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Abstract—DC-DC converters are major components of
the DC distribution systems. The converters interface with
external power inputs, internal DC buses and loadings
of subsystems. The interfacing DC-DC converters should
be stable locally and globally under mutual interactions
through a DC bus within the system. Current research
efforts have focused on the analysis of the stability of the
DC distribution system subject to small-signal disturbance.
However, in practice, the system routinely operates un-
der large-signal disturbances, such as when an additional
subsystem is turned on after being connected to the DC
bus. In this scenario, the small-signal model may fail to
fully describe the dynamics of the system. In this paper,
we identify and analyze the bifurcation process when the
system undergoes abrupt load changes. According to the
nonlinear operation of the interconnected system, a large-
signal stability criterion is derived. This criterion is simple,
and can be easily extended to multiple connected converter
systems. The criterion is also consistent with the result
from bifurcation analysis. Finally, the validity of the pro-
posed criterion is verified by the full-circuit simulations and
the experimental works.

Index Terms—Bifurcation analysis, constant power load,
DC distribution system, design-oriented analysis, large-
signal disturbance, stability criterion

I. INTRODUCTION

DC distribution systems are widely used in micro-grids,
electric vehicles, communication systems and other

power supply applications [1]–[3]. Within a DC distribution
system, power sources and loads are connected with interfac-
ing power converters via a DC bus. In this system, interacting
power converters should be designed for a stable operation
according to some system design criteria [4]–[6].

The stability criteria of DC distribution systems can be de-
rived from small-signal and large-signal points of view. For the
small-signal stability analysis, the first criterion was proposed
by Middlebrook in 1976 [7] for a DC cascaded system which
is the ancestor of today’s micro-grid system. According to
Middlebrook’s criterion, the stability of a system of two DC-
DC converters in cascaded connection can be guaranteed if
both the source converter and the load converter are stable
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individually and the magnitude of the output impedance of
the source converter is smaller than the magnitude of the input
impedance of the load converter within the entire frequency
range. Subsequently, many impedance based criteria [8]–[12]
have been developed aiming to narrow the forbidden range
given by Middlebrook’s criterion and increase the degree of
freedom of a design.

The above impedance-based criteria are derived from the
small-signal stability analysis, which permits fast calculation,
but can be inaccurate for large-signal operations. Therefore,
some large-signal analysis methods have been proposed. The
behavior of a DC cascaded system under large-signal dis-
turbance has been described and analyzed by phase-plane
analysis [13]–[15]. In these previous works, the system’s dif-
ferential equations are graphically solved (plotted), providing
the trajectories on the phase plane. Specifically, the graphical
and experimental results show that the DC bus voltage and the
output voltage of the system may collapse under sudden load
changes. The phase-plane analysis is explicit and suitable for
numerical simulations. However, detailed internal parameters
should be specified and different parameters produce different
trajectories. Also, it does not readily generate an analytical and
general relationship between the parameters and the system’s
stability.

Apart from the phase-plane analysis, Lyapunov-based meth-
ods are the effective and widely used to analyze the large-
signal stability of the system. In reference [16], the stability of
a three-phase two-level power converter under different time
scales has been analyzed based on the Lyapunov function.
The Lyapunov stability theorem is also applied to the DC-
DC converters to obtain the stability of global asymptotic
conditions [17].

However, for more complex power electronics systems, it is
difficult to find the Lyapunov function. Some methods, such as
the Takagi-Sugeno multi-modeling [18] and Brayton-Moser’s
mixed potential function theory [19], have been developed to
generate the Lyapunov function. The Brayton-Moser mixed
potential function theory can be used to analyze the large-
signal stability of the nonlinear circuits and obtain the analyt-
ical solution of the stable operating region [20]. In reference
[21], a large-signal stability criterion has been derived with
mixed potential theory to analyze the catastrophic bifurcation
phenomenon of the photovoltaic-battery hybrid power system
under large-signal disturbance. In reference [22], based on an
equivalent gyrator model of the buck converter, a criterion
derived from the mixed potential theory has been used to
study the large-signal stability of a current-mode controlled
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DC cascaded system. The results of these two prior works
show that the output voltage of the source converter gets
close to the load converter’s output voltage under transient
disturbance which is generated by stepping up the load from
almost no load to full load in a very short time. In reference
[23], the mixed potential function of a DC system cascaded
with a LC filter and a constant power load has been established
to analyze the effect of different control parameters on the
large-signal stability of the system. However, again, detailed
internal parameters are needed when applying the mixed
potential function theory and this method involves tedious
computation and is difficult to apply to the DC distribution
systems containing a number of subsystems. Therefore, it is
highly desirable to have a simple and effective criterion to
investigate the large-signal stability of the DC distribution
system from a design-oriented perspective.

In this paper, we study the bifurcation phenomenon and
derived a stability criterion for practical designs. The focus
of this study is to identify the instability conditions and the
stability boundaries of the system under an abrupt load change
situation. A simple and effective criterion is proposed to ana-
lyze the transient behaviors and to give the stability boundaries
of the system. The results will be presented in design-oriented
forms that can facilitate the choice of parameters for ensuring
the system’s stable operation.

This paper is organized as follows. The instability of the
system from a bifurcation viewpoint and the physical origin
of the phenomenon are exposed in Section II. By showing
this instability mechanism, a large-signal criterion based on
the steady operating point is developed in Section III. The
criterion is generated directly from the bifurcation analysis and
an extension of the criterion to the DC distribution systems
containing a number of subsystems will also be shown. A
theoretical analysis of the stability boundary of the system is
given. Section IV experimentally verifies the analysis. Finally,
Section V concludes this paper.

II. BIFURCATION PHENOMENON AND ANALYSIS

A typical structure of a DC distribution system with one
source converter (Bs) and two load converters (B1 and B2) is
shown in Fig. 1. For illustrative purposes, both B1 and Bs are
buck converters and B2 is a boost converter, but the analysis
method can be extended to any other types of converters. In
this system, the bus voltage is regulated by Bs. All converters
are controlled with three independent voltage-mode controller
circuits, as shown in Fig. 2. The maximum duty cycle of
these three converters are clamped at 0.9. The power source E
shown in Fig. 1 is 24 V. Also, rLine = 0.6 Ω and LLine = 5 µH
account for the wire impedance from the source converter to
load converters. The values of the circuit components used
in the full circuit simulation are given in Table I, where
g = Ra/Rf , τ = RaCa and Kv = Rd/(Rd + Rc). In the
following sections, the subscripts 1, 2 and s in the symbols
are used to represent B1, B2 and Bs, respectively.

A. Bifurcation Phenomenon
In practice, the source converter and the load converters

are decentralized in a DC distribution system and the load
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Fig. 1. DC distributed system with a source converter and two load
converters.
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Fig. 2. (a) Buck converter circuit, for building the load converter 1 (B1)
and the source converter (Bs); (b) boost converter, for building the load
converter 2 (B2); (c) controller circuit of B1, B2 and Bs.
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Fig. 3. Voltage collapse on the input port of the load converters and the
output voltage of B1 after B2 is connected to the DC bus.

TABLE I
CIRCUIT COMPONENTS

Component B1 B2 Bs Component B1 B2 Bs

L / µH 470 220 220 g 19.6 0.02 19.6
C / µF 680 680 680 τ / s 0.1 0.1 0.01
rL / Ω 0.5 0.5 0.5 Kv 0.84 0.17 0.36
R / Ω 6 30 – Vref / V 5 5 5
vC / V 6 30 14 f / kHz 16 16 16
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converters may not connect to the DC bus at the same time.
Without loss of generality, we assume that Sl1 is turned on
before t = 0 s, which means that source converter Bs and
load converters B1 are stable. After t = 0.15 s, Sl2 is turned
on and B2 is connected to the DC bus.

Fig. 3 shows the transient waveforms of the system when
Sl2 is turned on some time after Sl1 is turned on. After B2

is connected to the DC bus, it can be observed that the input
voltage of the load converters (vbusl) drops to 7 V. This voltage
drop will also make the voltage input to B1 and B2 a bit lower
or even to a point lower than the required output of B1 and
B2. So, the output voltage of B1 drops to less than 6 V, and
the output voltage of B2 cannot reach its desired output value
which is 30 V. The instability is irreversible, and the system
is stuck in the abnormal state.

B. Bifurcation Analysis
In general, bifurcations can be classified into continuous and

discontinuous bifurcations, depending on whether the states of
the system are varying continuously or discontinuously. The
cause of this bifurcation is that there is a structural change in
the system as the parameters of the system are varied through
the critical point, and such a bifurcation may cause undesirable
or even catastrophic consequences as the state variables may
exhibit undesirably wide excursion in the state space causing
damage to some system components [24].

As shown in Fig. 3, when B2 is connected to the DC bus,
the system becomes unstable. The input voltage of the load
converters collapses, and excessive power is consumed by the
wire resistor. The output voltage of the load converters fall
below the desired values. Meanwhile, the duty cycles of the
load converters are fixed at the maximum values, which cause
high current stress on the switching devices.

When a load converter is plugged to the DC bus, there
is a large-signal disturbance on the dc bus line. In order to
investigate the bifurcation phenomenon of the system during
the transient, the discrete-time mapping model has to be
established. In this system, all the subsystems are designed
for operation in continuous conduction mode (CCM). A state
vector x containing three 3-dim column vectors xs, x1 and
x2 for converters Bs, B1 and B2, respectively, is chosen as
follows:

x = [xs x1 x2]
T
, (1)

where

xs = [iLs vCs vas]
T
,

x1 = [iL1 vC1 va1]
T
,

x2 = [iL2 vC2 va2]
T
.

(2)

Without loss of generality, we can assume that the subsys-
tems share and synchronize a common period T , having eight
operating states as described in Table II. The state-j equation,
where j = 1, 2, 3, 4, 5, 6, 7, 8, within a period is given by

ẋ = Ajx+BjE state j. (3)

Expressions of Aj and Bj can be readily found and are
omitted here.

TABLE II
CIRCUIT OPERATING STATES

State Ss Ds S1 D1 S2 D2

1 off on off on off on
2 off on off on on off
3 off on on off off on
4 off on on off on off
5 on off off on off on
6 on off off on on off
7 on off on off off on
8 on off on off on off

Then, the discrete-time model that describes the dynamics
of the system can be derived from equation (3). Suppose the
switching period is T . Denote x(nT ) = xn(0), or simply
xn for brevity, which is the initial value at the beginning of
switching period n. Within a period T , the state-j equation
given by (3) describes the system starting from time (nT +
τj−1) to (nT+τj) for a time interval of Tj = τj−τj−1, where
τ0 = 0 and τ8 = T , such that

∑
j Tj = T . Using equation

(3), the value of xn(τj) by the end of this state-j is given by:

xn(τj) = Nj (Tj)xn(τj−1) + (Nj (Tj)− I)A−1
j BjE, (4)

where I is an 9 × 9 identity matrix, and Nj(ξ) is the
corresponding system matrices given by

Nj(ξ) = eAjξ = I+

∞∑
k=1

1

k!
Ak

j ξ
k. (5)

Equation (4) can be rewritten as xn(τj) = fj(xn(τj−1)).
In this way, xn+1 = xn(T ) = xn(τ8) can be determined
iteratively from xn(0) = xn using equation (4). Thus, in
general, we have

xn+1 = f(xn). (6)

To complete the derivation, we have to find the relation
among the duty cycles of the subsystems and the state vari-
ables xn. According to Fig. 2, switch Si will be turned off
when si (xn din)

∆
= (vpi − vrampi) is zero as:

s (xn dn)
∆
= vp − vramp = 0. (7)

The equilibrium point XQ and the corresponding duty cycle
DQ of the system can be found by determining the steady-state
solutions. Using the discrete-time model developed earlier, the
steady-state variables and the duty cycles can be found by
putting xn+1 = xn = XQ and dn = DQ. In the steady state,
the capacitor voltages equal the bus voltage and the output
of the system, i.e., VCs = Vbus, VC1 = Vo1 and VC2 = Vo2.
Defining

XQ = [ILs Vbus VAs IL1 Vo1 VA1 IL2 Vo2 VA2]
T
, (8)

and solving for XQ and DQ, we get
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Voi = kdiVrefi, (9a)
Vbus = kdsVrefs, (9b)

ILs =
Vbus −

√
V 2
bus − 4PrLine

2rLine
, (9c)

Vbusl = Vbus − ILsrLine, (9d)

DQs =
Vbus

E
, (9e)

IL1 =
Vo1

R1
, (9f)

DQ1 =
Vo1

(
1 + rL1

R1

)
Vbusl

, (9g)

IL2 =
Vo2

R2 (1−DQ2)
, (9h)

DQ2 =
1−

(
b+

√
b2 − 4c

)
2

, (9i)

VAs = Vrefs − (1−DQs)Vramps, (9j)
VAi = Vrefi − (1−DQi)Vrampi, (9k)

where b = Vbusl

Vo2
, c = rL2

R2
, P =

V 2
o1

R1
+

V 2
o2

R2
, i = 1, 2.

The dynamics of the system in a small neighborhood of the
equilibrium point or orbit can be inspected by determining
the eigenvalues of the Jacobian of the system. Then, by
varying some selected system parameters and tracking the
movement of the eigenvalues, the stability information such as
the bifurcation point and the boundaries of operating regions
can be identified. The Jacobian matrix can be derived from
the state equations and by perturbing around the equilibrium
point, and then the eigenvalues can be calculated by solving
λ in the characteristic equation given by:

det [λI− J (XQ)] = 0. (10)

From equation (10), we can get all the eigenvalues of the
Jacobian matrix. From Figs. 5(a) and (b), it can be found
that all the eigenvalues are inside the unit circle before B2

is connected to the DC bus, which means that the system is in
the stable operating region. After B2 is connected to the DC
bus, an eigenvalue touches the unit circle on the positive real
line while other eigenvalues stay in the unit circle, as shown in
Figs. 4(c) and (d). This means that a saddle-node bifurcation
occurs.

The saddle-node bifurcation results in the creation of a new
orbit (or the destruction of an existing orbit). In this system,
after B2 is connected to the DC bus, vo1 drops and cannot be
recovered to the original value. Meanwhile, vo2 is fixed at the
value that is lower than the desired value. The phenomenon
can be seen more clearly in the phase portrait, as shown in
Figs. 5(a) and (b). After B2 is connected, the trajectory of
B1 fails to converge to its original desired operating point
while the trajectory of B2 cannot reach its desired operating
point and stays at the abnormal state finally. This means that
both B1 and B2 operate in the new orbits which are not in
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Fig. 4. Movement of the eigenvalues when bifurcation occurs. (a) Before
B2 is added to the DC bus; (b) enlargement of (a); (c) after B2 is added
to the DC bus; (d) enlargement of (c).
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Fig. 5. Phase portrait views of the saddle-node bifurcation after B2 is
connected to the DC bus. (a) Blue curve: constant power curve of B1;
red curve: phase portrait of B1; (b) blue curve: constant power curve of
B2; red curve: phase portrait of B2.

the desired operating region. This result agrees with the full-
circuit simulation results provided in Fig. 3 that the output
voltage of B1 collapses after B2 is connected to the DC bus
and the output voltage of B2 cannot reach its desired value.

III. LARGE-SIGNAL STABILITY CRITERION

A. Revisit the System’s Transition under Large-Signal
Disturbance

In order to derive the large-signal stability criterion, it is
important to revisit the system’s dynamic behavior when B2 is
connected to the DC bus. After t = 0.15 s, Sl2 is turned on and
B2 is connected to the DC bus. Since the load converters are
connected in parallel, the connection of B2 will cause a drop of
the overall input impedance of the load converters. Due to the
presence of the line impedance, the drop in the overall input
impedance of the load converters will lead to a voltage drop
at the input port of the load converters. After being connected
to the DC bus, B2 is in a start-up process. During the start-
up process, the controller of B2 initially saturates the duty
cycle at its maximum value for fast reaching of the controller’s
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reference value. Meanwhile, B1 may enter the accommodation
region since the a voltage drop occurs in vbusl.

From the foregoing discussion and the previous full-circuit
simulation results, we can see that there is a complex interac-
tion among the subsystems through the non-ideal DC bus when
the DC distribution system is under large-signal disturbance
such as an abrupt load change, and such disturbance may cause
the voltage of the DC bus to collapse and thus would affect
the stability of the whole system. Meanwhile, the collapse of
the bus voltage may cause undesirable or even catastrophic
consequences as the current magnitude on the DC bus have a
sudden increase which may damage the system’s components.

B. Stable Operation Requirements of the System

If the system can maintain stability under large-signal
disturbance, it can finally return to the desired operating point.
For this case, B2 can start-up successfully and B1 can recover
to its normal operating state. This also means that all the
load converters can maintain a constant power load (CPL)
characteristic. Since all the load converters have a duty cycle
limit (Dm), in order to ensure the load converters maintaining
the CPL characteristic, the duty cycle should always lie within
the range (0, Dm). Thus, the input voltage of each load
converter should be greater than a permissible minimum value
to ensure that the system can return to the desired operating
point. Otherwise, the duty cycle will saturate and stay at Dm,
and the load converters will operate in an open-loop condition
and behave as resistive loads rather than CPLs.

C. Concept of the Criterion

From the foregoing discussion, it can be concluded that the
input voltage of the load converters can be used as an indicator
to assess the large-signal stability of the system. Here, only
the steady-state values need to be considered and the detailed
dynamics such as oscillation can be ignored. This is because
the load converters may fail to maintain the CPL characteristic
and can be judged operating in an undesired region if their in-
put voltages are below the permissible minimum value. Thus,
it is reasonable to derive a criterion using a set of algebraic
equations instead of differential equations to investigate the
system’s stability under large-signal disturbance.

It should be pointed that under an abrupt load change
situation, the duty cycle of a load converter which was stable
originally, e.g., B1, may not reach the maximum value during
the accommodation process. This is because the initial value
of the energy storage element is not zero if the converter is
stable originally. However, for simplification, we will consider
the critical condition corresponding to all the load converters
operating at the maximum duty cycle during the adjusting
transition.

D. Derivation of the Criterion

When B1 and B2 operate in the critical condition, the
relation of the output voltages and the converter’s parameters
in the steady state can be defined as

rLine

Req2vbus Req1vbusl

Fig. 6. Equivalent circuit of the system under large-signal disturbance.

Vbusl1 = Vo1(R1 + rL1)/(Dm1R1). (11)

Vbusl2 = Vo2[(1−Dm2)
2R2 + rL2]/((1−Dm2)R2). (12)

Here, Dm1 and Dm2 represent the maximum duty cycle
values of B1 and B2, respectively. Vbusl1 and Vbusl2 represent
the permissible minimum input voltage values of B1 and
B2, respectively. For simplicity, only the equivalent series
resistances of the inductors are taken into account, with other
parasitic parameters such as equivalent series resistances of the
capacitors all set to zero. Detailed derivation of the equations
(11) and (12) can be found in a prior work [25].

From the foregoing discussion, the steady-state value of the
load converters’ input voltage is adopted to inspect the large-
signal stability of the system. Thus, it is important to analyze
the allocation of Vbus on the wire impedance and the input
port of the load converters.

Under the critical condition, the whole system can be
simplified as shown in Fig. 6. In this model, Bs is equivalent
to a voltage source, and Vbus is the output voltage of Bs.
Equivalent resistances Req1 and Req2 are the DC values of
input resistances of the load converters which are operating at
their maximum duty cycles. Here, the line inductance is not
included in the simplified model. The reason is that the it only
affects the dynamic of the system, and have no effect on the
calculation of the steady-state operating point of the system.

According to equations (11) and (12), each load converter
has its permissible minimum input voltage because the output
voltages of the load converters are different. Since the load
converters are in parallel connection, an overall permissible
minimum input voltage Vbuslmin should be greater than the
biggest one. Thus, Vbuslmin is defined as

Vbuslmin ≥ max {Vbusl1, Vbusl2} . (13)

According to Fig. 5 and equations (11), (12) and (13), the
large-signal stability criterion can be given as:

Vbuslmin =
Reqvbus

Req + rLine

≥ max

{
Vo1Dm1Req1

R1
,

Vo2Req2

(1−Dm2)R2

}
. (14)

Here Req = Req1||Req2; and Req1 = R1+rL1

D2
m1

and Req2 =

(1−Dm2)
2R2 + rL2 represent the DC values of the input

impedances of B1 and B2, respectively. It is obviously that
the parameters used to calculate the boundary of the system
are the load, equivalent series resistance of the inductor, output
voltage and the maximum duty cycle of each load converter,
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Fig. 7. DC distributed system with one source converter and multi-load
converters.

which are easy to obtain. Since the subsystems interact with
each other under large-signal disturbance through the line
resistance which is normally omitted, the stability threshold
(boundary) of rLine should be investigated. Substituting the
parameters given in Table I into inequality (14), we get
rLine ≤ min{0.68 Ω, 0.54 Ω}. Hence, if rLine is greater
than 0.54 Ω, the system will lose stability under large-signal
disturbance. The analysis result based on the derived criterion
agrees with the previous full-circuit simulation result and the
bifurcation analysis result.

E. Extension of the Criterion to the Large-Scale DC Dis-
tribution Power System

From the previous discussion, it can be found that the
parameters used in the criterion are easily obtained and the
calculation process is simple. So, the stability criterion can
be easily extended to the system containing a number of
subsystems. Fig. 7 is a representative DC distribution system
consisting of one source converter which regulates the bus
voltage and a number of load converters, each of which
regulates its own output. Without loss of generality, we assume
that all the switches except Sln are turned on before t = 0
s, which means that the source converter Bs and the load
converters B1 to Bn−1 have already operated stable. After
t = 0 s, Sln is turned on and Bn is connected to the DC
bus. According to the previous discussion, if vbusl can be
guaranteed to be greater than the permissible minimum input
voltage, the whole system can keep stable after the abrupt
load change situation and permissible minimum input voltage
of this system can be derived as follow:

Vbusli = f(Dmi, Voi, Ri, rLi), (15)

where Vo, Dm, R, rL and Vbusl represent the steady-state
values of output voltage, maximum duty cycle value, load,
equivalent series resistance of the inductor and the permissible
minimum input voltage, respectively. Also, i = 1, ...n denotes
load converters B1 to Bn.

When the system operates in critical condition, where all
the load converters operate at their maximum duty cycles, the
whole system can be simplified, as shown in Fig. 8.

Here, equivalent resistances Req1 to Reqn are the input
resistances of the load converters which are operating at
their maximum duty cycles. Since each load converter has
its permissible minimum input voltage Vbusli because the
output voltages of the load converters are different. In addition,
because the load converters are in parallel connection, thus, the

rLine

Req2vbus Req1vbusl Reqn

Fig. 8. Equivalent circuit of the system under large-signal disturbance
(N load converters).

overall permissible minimum input voltage Vbuslmin should be
greater than the largest one of Vbusli. So, Vbuslmin is defined
as

Vbuslmin ≥ max {Vbusl1, Vbusl2 · · ·Vbusli} . (16)

According to the previous discussion and Fig. 8, the large-
signal stability criterion of the system under large-signal
disturbance can be expressed as

Vbusl min =
ReqVbus

Req + rLine
≥ max {Vbusl1, Vbusl2 · · ·Vbusli} ,

(17)

where Req = 1/
∑n

i=1(1/Reqi).

F. Description of the Effect of the Soft-Start Routine on
the System’s Stability

In practice, a soft-start routine is usually incorporated in
the control. Also, the effect of the soft-start routine on the
system’s stability under large-signal disturbance has been
rarely reported in prior works. Therefore, the effect of the
soft-start routine on the proposed criterion will be discussed
in this subsection.

Fig. 9 shows the relationship between the maximum duty
cycle value of B2 and the stability boundary of rLine. In the
previous discussions, B2 is a hard switching converter, and we
assume that the duty cycle of B2 will fix at Dm2 during the
whole start-up process after it is connected to the DC bus. If
the soft-start routine is introduced, the duty cycle of B2 will
increase gradually from 0 to Dm2 instead of increasing to and
keeping at Dm2 rapidly in the transient process. Therefore,
the value of the equivalent duty cycle of B2 in the start-up
process is smaller than that in hard switching case. Here, the
equivalent duty cycle of B2 can be regarded as the averaged
value of the duty cycle in the start-up process and can be used
to replace Dm2 in inequality (14) to obtain the boundary of
the system under large-signal disturbance.

From Fig. 9, it can be observed that the stability boundary of
the system may vary with the maximum duty cycle of B2. By
adjusting the soft-start parameters and making the equivalent
duty cycle of B2 in the start-up process equals 0.79, and using
this value to calculate the boundary through inequality (14),
rLine reaches the peak value, and the system can become stable
under large-signal disturbance when rLine ≤ 0.91 Ω. However,
if we further increase the soft-start duration, which means
that the value of the equivalent duty cycle of B2 in the start-
up process is further decreased, the maximum value of rLine
will decrease, which means that it will narrow the stability
boundary of the system.a long soft-start duration may lead a
poor transient performance of the system.
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Fig. 9. Relationship between Dm2 and rLine.
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Fig. 10. Transient waveforms (a) for rLine = 1 Ω (with soft-start),
showing unstable system under large-signal disturbance; (b) for rLine =
0.8 Ω (with soft-start), showing stable system under large-signal distur-
bance.

A long soft-start duration may lead a poor transient perfor-
mance of the system. So, in practice, the soft-start time is in the
range of 25 to 100 switching cycles [26], which is smaller than
the start-up time. So, the value of the equivalent duty cycle of
the converter will not be much smaller than the maximum duty
cycle value of the hard switching condition. So, the maximum
value of rLine in the system with soft-start will be a bit greater
than that of the hard-switching system. Therefore, the model
based on the hard-switching condition shown in Fig. 6 and
the corresponding criterion given in inequality (14) is still
effective in providing a sufficient criterion to ensure stability
under large-signal disturbance.

Fig. 10 shows the transient waveforms of the system ob-
tained by the full-circuit simulation when Sl2 is turned on
some time after Sl1 is turned on. Here, all the subsystems
adopt the soft-start routine and the equivalent duty cycle of
B2 in the start-up process is adjusted to be equal to 0.79.
According to Fig. 9, the stability boundary of the system under
large-signal disturbance is rLine ≤ 0.91 Ω. In Fig. 10(a), it
can be observed that the whole system cannot maintain stable
operation after B2 is connected to the DC bus if the value
of rLine fail to satisfy the stability criterion. However, if the
stability criterion can be satisfied, as shown in Fig. 10(b), after
B2 is connected to the DC bus, the system may undergo the
adjusting transition and the system can recover to the normal
operating region. It can be found that the full-circuit simulation
results verify the effectiveness of the proposed criterion.

IV. EXPERIMENTAL VERIFICATION

A DC distribution system with one source converter (Bs)
and two load converters (B1 and B2) is used to demonstrate

Turn on Sl2
vo2: [20 V/div]

vbus: [20 V/div]

vo1: [5 V/div]

Time: [4 ms/div]

vbusl: [20 V/div]

(a)

Turn on Sl2
vo2: [20 V/div]

vbus: [20 V/div]

vo1: [5 V/div]

Time: [2 ms/div]

vbusl: [20 V/div]

(b)

Fig. 11. Transient waveforms (a) for rLine = 0.6 Ω (without soft-
start), showing unstable system under large-signal disturbance; (b) for
rLine = 0.5 Ω (without soft-start), showing stable system under large-
signal disturbance.

the criterion proposed in Section III. Here, the topologies,
the control methods and the parameters of B1, B2 and Bs

are the same with the full-circuit simulation circuits shown in
Section II. The maximum duty cycles of these three converters
are 0.9. The input voltage (E) is 24 V and the values of rLine
and LLine are 0.6 Ω and 5 µH, respectively, which account
for the wire impedance from Bs to B1 and B2.

A. Hard Switching Subsystems Verification
Firstly, Sl1 is turned on and both B1 and Bs were stable

before t = 0 s, and Sl2 is turned on at t = 0 s. Substituting
the parameters given in Table I into the inequality (14), we get
rLine ≤ min{0.68 Ω, 0.54 Ω}. Hence, if rLine is greater than
0.54 Ω, the system will lose stability under large disturbance.

Fig. 11(a) shows the transient waveforms of the system with
rLine = 0.6 Ω and LLine = 5 µH. From Fig. 11(a), it can be
observed that vbus can be kept at the regulated value after B2

is connected to the DC bus. However, vo1 drops to 5 V and
vo2 can only reach the value of 25 V instead of its regulated
value (30 V), and the system can be regraded as operating in
a new orbit. However, the steady-state values of the output
voltage on this orbit (5 V for B1 and 25 V for B2) are not
the desired operating points. Therefore, the system is unstable
under large-signal disturbance and a saddle-node bifurcation
occurs. Moreover, the instability cannot be removed unless
the system is shut down manually. When the system has
rLine = 0.5 Ω < 0.54 Ω, which satisfies the proposed criterion,
the system can operate normally after B2 is connected to the
DC bus, as shown in Fig. 11(b). The experimental results
are in good agreement with the full-circuit simulation results,
bifurcation analysis results, and also verify the effectiveness of
the concept of the proposed criterion that the system’s large-
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Turn on Sl2
vo2: [20 V/div]

vbus: [20 V/div]

vo1: [5 V/div]

Time: [20 ms/div]

vbusl: [20 V/div]

(a)

Turn on Sl2 vo2: [20 V/div]

vbus: [20 V/div]

vo1: [5 V/div]

Time: [20 ms/div]

vbusl: [20 V/div]

(b)

Fig. 12. Transient waveforms (a) for rLine = 1 Ω (with soft-start),
showing unstable system under large-signal disturbance; (b) for rLine =
0.8 Ω (with soft-start), showing stable system under large-signal distur-
bance.

Turn on Sl2
vo2: [20 V/div]

vbus: [20 V/div]

vo1: [5 V/div]

Time: [40 ms/div]

vbusl: [20 V/div]

Fig. 13. Transient waveforms for rLine = 0.7 Ω (with soft-start and the
equivalent maximum duty cycle is about 0.7), showing unstable system
under large-signal disturbance.

signal disturbance can be predicted by investigating the steady-
state value of the input voltage of the load converters.

B. Soft-Start Switching Subsystems Verification

In the closed-loop controlled system with soft-start routine,
however, the duty cycle of B2 increases slowly after B2

is plugged to the DC bus. Fig. 12(a) shows the system
which includes a soft-start routine with rLine = 1 Ω and
LLine = 5 µH. Initially, Sl1 is on and Sl2 is off. After
converters B1 and Bs have reached their steady states, Sl2

is turned on. According to Fig. 8, when the system adopts
soft-start, and the equivalent duty cycle of B2 in the start-up
process is adjusted to be equal to 0.79, if rLine > 0.91 Ω,
the system will lose stability under large-signal disturbance.
From Fig. 12(a), it can be observed that vbus can be kept at the
regulated value after B2 is connected to the DC bus, but vo2
cannot reach its regulated value of 30 V and vo1 collapses and
cannot recover to its normal operating region. Fig. 12(b) shows
the same system with rLine = 0.8 Ω. It can be found that the
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Fig. 14. Operating boundaries for the system in (R2, rLine) parameter
space (a) without and (b) with soft-start.

system can operate normally after B2 is connected to the DC
bus, verifying the effectiveness of the proposed criterion on
predicting the stability condition of the system with soft-start
routine under large-signal disturbance.

According to the proposed criterion and Fig. 9, it can be
found that the maximum value of rLine will decrease if we
increase the soft-start duration to limit the equivalent duty
cycle of B2 in the start-up process to below 0.79. Here,
we adjust the soft-start parameters to set the equivalent duty
cycle of B2 to about 0.7. It can be predicted that the system
is unstable under large-signal disturbance if rLine = 0.7 Ω.
Fig. 13 shows the experimental result. It can be observed that
B1 cannot recover to its original operating region while B2

cannot reach its desired operating point. This agrees with the
prediction based on the proposed criterion.

C. Stability Boundary of the system

Stable transient operating boundaries in the (R2, rLine)
parameter space are compared with the theoretical analysis,
as shown in Fig. 12. The boundary of the theoretical analysis
shown in Fig. 14(a) can be obtained by varying the value of
R2 and calculating the results according to inequality (14).
In Fig. 14(b), it can be obtained by varying the value of R2,
substituting the duty cycle value of B2 from 0 to the maximum
value in inequality (14) and plotting the relationship between
Dm2 and rLine like the Fig. 9, and finding out the maximum
value ofrLine. In Fig. 14, the stable regions corresponding
to the system can operate at the desired region under large-
signal disturbance, while the unstable regions correspond to
the system working in an undesirable operating regions under
large-signal disturbance. It can be found that the results of
the experiment and the full-circuit simulation are in good
agreement with the theoretical analysis.

V. CONCLUSION

A bifurcation phenomenon has been found for the DC
cascaded power system with multi-load converters. Essentially,
the input voltage of the load converters collapses suddenly
when an extra load converter connected to a non-ideal DC
bus of the system. The root cause of this phenomenon is the
saturation of the duty cycles of the load converters and the
existence of the wire resistance of the DC bus. The voltage
dropped across on the wire resistance may cause the input
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voltage of the load converters to go below the permissible
minimum value and the duty cycles of the load converters
will be fixed at the maximum value. In this situation, the load
converters fail to maintain the constant power load charac-
teristic and behave as resistive loads. In addition, the output
voltages of the load converters drop due to the saturation of
duty cycles. Thus, the system cannot operate at the desired
operating point, signifying an instability has occurred under
large-signal disturbance. A common practice of improving
the system’s stability performance under this situation is to
introduce the soft-start control. Stability boundaries have been
identified for the system, clearly suggesting how the large-
signal stability of the system could be affected by the variation
of some selected parameters.

In this paper, we report an instability phenomenon in the
DC distribution system and identify the cause of the instability.
The physical origin of the unstable phenomenon is exposed
through the bifurcation analysis. By investigating the adjusting
transition and the stable operation requirements of the system
under large-signal disturbance, a simple and effective large-
signal criterion is proposed. The concept of the proposed
criterion is that the large-signal stability of the system can be
judged by investigating the DC operating point of the load
converters’ input voltage and the detailed dynamics of the
system can be omitted. The proposed criterion can be extended
to apply in large-scale DC distribution systems. In addition, the
effect of the soft-start control is also taken into consideration
in the proposed criterion, and the analytical results show that
the proposed criterion can also predict the large-signal stability
of the system with soft-start control and provide a sufficient
criterion to guarantee the system’s stability under large-signal
disturbance. The results are presented in design-oriented forms
to facilitate the identification of the parameter range that
ensures system’s stability under large-signal disturbance.
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