs, fracture, thyroid disorders and cata-
ract was stronger among individuals with unhealthy diet. Greater 
CAAG was associated with lower risk of prostate disorders among 
individuals with healthy diet only. The association between CAAG 

and some chronic diseases was stronger among younger individu-
als, lowly educated individuals or those with metabolic disorders/
low GRS of longevity.

The strong associations between metabolism and ageing pro-
vide the rationale for examining metabolomic clocks (López-Otín 
et al., 2016). Metabolomic profiles including fatty acids, lipids and 
amino acids have been demonstrated to be strong predictors of lon-
gevity (Gonzalez-Covarrubias et  al., 2013). Consistently, we found 
fatty acids, amino acids and triglycerides (in intermediate-density 
lipoprotein, large low-density lipoprotein, very small very low-
density lipoprotein, large high-density lipoprotein and low-density 
lipoprotein) were among leading determinants of metabolomic age. 
Recent evidence suggests machine learning based on a larger train-
ing sample size has improved the precision of epigenetic clock esti-
mates (Zhang et al., 2019). Our study showed that machine learning 
based LASSO and ridge regression analysis provided fair prediction 
of chronological age based on metabolomics. Noise in metabolomic 
data may limit the utility of metabolomic age (Rutledge et al., 2022), 

F I G U R E  3 The association between each year increment in chronological age-adjusted age gap and risk of individual diseases in the 
validation population. Age gap was calculated by subtracting chronological age from metabolomic age. Chronological age-adjusted age 
gap was calculated with the use of regression models. *Cox proportional regression models were used to examine the association between 
chronological age-adjusted age gap (each year increment) and incidence of individual chronic diseases. Model 1 was unadjusted; Model 2 
was adjusted for Model 1 plus age, sex, ethnicity, education, household income, diet score, alcohol consumption, physical activity, smoking, 
sleep duration, fasting duration, and GRS for longevity; Model 3 was adjusted for Model 2 plus BMI, high cholesterol, hypertension, and 
antihypertensive and lipid-lowering medications (hypertension or antihypertensive medication use at baseline was not adjusted for the 
analysis of incident hypertension given these participants with hypertension or antihypertensive medication use were excluded from the 
analysis). Red color squares refer to significantly positive associations while green color squares refer to significantly inverse associations. 
The significant associations in Model 1 were defined as p-value<0.05 after adjustment for false discovery rate. †These analyses were 
conducted among men only. ‡These analyses were conducted among women only. AMD, age related macular degeneration; CI, confidence 
interval; COPD, chronic obstructive pulmonary disease; HR, hazard ratio.

F I G U R E  4 The association between 
chronological age-adjusted age gap and 
incidence of chronic diseases moderated 
by diet score. Cox proportional regression 
models were used to test whether diet 
quality modified the association between 
chronological age-adjusted age gap and 
incidence of chronic diseases. Only the 
results with significant interaction are 
shown in this figure. Horizontal lines 
indicate the range of the 95% confidence 
interval. The vertical dash lines represent 
the hazard ratio of one.
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such that previous studies on metabolomic age only focused on sev-
eral conditions including mortality, CVDs, obesity, diabetes and psy-
chological disorders (Deelen et al., 2019; Fischer et al., 2014; Hertel 
et  al.,  2016; Menni et  al.,  2013; Robinson et  al.,  2020). Whether 

metabolomic age is associated with the risk of a wide range of 
chronic diseases needs to be explored in more cohort studies.

The important role of metabolomic profiles on CMDs has 
been highlighted in previous studies (Buergel et  al.,  2022; Shah 

F I G U R E  5 The association between 
chronological age-adjusted age gap and 
incidence of chronic diseases moderated 
by chronological age. Cox proportional 
regression models were used to test 
whether chronological age modified 
the association between chronological 
age-adjusted age gap and incidence of 
chronic diseases. Only the results with 
significant interaction are shown in this 
figure. Horizontal lines indicate the range 
of the 95% confidence interval. The 
vertical dash lines represent the hazard 
ratio of one. CKD, chronic kidney disease; 
CI, confidence interval; COPD, chronic 
obstructive pulmonary disease.
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et al., 2012). We found accelerated CAAG was associated with an 
increased risk of most CMDs of interest including CHD, heart failure, 
stroke and diabetes. Although these associations were independent 
of metabolic disorders and the use of medications for hypertension 
and lipids at baseline, the adjustment for these covariates attenu-
ated the associations. This suggests good management of metabolic 
disorders may help mitigate the adverse effect size of accelerated 
metabolomic age on CMDs. It is also possible that the intake of re-
spective medications might reduce the validity of the metabolomics 
thus biasing the algorithm of metabolomic age. In a cross-sectional 
analysis of data from 26 community and hospital-based cohorts, 
larger age gap (metabolomic age minus chronological age) was as-
sociated with a higher likelihood of diabetes (OR [95% CI] for each 
10-year increment of age gap: 2.52 [1.93–3.11]) among 12,633 par-
ticipants (van den Akker et al., 2020). In the same study, a longitudi-
nal analysis of 5410 participants with a mean follow-up of 3.3 years 
showed that larger age gap was associated with an increased risk of 
CHD (HR [95% CI] for each 10-year increment: 1.25 [1.11–1.40]) (van 

den Akker et al., 2020). Data from the UK Airwave cohort demon-
strated that metabolomic age was corrected with obesity and dia-
betes (Robinson et al., 2020). Our findings regarding heart failure, 
atrial fibrillation, stroke, peripheral vascular disease and other car-
diac disease need to be confirmed by future cohort studies with long 
follow-up duration.

As metabolomic state has been linked to multiple diseases 
(Buergel et al., 2022), it is also of great interest to examine whether 
metabolomic age is predictive of many other diseases rather than 
CMDs only. Robinson et  al. reported that metabolomic age ac-
celeration was associated with heavy alcohol use and depression 
(Robinson et  al.,  2020). Likely, we found greater CAAG was as-
sociated with higher risk of incident depression, anxiety, alcohol 
use disorder and psychoactive substance abuse. The association 
for depression and anxiety was attenuated to be non-significant 
after adjustment for metabolic disorders and antihypertensive and 
lipid-lowering medications indicating that good control of tradi-
tional metabolic biomarkers might contribute to the reduction of 

F I G U R E  6 The association between 
chronological age-adjusted age gap and 
incidence of chronic diseases moderated 
by education. Cox proportional regression 
models were used to test whether 
education modified the association 
between chronological age-adjusted 
age gap and incidence of chronic 
diseases. Only the results with significant 
interaction are shown in this figure. 
Horizontal lines indicate the range of the 
95% confidence interval. The vertical dash 
lines represent the hazard ratio of one. 
AMD, age-related macular degeneration; 
CI, confidence interval.
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the risk due to metabolomic age acceleration. A cross-sectional 
analysis of data from the Study of Health in Pomerania showed 
that metabolic age acceleration was associated with kidney mal-
function (microalbuminuria, albumin-to-creatinine ratio) (Hertel 
et  al.,  2016). A recent longitudinal multi-omics study in humans 
revealed that kidney dysfunction was involved in the process 
of ageing (Ahadi et  al., 2020). This is consistent with our study 
demonstrating that CAAG was associated with an increased risk 
of CKD. In a cohort study of 6055 individuals from the UK, an 
age-related metabolite C-glycosyl tryptophan was associated with 
lung function (forced expiratory volume) (Menni et al., 2013). We 
found greater CAAG was associated with an increased risk of 
COPD and asthma and the association for COPD was even inde-
pendent of metabolic disorders and related medications use. The 
longitudinal multi-omics study also identified an ageing pathway 
related to liver dysfunction (Ahadi et al., 2020). Consistently, me-
tabolomic age was strongly associated with the risk of liver disease 
in our study. We also found larger CAAG was associated with a 
higher risk of oesophageal cancer but not other cancers. A recent 
systematic review reported that a number of metabolites were 
identified for oesophageal cancer but the results were inconsis-
tent between previous studies (Huang et  al.,  2020). Meanwhile, 
metabolomic age acceleration was associated with an increased 
risk of dyspepsia, diverticulitis, osteoporosis and thyroid disorders 
before but not after adjustment for metabolic biomarkers and use 
of antihypertensive and lipid-lowering medications in our study. 
Our study developed a metabolomic age that was independently 
predictive of multiple chronic diseases including psychological dis-
orders, CKD, COPD, chronic liver disease and oesophageal cancer, 
which might be useful for the screening and prevention of these 
diseases.

The importance of diet in the development of chronic diseases 
should not be overlooked (Schulze et al., 2018; Shan et al., 2020). 
In moderation analysis, the association between CAAG and the risk 
of several types of CVD, CKD and chronic liver disease was weaker 
among individuals with healthy diet. Therefore, individuals are rec-
ommended to accommodate healthy diet habits to mitigate the risk 
of metabolomic ageing. Stronger associations between metabolomic 
age and some chronic diseases seen in individuals with metabolic 
disorders in our study highlight the importance of the management 
of metabolomics in these people. The association between CAAG 
and the risk of some chronic diseases was more pronounced among 
young than older individuals. This is consistent with previous stud-
ies showing that metabolic disorders diagnosed at younger age was 
associated with greater risk of CVD, dementia and mortality (Shang 
et al., 2021, 2022; Zhao et al., 2021). The association between CAAG 
and the risk of some chronic diseases was stronger among individuals 
with lower education. This is possibly due to the fact that individuals 
with higher education are more likely to seek health care and less 
likely to develop chronic diseases with metabolomic ageing (Brayne 
et  al.,  2010; Livingston et  al.,  2020). We also found that greater 
CAAG was associated with an increased risk of epilepsy, hyperten-
sion and dyslipidemia in individuals with high GRS of longevity. One 

possible explanation for this is that low GRS of longevity was asso-
ciated with higher prevalence of metabolic disorders and higher ge-
netic risks of epilepsy, hypertension and dyslipidemia were detected 
in long-lived individuals (Hu et al., 2022). Metabolomic age provides 
different prediction values of some chronic diseases between diet, 
education, metabolic disorders, age or GRS groups.

This is the first study with a large sample size and long follow-up 
duration to develop metabolomic age and examine its association 
with a wide range of chronic diseases. Several potential limitations 
need to be considered in our study. First, the metabolomic age was 
developed based on metabolomics measured at one time point, such 
that metabonomic dynamics with ageing within an individual could 
not be estimated. Second, the plasma sample in the UK Biobank was 
non-fasting, which might bias the associations. However, the adjust-
ment for fasting duration in the analysis did not substantially change 
the association between CAAG and chronic diseases. Third, most of 
the participants in our analyses were Caucasians thus our findings 
may not be generalized to other ethnic groups. Finally, the number 
of incident cases for several chronic diseases (such as multiple scle-
rosis) was small, which might have reduced the statistical power to 
test significance.

In conclusion, metabolomic age plays an important role in the de-
velopment of multiple chronic diseases including CMDs, psycholog-
ical disorders, COPD, CKD, liver disease and some cancers. Healthy 
diet may help mitigate the risk for some chronic diseases due to me-
tabolomic age acceleration. Age, education, metabolic disorders and 
GRS for longevity may modify the association between metabolomic 
age and some chronic diseases. Our findings may help facilitate the 
understanding of ageing process related to metabolomics thus en-
hancing healthy ageing.
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