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Abstract
It is unclear how metabolomic age is associated with the risk of a wide range of chronic 
diseases. Our analysis included 110,692 participants (training: n = 27,673;	 testing:	
n = 27,673;	 validating:	 n = 55,346)	 aged	 39–71 years	 at	 baseline	 (2006–2010)	 from	
the	UK	Biobank.	Incident	chronic	diseases	were	identified	using	inpatient	records,	or	
death registers until January 2021. Predicted metabolomic age was trained and tested 
based	on	168	metabolomics.	Metabolomic	age	was	linked	to	the	risk	of	50	diseases	in	
the	validation	dataset.	The	median	follow-	up	duration	for	individual	diseases	ranged	
from	11.2 years	to	11.9 years.	After	controlling	for	false	discovery	rate,	chronological	
age-	adjusted	age	gap	 (CAAG)	was	significantly	associated	with	the	 incidence	of	25	
out	of	50	chronic	diseases.	After	adjustment	for	full	covariates,	associations	with	15	
chronic	diseases	remained	significant.	Greater	CAAG	was	associated	with	increased	
risk of eight cardiometabolic disorders (including cardiovascular diseases and dia-
betes),	 some	cancers,	 alcohol	 use	disorder,	 chronic	obstructive	pulmonary	disease,	
chronic	kidney	disease,	chronic	 liver	disease	and	age-	related	macular	degeneration.	
The	association	between	CAAG	and	risk	of	peripheral	vascular	disease,	other	cardiac	
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1  |  INTRODUC TION

Chronological	 age	 is	 one	 of	 the	 most	 important	 risk	 factors	 for	
chronic	 disorders	 and	 mortality	 (Beard	 et	 al.,	 2016;	 López-	Otín	
et al., 2013).	People	with	the	same	chronological	age	may	differ	in	
biological health, and biological ageing may be a better predictor for 
health (Horvath, 2013; Jylhävä et al., 2017).	Biological	age	has	been	
developed based on omics including genomics, telomere length, 
transcriptomics and proteomics and it has been shown to be a strong 
predictor of chronic diseases and mortality (Jylhävä et al., 2017;	Kuo	
et al., 2022).	 In	the	global	ageing	population,	 it	 is	 important	to	un-
derstand biological age for the prevention of chronic diseases and 
promoting healthy ageing.

Metabolism	plays	an	important	role	not	only	in	the	development	
of	 metabolic	 disorders	 but	 also	 in	 cardiovascular	 disease	 (CVD),	
neurogenerative disorders, musculoskeletal disorders, mental dis-
orders,	 respiratory	 conditions	 and	 cancers	 (Amorim	 et	 al.,	 2022; 
Eckel et al., 2018;	Lumsden	et	al.,	2022).	Metabolomic	state	added	
predictive value even over established clinical variables in the devel-
opment	of	multiple	chronic	diseases	(Buergel	et	al.,	2022).	A	cohort	
study from Germany (discovery cohort: 2162 participants and rep-
lication	cohort:	724	women)	identified	multiple	metabolomics	that	
were	highly	 correlated	with	 chronological	 age	 (Yu	 et	 al.,	2012).	A	
cohort	study	of	2239	participants	from	the	UK	showed	that	metab-
olomic age developed based on metabolic profiles was associated 
with the prevalence of obesity, diabetes, heavy alcohol use and de-
pression (Robinson et al., 2020).	Several	other	studies	have	demon-
strated that metabolomic age acceleration was associated with an 
increased risk of mortality (Deelen et al., 2019;	Fischer	et	al.,	2014),	
and	CVD	(van	den	Akker	et	al.,	2020).	As	previous	studies	have	fo-
cused on one or several diseases, whether metabolomic age acceler-
ation is associated with the risk of a wide range of chronic diseases 
remains to be explored. These studies are also limited by the rela-
tively	small	sample	sizes	or	cross-	sectional	design,	while	biological	
clock estimates using machine learning can be improved by increas-
ing	the	training	sample	size	(Zhang	et	al.,	2019).

Using	 the	UK	Biobank,	we	aimed	 to	develop	metabolomic	 age	
based on metabolomics measured by nuclear magnetic resonance 
spectroscopy	 using	 machine	 learning.	We	 then	 examined	 the	 as-
sociation between metabolomic age and a wide range of individual 

chronic diseases. The interplay between metabolomic age and age, 
sex, diet and metabolic disorders for chronic diseases was then 
examined.

2  |  METHODS

2.1  |  Study population

The	 present	 study	 was	 based	 on	 the	 UK	 Biobank,	 which	 is	 a	
population-	based	 cohort	 of	more	 than	 500,000	 participants	 aged	
39–73 years	 at	 enrolment	 (Sudlow	 et	 al.,	 2015).	 Data	 on	 demo-
graphic factors, lifestyle and medical history were collected using 
self-	administered	questionnaires	 from	502,505	participants	out	of	
approximately 9.2 million invited people. Details of the study design 
have	been	shown	elsewhere	(Sudlow	et	al.,	2015).

The	 UK	 Biobank	 Study's	 ethical	 approval	 has	 been	 granted	
by	 the	 National	 Information	 Governance	 Board	 for	 Health	 and	
Social	 Care	 and	 the	 NHS	 North	 West	 Multicenter	 Research	
Ethics	 Committee	 (REC	 reference:	 16/NW/0274).	 All	 partici-
pants provided informed consent through electronic signature at 
recruitment.

2.2  |  Ascertainment of diseases

Individual diseases were defined if participants reported that they 
had	ever	been	told	by	a	doctor	that	they	had	the	disease	(Field	code:	
Table S1).	Fifty	major	diseases	(all	important	conditions	of	interest)	
such	as	cardiometabolic	disorders	(CMD)	(including	diabetes,	coro-
nary	heart	disease	(CHD),	heart	failure,	atrial	fibrillation	and	stroke),	
cancer	 (including	 melanoma,	 lung	 cancer	 and	 stomach	 cancer),	
chronic	obstructive	pulmonary	disease	(COPD)	and	chronic	kidney	
disease	(CKD)	were	included	in	the	analysis.

Inpatient data were used to identify additional disease cases 
at baseline. Inpatient hospital records were captured using the 
Hospital	Episode	Statistics	database,	the	Scottish	Morbidity	Record,	
and	the	Patient	Episode	Database	 in	England,	Scotland	and	Wales	
(Sudlow	et	al.,	2015).	In	the	UK	Biobank,	the	inpatient	hospital	data	
were	 available	 since	 1997	 (Sudlow	 et	 al.,	2015).	 The	 international	

diseases, fracture, cataract and thyroid disorder was stronger among individuals with 
unhealthy	diet	than	in	those	with	healthy	diet.	The	association	between	CAAG	and	
risk of some conditions was stronger in younger individuals, those with metabolic dis-
orders	or	low	education.	Metabolomic	age	plays	an	important	role	in	the	development	
of multiple chronic diseases. Healthy diet and high education may mitigate the risk for 
some chronic diseases due to metabolomic age acceleration.

K E Y W O R D S
cardiometabolic disorder, chronic kidney disease, chronic obstructive pulmonary disease, liver 
disease, metabolomic age, moderation analysis, oesophageal cancer
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classification diseases codes for each of the 50 diseases are listed 
in Table S2. Incident cases of these diseases were defined using in-
patient and mortality data. The onset date of diseases was defined 
as	 the	 earliest	 recorded	 date	 regardless	 of	 sources.	 Person-	years	
for each disease were calculated from the date of baseline assess-
ment	to	the	date	of	onset,	date	of	death	or	the	end	of	follow-	up	(31	
December	 2020	 for	 England	 and	Wales	 and	 31	 January	 2021	 for	
Scotland),	whichever	came	first.

2.3  |  Metabolomic profiling

In	the	UK	Biobank,	metabolomic	profiles	were	measured	according	
to	the	structure	and	chemical	properties	of	molecules	using	a	high-	
throughput	nuclear	magnetic	resonance-	based	metabolic	biomarker	
profiling	platform	(Würtz	et	al.,	2017).	EDTA	plasma	samples	were	
collected from a randomly selected subset of 117,121 participants 
at baseline and 5000+	participants	at	the	first	repeat	visit.	Venous	
blood sampling was collected and transported to a central labora-
tory	 and	 stored	 in	 ultra-	low	 temperature	 archives.	 The	 measure-
ments	 at	 baseline	were	 used	 in	 our	 analysis.	Measurements	were	
conducted for 249 metabolic traits (168 concentrations and 81 
ratios)	including	the	lipoprotein	lipids,	fatty	acids,	amino	acids,	gly-
colysis,	 organic	 acids	 and	 nucleotides.	 Automated	 quality	 control	
was performed, and biomarker values substantially affected by in-
terfering substances were removed (https:// bioba nk. ctsu. ox. ac. uk/ 
cryst al/ label. cgi? id= 220)	(Soininen	et	al.,	2015;	Würtz	et	al.,	2017).	
Metabolomic	levels	were	normalized	with	mean = 0	and	standard	de-
viation	(SD) = 1.

2.4  |  Covariates

Demographic information on age, sex, ethnicity, education and an-
nual	 household	 income	was	 self-	reported.	 Sleep	 duration	was	 as-
sessed	 based	 on	 the	 question	 ‘About	 how	 many	 hours'	 sleep	 do	
you	get	in	every	24 h?’	Physical	activity	was	assessed	using	a	short	
form	of	the	International	Physical	Activity	Questionnaire.	Diet	score	
was computed based on seven commonly eaten food groups with 
a	 higher	 score	 representing	 a	 healthier	 diet	 (Lourida	 et	 al.,	2019).	
Healthy	diet	was	defined	as	diet	score	≥4	and	unhealthy	diet	as	diet	
score <4	(Lourida	et	al.,	2019).	Medication	use	for	antihypertension,	
lipid-	lowering	 and	 glucose-	lowering	was	 self-	reported.	 Body	mass	
index	(BMI)	was	calculated	based	on	measured	height	and	weight.	A	
genetic	risk	score	(GRS)	for	longevity	was	computed	using	78	single-	
nucleotide polymorphisms with a higher score representing longer 
longevity (Timmers et al., 2020).

2.5  |  Statistical analysis

We	 randomly	 selected	 50%	 of	 the	 population	 with	 metabolomic	
data	 stratified	 by	 the	 assessment	 center	 to	 train	 (25%	 randomly	

selected	 participants)	 and	 test	 (the	 remaining	 25%	 participants)	
the chronological age prediction model based on 168 metabolomic 
profiling	concentrations.	Data	from	the	remaining	50%	participants	
were used to develop metabolomic age and examine the association 
between	metabolomic	age	and	the	risk	of	multiple	diseases.	Multiple	
linear regression models with the chronological age as the depend-
ent	 variable	were	used	 to	develop	metabolomic	 age.	We	 selected	
Gaussian family distribution when establishing prediction model 
using machine learning (Figure 1).	The	hyper-	parameters	alpha	and	
lambda	 specify	 the	 regularization	 strength	 and	 the	 regularization	
distribution	between	L1	(LASSO)	and	(ridge	regression)	L2	penalties,	
respectively.	 In	this	study,	we	used	the	R-	square	to	determine	the	
best prediction performance.

Age	gap	was	calculated	by	subtracting	chronological	age	from	
metabolomic age. Given the age gap for individuals with different 
ages might represent different metabolomic ageing levels, chrono-
logical	age-	adjusted	age	gap	(CAAG)	was	calculated	with	the	use	
of	 regression	models	 (Willett	 et	 al.,	1997).	 Baseline	 characteris-
tics	were	expressed	as	frequency	(%)	or	means ± SDs.	ANOVA	for	
continuous	variables	and	chi-	square	test	for	categorical	variables	
were	used	to	test	the	difference	of	characteristics	by	quintiles	of	
CAAG.

The	association	between	CAAG	and	 incidence	of	each	chronic	
disease	was	examined	using	the	Cox	proportional	regression	mod-
els.	 For	 each	 individual	 chronic	disease,	 participants	with	 the	 cor-
responding disease at baseline were excluded from the analysis. 
Three	models	were	tested:	 (1)	Model	1	was	unadjusted;	 (2)	Model	
2 was adjusted for age, sex, ethnicity, education, household income, 
diet score, alcohol consumption, physical activity, smoking, sleep 
duration,	 fasting	duration	and	GRS	 for	 longevity;	 (3)	Model	3	was	
adjusted	for	Model	2	plus	BMI,	high	cholesterol,	hypertension,	di-
abetes	 and	 antihypertensive,	 glucose-	lowering,	 and	 lipid-	lowering	
medications.	CAAG	was	analysed	in	quintiles	as	well	as	a	continuous	
variable	 (each	 year).	 Benjamin-	Hochberg's	 procedure	was	 used	 to	
control	 the	 false	discovery	 rate	at	a	5%	 level	 for	multiple	compar-
isons	(Benjamini	&	Hochberg,	1995).

Sensitivity	analysis	of	the	association	between	CAAG	and	risk	
of individual diseases was conducted among individuals by ex-
cluding	those	developed	the	disease	in	the	first	year	of	follow-	up	
or	by	excluding	 those	developed	 in	 the	 first	5 years	of	 follow-	up.	
Whether	 associations	between	CAAG	and	chronic	diseases	were	
modified	by	age,	sex,	education,	diet	quality,	metabolic	disorders	or	
GRS	for	longevity	was	tested	using	the	Cox	proportional	regression	
models.

Percentages	 of	 individuals	 with	 missing	 data	 in	 BMI,	 physical	
activity,	income	and	education	were	2%,	19%,	14%	and	1%,	respec-
tively. Given that individuals with missing data in outcome/exposure 
variables were excluded from the analysis, multiple imputations for 
missing data in covariates only using the fully conditional specifica-
tion method were conducted to create 10 imputed datasets.

Data	 analyses	 were	 conducted	 using	 SAS	 9.4	 for	 Windows	
(SAS	Institute	Inc.)	and	all	p-	values	were	two-	sided	with	statistical	
significance set at <0.05.
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3  |  RESULTS

3.1  |  Population selection

Individuals with no data on metabolomic profiles (n = 391,785),	 or	
with missing data on inpatient data (n = 18)	were	excluded	from	the	
analysis.	We	included	110,692	participants	in	the	final	analysis.	The	
analysis for the association between metabolic age and chronic dis-
eases was conducted in the validation dataset (n = 55,346,	54.1%	fe-
male,	aged	39–71	[mean ± SD:	56.5 ± 8.1]	years	at	baseline).

3.2  |  Metabolomic age and chronological age

In	 the	machine	 learning	 analysis,	 the	 LASSO	 and	 ridge	 regression	
model with α = 0.2	and	λ = 0.0001	showed	the	best	prediction	per-
formance in the training and testing datasets. The algorism was then 
used to predict metabolomic age in the validation dataset (Figure 1).

The distribution of predicted metabolomic age is shown in 
Figure 2. The correlation between metabolomic age and chronolog-
ical	age	was	0.56	(95%	CI:	0.55–0.56).	The	mean	gap	between	me-
tabolomic	age	and	chronological	age	was	0.02	(SD = 6.93)	years	and	
the	mean	absolute	error	was	5.52	(SD = 4.27)	years.

The age gap decreased with increasing age and similar trends 
were	seen	in	both	women	and	men.	The	age	gap	was	5.1 ± 5.1 years	
in	 individuals	 aged	 younger	 than	 60 years	 and	 −5.0 ± 4.4 years	 in	
those	aged	60 years	or	older	(Figure S1).	Therefore,	CAAG	was	used	
in the association analysis.

Top 10 leading determinants of metabolomic age included 
omega-	3	fatty	acids,	docosahexaenoic	acid,	citrate,	triglycerides	in	

intermediate-	density	 lipoprotein,	 triglycerides	 in	 large	 low-	density	
lipoprotein,	triglycerides	in	very	small	very	low-	density	lipoprotein,	
triglycerides	 in	 large	high-	density	 lipoprotein,	 triglycerides	 in	 low-	
density lipoprotein, tyrosine and saturated fatty acids (Figure S2).	
Similar	metabolomic	profiles	that	were	the	strongest	predictors	of	
chronological age were found (Figure S3).

3.3  |  Baseline characteristics

Individuals	with	 greater	CAAG	were	more	 likely	 to	be	 female	 and	
have	 lower	household	 income	and	higher	BMI	and	a	higher	preva-
lence of hypertension (Table 1).

3.4  |  Chronological age- adjusted age gap and 
incidence of individual diseases

Given the difference in the number of cases at baseline between 
individual	diseases,	the	follow-	duration	differed	between	these	dis-
eases.	 The	median	 follow-	up	 duration	 ranged	 from	 11.2 years	 for	
dyspepsia	to	11.9 years	for	multiple	sclerosis.	The	number	of	incident	
cases ranged from 46 for multiple sclerosis to 6484 for dyspepsia.

After	controlling	for	false	discovery	rate,	CAAG	was	significantly	
associated with the incidence of 25 out of 50 individual chronic dis-
eases	in	Model	1.	After	adjustment	for	demographic	factors,	lifestyle,	
fasting duration, metabolic disorders and mediations use for hyper-
tension and high cholesterol, the association with 15 chronic diseases 
remained	 significant.	 Each	 year	 increment	 of	 CAAG	was	 associated	
with	a	1%	(95%	CI:	0%–2%),	3%	(1%–4%),	2%	(1%–4%),	3%	(1%–5%),	

F I G U R E  1 Flowchart	for	the	development	of	metabolomic	age	and	its	association	with	the	risk	of	chronic	diseases	(a)	refers	to	the	
division	of	datasets;	(b)	refers	to	the	development	of	metabolomic	age	and	its	linkage	to	chronic	diseases.
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2%	(0.3%–4%)	and	2%	(1%–3%)	higher	risk	of	CHD,	heart	failure,	atrial	
fibrillation, stroke and other cardiac disease, respectively. Greater 
GAAG	was	associated	with	an	increased	risk	of	diabetes	(HR	(95%	CI):	
1.05	[1.03–1.06]),	hypertension	(1.01	[1.00–1.02]),	dyslipidemia	(1.02	
[1.01–1.03]),	 oesophageal	 cancer	 (1.06	 [1.02–1.11]),	 other	 cancers	
(1.01	[1.00–1.02]),	alcohol	use	disorder	(1.04	[1.01–1.06]),	chronic	liver	
disease	(1.07	[1.03–1.11]),	COPD	(1.02	[1.01–1.03]),	CKD	(1.05	[1.04–
1.06])	and	age	related	macular	degeneration	(1.02	[1.00–1.04]).

The	association	between	CAAG	and	risk	of	anxiety,	asthma,	di-
verticulitis,	thyroid	disorders	and	eczema	was	attenuated	to	be	non-	
significant after adjustment for metabolic disorders and the use of 
related medications (Figure 3).

This	was	inconsistent	with	the	results	when	CAAG	was	analysed	
in	quintiles	as	categorical	variables	(Table S3).	The	survival	plots	for	
multiple	individual	diseases	by	quintiles	of	CAAG	with	significant	as-
sociations are shown in Figure S4.

3.5  |  Moderation analysis

The	association	between	CAAG	and	risk	of	peripheral	vascular	dis-
ease, other cardiac diseases, fracture, cataract and thyroid disorder 
was	stronger	among	individuals	with	unhealthy	diet.	Greater	CAAG	
was associated with a lower risk of prostate disorders in individu-
als	 with	 healthy	 diet	 (HR	 [95%	 CI]	 for	 each	 year	 increment:	 0.95	

[0.92–0.99])	 but	 not	 those	 with	 unhealthy	 diet	 (1.00	 [0.99–1.01],	
Figure 4).

The	association	between	CAAG	and	risk	of	heart	failure,	other	
cardiac	 diseases,	 diabetes,	 hypertension,	 dyslipidemia,	 COPD	 and	
CKD	was	stronger	among	younger	than	in	older	individuals.	Greater	
CAAG	was	associated	with	increased	risk	of	depression,	schizophre-
nia, dementia, osteoporosis, lung cancer and cataract in younger in-
dividuals only (Figure 5).

The	association	between	CAAG	and	 risk	of	 some	CVDs,	 some	
neurological disorders, and age related macular degeneration was 
stronger in individuals with lower education (Figure 6).

The	 association	 between	 CAAG	 and	 risk	 of	 melanoma	 and	
chronic liver disease was stronger among individuals without hyper-
tension	than	those	with	hypertension.	Larger	CAAG	was	associated	
with an increased risk of peripheral vascular disease, inflammatory 
bowel disease and cataract was significant among those with diabe-
tes	only.	The	association	between	CAAG	and	risk	of	epilepsy,	hyper-
tension	and	dyslipidemia	was	stronger	 in	 individuals	with	 low	GRS	
for	longevity	than	those	with	high	GRS	(Figure S5).

3.6  |  Sensitivity analysis

Similar	 results	 for	 the	 association	 between	 chronological	 age-	
adjusted age gap and risk of individual diseases were seen among 

F I G U R E  2 Distribution	of	metabolomic	age	in	women	and	men.	Age	gap	was	calculated	by	subtracting	chronological	age	from	
metabolomic	age.	Chronological	age-	adjusted	age	gap	was	calculated	with	use	of	regression	models.	Red	curves	represent	the	trend	of	the	
distribution.
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6 of 13  |     SHANG et al.

TA B L E  1 Baseline	characteristics	across	quintiles	of	chronological	age-	adjusted	age	gap.

Chronological age- adjusted age gap (years)a

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 p- valueb

(≤2.90) (−2.90, −0.92) (−0.93, 0.80) (0.81, 2.9) (>2.9)

Age	(years) 56.6 ± 8.2 56.5 ± 8.2 56.5 ± 8.1 56.5 ± 8.1 56.6 ± 8.0 1.00
Sex
Women 4994	(45) 5645	(51) 5959	(54) 6373	(58) 6954	(63) <0.0001
Men 6076	(55) 5423	(49) 5110	(46) 4696	(42) 4116	(37)

Ethnicity
White 10,320	(93) 10,410	(94) 10,519	(95) 10,526	(95) 10,452	(94) <0.0001
Non-	White 750	(7) 658	(6) 550	(5) 543	(5) 618	(6)

Education
High 3916	(35) 3787	(34) 3671	(33) 3692	(33) 3589	(32) 0.00011
Intermediate 5401	(49) 5452	(49) 5623	(51) 5556	(50) 5581	(51)
Low 1753	(16) 1829	(17) 1775	(16) 1821	(17) 1900	(17)

Household	income	(pounds)
<18,000 2329	(21) 2326	(21) 2414	(22) 2449	(22) 2798	(25) <0.0001
18,000-	30,999 3189	(29) 3164	(29) 3158	(28) 3197	(29) 3329	(30)
31,000-	51,999 2932	(27) 2933	(26) 2855	(26) 2842	(26) 2667	(24)
52,000-	100,000 2088	(19) 2124	(19) 2094	(19) 2067	(19) 1851	(17)
>100,000 532	(5) 521	(5) 548	(5) 514	(5) 425	(4)

Alcohol	consumption
Never 482	(5) 477	(4) 458	(4) 474	(4) 529	(5) 0.0323
Previous 374	(3) 418	(4) 366	(3) 349	(3) 460	(4)
Current 10,214	(92) 10,173	(92) 10,245	(93) 10,246	(93) 10,081	(91)

Smoking
Never 6115	(55) 6058	(55) 6158	(56) 6007	(54) 5926	(53) 0.0277
Former 3777	(34) 3852	(35) 3806	(34) 3908	(35) 3973	(36)
Current 1178	(11) 1158	(10) 1105	(10) 1154	(11) 1171	(11)

Physical activity 
(MET-	minutes/week)

2743 ± 2808 2679 ± 2734 2623 ± 2626 2588 ± 2611 2512 ± 2653 <0.0001

Diet scorec

Unhealthy	diet 4465	(40) 4341	(39) 4202	(38) 4035	(36) 3903	(35) <0.0001
Healthy diet 6605	(60) 6727	(61) 6867	(62) 7034	(64) 7167	(65)

Sleep	duration	(hours) 7.13 ± 1.07 7.14 ± 1.08 7.15 ± 1.10 7.18 ± 1.12 7.19 ± 1.20 <0.0001
BMI	(kg/m2) 26.47 ± 4.06 27.00 ± 4.27 27.45 ± 4.50 27.79 ± 4.91 28.64 ± 5.52 <0.0001
Genetic risk score for 

longevityd
0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.0195

Fasting	duration	(hours) 3.80 ± 2.50 3.79 ± 2.47 3.74 ± 2.31 3.75 ± 2.40 3.84 ± 2.45 0.48
Hypertension 2434	(22) 2607	(24) 2863	(26) 3158	(29) 3738	(34) <0.0001
High cholesterol 1805	(16) 2022	(18) 2361	(21) 2559	(23) 3206	(29) <0.0001
Diabetes 322	(3) 378	(3) 445	(4) 599	(5) 1130	(10) <0.0001
Antihypertensive	medication 1809	(16) 1969	(18) 2168	(20) 2486	(23) 3145	(28) <0.0001
Lipid	lowering	medication 1286	(12) 1546	(14) 1807	(16) 2142	(19) 2962	(27) <0.0001
Glucose lowering medication 210	(2) 269	(2) 315	(3) 456	(4) 873	(8) <0.0001

Note:	Data	are	means ± standard	deviations,	or	N	(%).
Abbreviations:	BMI,	body	mass	index;	MET,	metabolic	equivalent.
aAge	gap	was	calculated	by	subtracting	chronological	age	from	metabolomic	age.	Chronological	age-	adjusted	age	gap	was	calculated	with	use	of	
regression models.
bANOVA	for	continuous	variables	and	chi-	squared	for	categorical	variables	were	used	to	test	the	difference	of	baseline	characteristics	across	
quintiles	of	chronological	age-	adjusted	age	gap.
cDiet score was computed based on seven commonly eaten food groups following recommendations on dietary priorities for cardiometabolic health 
with a higher score representing a healthier diet.
dGenetic	risk	score	was	calculated	for	longevity	was	calculated	using	78	single-	nucleotide	polymorphisms.
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8 of 13  |     SHANG et al.

individuals by excluding those developed the disease in the first year 
of	follow-	up	(Figure S6, Table S4)	or	by	excluding	those	developed	in	
the	first	5 years	of	follow-	up	(Figure S7, Table S5).

4  |  DISCUSSION

Using	data	 from	this	 large	cohort	 study,	we	 found	greater	CAAG	
was associated with an increased risk of 24 individual chronic dis-
eases.	The	association	with	15	diseases	 including	most	CVDs,	all	
metabolic	disorders,	some	cancers,	alcohol	use	disorder,	CKD,	res-
piratory disorders, chronic liver disease and age related macular 
degeneration remained significant after adjustment for metabolic 
disorders and the use of related medications at baseline. The as-
sociation	with	 some	 CVDs,	 fracture,	 thyroid	 disorders	 and	 cata-
ract was stronger among individuals with unhealthy diet. Greater 
CAAG	was	associated	with	lower	risk	of	prostate	disorders	among	
individuals	with	healthy	diet	only.	The	association	between	CAAG	

and some chronic diseases was stronger among younger individu-
als, lowly educated individuals or those with metabolic disorders/
low	GRS	of	longevity.

The strong associations between metabolism and ageing pro-
vide	 the	 rationale	 for	 examining	 metabolomic	 clocks	 (López-	Otín	
et al., 2016).	Metabolomic	profiles	 including	 fatty	acids,	 lipids	and	
amino acids have been demonstrated to be strong predictors of lon-
gevity	 (Gonzalez-	Covarrubias	et	 al.,	2013).	Consistently,	we	 found	
fatty	 acids,	 amino	 acids	 and	 triglycerides	 (in	 intermediate-	density	
lipoprotein,	 large	 low-	density	 lipoprotein,	 very	 small	 very	 low-	
density	 lipoprotein,	 large	high-	density	 lipoprotein	and	 low-	density	
lipoprotein)	were	among	leading	determinants	of	metabolomic	age.	
Recent evidence suggests machine learning based on a larger train-
ing	sample	size	has	improved	the	precision	of	epigenetic	clock	esti-
mates	(Zhang	et	al.,	2019).	Our	study	showed	that	machine	learning	
based	LASSO	and	ridge	regression	analysis	provided	fair	prediction	
of	chronological	age	based	on	metabolomics.	Noise	in	metabolomic	
data may limit the utility of metabolomic age (Rutledge et al., 2022),	

F I G U R E  3 The	association	between	each	year	increment	in	chronological	age-	adjusted	age	gap	and	risk	of	individual	diseases	in	the	
validation	population.	Age	gap	was	calculated	by	subtracting	chronological	age	from	metabolomic	age.	Chronological	age-	adjusted	age	
gap	was	calculated	with	the	use	of	regression	models.	*Cox	proportional	regression	models	were	used	to	examine	the	association	between	
chronological	age-	adjusted	age	gap	(each	year	increment)	and	incidence	of	individual	chronic	diseases.	Model	1	was	unadjusted;	Model	2	
was	adjusted	for	Model	1	plus	age,	sex,	ethnicity,	education,	household	income,	diet	score,	alcohol	consumption,	physical	activity,	smoking,	
sleep	duration,	fasting	duration,	and	GRS	for	longevity;	Model	3	was	adjusted	for	Model	2	plus	BMI,	high	cholesterol,	hypertension,	and	
antihypertensive	and	lipid-	lowering	medications	(hypertension	or	antihypertensive	medication	use	at	baseline	was	not	adjusted	for	the	
analysis of incident hypertension given these participants with hypertension or antihypertensive medication use were excluded from the 
analysis).	Red	color	squares	refer	to	significantly	positive	associations	while	green	color	squares	refer	to	significantly	inverse	associations.	
The	significant	associations	in	Model	1	were	defined	as	p-	value<0.05 after adjustment for false discovery rate. †These analyses were 
conducted among men only. ‡These	analyses	were	conducted	among	women	only.	AMD,	age	related	macular	degeneration;	CI,	confidence	
interval;	COPD,	chronic	obstructive	pulmonary	disease;	HR,	hazard	ratio.

F I G U R E  4 The	association	between	
chronological	age-	adjusted	age	gap	and	
incidence of chronic diseases moderated 
by	diet	score.	Cox	proportional	regression	
models were used to test whether diet 
quality	modified	the	association	between	
chronological	age-	adjusted	age	gap	and	
incidence of chronic diseases. Only the 
results with significant interaction are 
shown	in	this	figure.	Horizontal	lines	
indicate	the	range	of	the	95%	confidence	
interval. The vertical dash lines represent 
the	hazard	ratio	of	one.
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    |  9 of 13SHANG et al.

such that previous studies on metabolomic age only focused on sev-
eral	conditions	including	mortality,	CVDs,	obesity,	diabetes	and	psy-
chological disorders (Deelen et al., 2019;	Fischer	et	al.,	2014; Hertel 
et al., 2016;	 Menni	 et	 al.,	 2013; Robinson et al., 2020).	Whether	

metabolomic age is associated with the risk of a wide range of 
chronic diseases needs to be explored in more cohort studies.

The	 important	 role	 of	 metabolomic	 profiles	 on	 CMDs	 has	
been	 highlighted	 in	 previous	 studies	 (Buergel	 et	 al.,	 2022;	 Shah	

F I G U R E  5 The	association	between	
chronological	age-	adjusted	age	gap	and	
incidence of chronic diseases moderated 
by	chronological	age.	Cox	proportional	
regression models were used to test 
whether chronological age modified 
the association between chronological 
age-	adjusted	age	gap	and	incidence	of	
chronic diseases. Only the results with 
significant interaction are shown in this 
figure.	Horizontal	lines	indicate	the	range	
of	the	95%	confidence	interval.	The	
vertical	dash	lines	represent	the	hazard	
ratio	of	one.	CKD,	chronic	kidney	disease;	
CI,	confidence	interval;	COPD,	chronic	
obstructive pulmonary disease.
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10 of 13  |     SHANG et al.

et al., 2012).	We	found	accelerated	CAAG	was	associated	with	an	
increased	risk	of	most	CMDs	of	interest	including	CHD,	heart	failure,	
stroke	and	diabetes.	Although	these	associations	were	independent	
of metabolic disorders and the use of medications for hypertension 
and lipids at baseline, the adjustment for these covariates attenu-
ated the associations. This suggests good management of metabolic 
disorders	may	help	mitigate	 the	adverse	effect	size	of	accelerated	
metabolomic	age	on	CMDs.	It	is	also	possible	that	the	intake	of	re-
spective medications might reduce the validity of the metabolomics 
thus	biasing	the	algorithm	of	metabolomic	age.	In	a	cross-	sectional	
analysis	 of	 data	 from	 26	 community	 and	 hospital-	based	 cohorts,	
larger	age	gap	 (metabolomic	age	minus	chronological	age)	was	as-
sociated	with	a	higher	likelihood	of	diabetes	(OR	[95%	CI]	for	each	
10-	year	increment	of	age	gap:	2.52	[1.93–3.11])	among	12,633	par-
ticipants	(van	den	Akker	et	al.,	2020).	In	the	same	study,	a	longitudi-
nal	analysis	of	5410	participants	with	a	mean	follow-	up	of	3.3 years	
showed that larger age gap was associated with an increased risk of 
CHD	(HR	[95%	CI]	for	each	10-	year	increment:	1.25	[1.11–1.40])	(van	

den	Akker	et	al.,	2020).	Data	from	the	UK	Airwave	cohort	demon-
strated that metabolomic age was corrected with obesity and dia-
betes (Robinson et al., 2020).	Our	 findings	 regarding	heart	 failure,	
atrial fibrillation, stroke, peripheral vascular disease and other car-
diac disease need to be confirmed by future cohort studies with long 
follow-	up	duration.

As	 metabolomic	 state	 has	 been	 linked	 to	 multiple	 diseases	
(Buergel	et	al.,	2022),	it	is	also	of	great	interest	to	examine	whether	
metabolomic age is predictive of many other diseases rather than 
CMDs	 only.	 Robinson	 et	 al.	 reported	 that	 metabolomic	 age	 ac-
celeration was associated with heavy alcohol use and depression 
(Robinson et al., 2020).	 Likely,	 we	 found	 greater	 CAAG	was	 as-
sociated with higher risk of incident depression, anxiety, alcohol 
use disorder and psychoactive substance abuse. The association 
for	depression	and	anxiety	was	attenuated	 to	be	non-	significant	
after adjustment for metabolic disorders and antihypertensive and 
lipid-	lowering	medications	 indicating	 that	 good	 control	 of	 tradi-
tional metabolic biomarkers might contribute to the reduction of 

F I G U R E  6 The	association	between	
chronological	age-	adjusted	age	gap	and	
incidence of chronic diseases moderated 
by	education.	Cox	proportional	regression	
models were used to test whether 
education modified the association 
between	chronological	age-	adjusted	
age gap and incidence of chronic 
diseases. Only the results with significant 
interaction are shown in this figure. 
Horizontal	lines	indicate	the	range	of	the	
95%	confidence	interval.	The	vertical	dash	
lines	represent	the	hazard	ratio	of	one.	
AMD,	age-	related	macular	degeneration;	
CI,	confidence	interval.
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    |  11 of 13SHANG et al.

the	 risk	 due	 to	metabolomic	 age	 acceleration.	 A	 cross-	sectional	
analysis	 of	 data	 from	 the	 Study	 of	Health	 in	 Pomerania	 showed	
that metabolic age acceleration was associated with kidney mal-
function	 (microalbuminuria,	 albumin-	to-	creatinine	 ratio)	 (Hertel	
et al., 2016).	 A	 recent	 longitudinal	multi-	omics	 study	 in	 humans	
revealed that kidney dysfunction was involved in the process 
of	 ageing	 (Ahadi	 et	 al.,	2020).	 This	 is	 consistent	with	 our	 study	
demonstrating	 that	CAAG	was	associated	with	an	 increased	 risk	
of	 CKD.	 In	 a	 cohort	 study	 of	 6055	 individuals	 from	 the	 UK,	 an	
age-	related	metabolite	C-	glycosyl	tryptophan	was	associated	with	
lung	function	(forced	expiratory	volume)	(Menni	et	al.,	2013).	We	
found	 greater	 CAAG	 was	 associated	 with	 an	 increased	 risk	 of	
COPD	and	asthma	and	the	association	for	COPD	was	even	inde-
pendent of metabolic disorders and related medications use. The 
longitudinal	multi-	omics	study	also	 identified	an	ageing	pathway	
related	to	liver	dysfunction	(Ahadi	et	al.,	2020).	Consistently,	me-
tabolomic age was strongly associated with the risk of liver disease 
in	our	 study.	We	also	 found	 larger	CAAG	was	 associated	with	 a	
higher	risk	of	oesophageal	cancer	but	not	other	cancers.	A	recent	
systematic review reported that a number of metabolites were 
identified for oesophageal cancer but the results were inconsis-
tent between previous studies (Huang et al., 2020).	Meanwhile,	
metabolomic age acceleration was associated with an increased 
risk of dyspepsia, diverticulitis, osteoporosis and thyroid disorders 
before but not after adjustment for metabolic biomarkers and use 
of	 antihypertensive	 and	 lipid-	lowering	medications	 in	 our	 study.	
Our study developed a metabolomic age that was independently 
predictive of multiple chronic diseases including psychological dis-
orders,	CKD,	COPD,	chronic	liver	disease	and	oesophageal	cancer,	
which might be useful for the screening and prevention of these 
diseases.

The importance of diet in the development of chronic diseases 
should	not	be	overlooked	 (Schulze	et	al.,	2018;	Shan	et	al.,	2020).	
In	moderation	analysis,	the	association	between	CAAG	and	the	risk	
of	several	types	of	CVD,	CKD	and	chronic	liver	disease	was	weaker	
among individuals with healthy diet. Therefore, individuals are rec-
ommended to accommodate healthy diet habits to mitigate the risk 
of	metabolomic	ageing.	Stronger	associations	between	metabolomic	
age and some chronic diseases seen in individuals with metabolic 
disorders in our study highlight the importance of the management 
of	metabolomics	 in	 these	people.	The	association	between	CAAG	
and the risk of some chronic diseases was more pronounced among 
young than older individuals. This is consistent with previous stud-
ies showing that metabolic disorders diagnosed at younger age was 
associated	with	greater	risk	of	CVD,	dementia	and	mortality	(Shang	
et al., 2021, 2022;	Zhao	et	al.,	2021).	The	association	between	CAAG	
and the risk of some chronic diseases was stronger among individuals 
with lower education. This is possibly due to the fact that individuals 
with higher education are more likely to seek health care and less 
likely	to	develop	chronic	diseases	with	metabolomic	ageing	(Brayne	
et al., 2010;	 Livingston	 et	 al.,	 2020).	 We	 also	 found	 that	 greater	
CAAG	was	associated	with	an	increased	risk	of	epilepsy,	hyperten-
sion	and	dyslipidemia	in	individuals	with	high	GRS	of	longevity.	One	

possible	explanation	for	this	is	that	low	GRS	of	longevity	was	asso-
ciated with higher prevalence of metabolic disorders and higher ge-
netic risks of epilepsy, hypertension and dyslipidemia were detected 
in	long-	lived	individuals	(Hu	et	al.,	2022).	Metabolomic	age	provides	
different prediction values of some chronic diseases between diet, 
education,	metabolic	disorders,	age	or	GRS	groups.

This	is	the	first	study	with	a	large	sample	size	and	long	follow-	up	
duration to develop metabolomic age and examine its association 
with	a	wide	range	of	chronic	diseases.	Several	potential	limitations	
need	to	be	considered	in	our	study.	First,	the	metabolomic	age	was	
developed based on metabolomics measured at one time point, such 
that metabonomic dynamics with ageing within an individual could 
not	be	estimated.	Second,	the	plasma	sample	in	the	UK	Biobank	was	
non-	fasting,	which	might	bias	the	associations.	However,	the	adjust-
ment for fasting duration in the analysis did not substantially change 
the	association	between	CAAG	and	chronic	diseases.	Third,	most	of	
the	participants	 in	our	analyses	were	Caucasians	thus	our	findings	
may	not	be	generalized	to	other	ethnic	groups.	Finally,	the	number	
of incident cases for several chronic diseases (such as multiple scle-
rosis)	was	small,	which	might	have	reduced	the	statistical	power	to	
test significance.

In conclusion, metabolomic age plays an important role in the de-
velopment	of	multiple	chronic	diseases	including	CMDs,	psycholog-
ical	disorders,	COPD,	CKD,	liver	disease	and	some	cancers.	Healthy	
diet may help mitigate the risk for some chronic diseases due to me-
tabolomic	age	acceleration.	Age,	education,	metabolic	disorders	and	
GRS	for	longevity	may	modify	the	association	between	metabolomic	
age and some chronic diseases. Our findings may help facilitate the 
understanding of ageing process related to metabolomics thus en-
hancing healthy ageing.
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