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How liquids charge the superhydrophobic
surfaces

Yuankai Jin 1,2, Siyan Yang1, Mingzi Sun 3, Shouwei Gao1, Yaqi Cheng 2,
Chenyang Wu2, Zhenyu Xu2, Yunting Guo2, Wanghuai Xu 4, Xuefeng Gao 5,
Steven Wang2, Bolong Huang 3 & Zuankai Wang 1,6

Liquid-solid contact electrification (CE) is essential to diverse applications.
Exploiting its full implementation requires an in-depth understanding and
fine-grained control of charge carriers (electrons and/or ions) during CE.
Here, we decouple the electrons and ions during liquid-solid CE by designing
binary superhydrophobic surfaces that eliminate liquid and ion residues on
the surfaces and simultaneously enable us to regulate surface properties,
namely work function, to control electron transfers. We find the existence of
a linear relationship between the work function of superhydrophobic sur-
faces and the as-generated charges in liquids, implying that liquid-solid CE
arises from electron transfer due to the work function difference between
two contacting surfaces. We also rule out the possibility of ion transfer
during CE occurring on superhydrophobic surfaces by proving the absence
of ions on superhydrophobic surfaces after contact with ion-enriched acidic,
alkaline, and salt liquids. Our findings stand in contrast to existing liquid-
solid CE studies, and the new insights learned offer the potential to explore
more applications.

Contact electrification is an interfacial process whereby static charges
are generated during the contact and separation of two surfaces1. CE
ubiquitously occurs at various interfaces, particularly at the solid-solid
and liquid-solid interfaces. Solid-solid CE has experienced extensive
research, and three types of charge carriers2, including electrons3,
ions4–6, and materials7,8, have been used to account for the charge
generation during CE between different types of solid surfaces.
In comparison, liquid-solid CE is still not well understood despite its
significance in various applications, such as water energy harvesting,
microfluidics, interfacial chemistry, surface wet cleaning, etc9–14. The
main bottlenecks hitherto in understanding the mechanism of liquid-
solid CE lie in ascertaining charge carriers, which may involve ions,
electrons, or both15–24. Another challenge in studying liquid-solid CE is
achieving quantitative control over the charge generation, which

requires an in-depth understanding of how these charge carriers are
dictated by surface properties.

Water has long served as aworkhorse in extensive studies of liquid-
solidCEdue to its ready availability and inherentmolecular polarity. It is
worth mentioning that charge generation in water or at water-involved
interfaces can arise not only from the widely known CE, but also from
the other various manners, including introduction and conduction
electrification12,25, as well as the charge transfer across the hydrogen
bonds26–28. During liquid-solid CE, water is easily positively charged by
solid surfaces29. Such a characteristic gives rise to the formerly pre-
valent ion-transfermodel, in which anions (hydroxide ions) dissolved in
water continuallymigrate to the solid surfaces due to their high surface
affinity, especially those with hydrophobic or superhydrophobic
properties, leaving excess positive charges (e.g., hydronium ions) in
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water15–17. Such ion-transfer model also incorporates the consideration
of cations affinity toward the solid surfaces to explain the CE between
acidic liquids and solid surfaces, denoting that ion propensity on sur-
faces is dependent on the pH values of liquids30,31. However, the ion-
transfer model has been highly controversial due to debatable surface
affinities of cations and anions in numerous experimental and simula-
tion findings28,32–36, as well as its deficiency in explaining the recent
findings that water can be either positively or negatively charged by a
diverse array of solid surfaces (Fig. 1). Later, Wang et al. proposed that
both electron and ion transfer are involved in liquid-solid CE, in which
electron transfer dominates while ion transfer plays a subsidiary
role18–22. Nevertheless, such a view fails to elucidate how electron
transfer is dictatedby surfaceproperties,which is crucial for controlling
both the polarity and magnitude of static charges generated in liquid-
solid CE. Meanwhile, existing studies also overlook the possibility that
transferred ions may come from liquid residues on surfaces37 since
exploited solid surfaces exhibitinghydrophilicity or lowhydrophobicity
(usuallywith a contact angle of <120o) inevitably adsorb liquids and ions
contained5, limiting its applicability to the superhydrophobic surfaces
that exhibit strong repellence to liquids.

In this work, we present novel insights into liquid-solid CE by
designing superhydrophobic surfaces and studying underlying CE
mechanisms. We design binary self-assembled monolayer of super-
hydrophobic surfaces by selecting a pair of mercaptan molecules
with opposite electron-donating/accepting propensities, including
1H,1H,2H,2H-perfluorodecanethiol (FDT) and its fluorine-free analog,
n-decanethiol (DT). By adjusting the molar ratio of FDT and DT, we are
able to modulate the work function of the superhydrophobic surfaces
due to the opposite dipole of FDT and DT38,39. Such superhydrophobic
surfaceswith regulablework functions enable unprecedented control of
both the polarity and magnitude of static charges generated during CE.
We reveal that the superhydrophobic surfaces can either positively or
negatively electrify the liquids, filling the unexplored area in the field of
liquid-solid CE (Fig. 1). We also find that themagnitude of static charges
linearly varies with the work functions of the superhydrophobic sur-
faces, which indicates that the electron transfer between the contacted
liquid and solid surface is driven by their work function differences.
Suchfindings enable us to calculate thework function ofwater basedon
the correspondingvaluesof the superhydrophobic surfaces. In addition,
liquid-solid CE occurring on superhydrophobic surfaces eliminates the

liquid residues on solid surfaces and accompanied ion transfer, standing
in contrast to liquid-solid CE occurring on hydrophilic/hydrophobic
surfaces, thus establishing a connection between surfacewettability and
ion transfer during CE.

Results
CE between coalescence-induced jumping droplets and super-
hydrophobic surfaces
One typical example of liquid-solid CE is that condensedwater droplets
on cold superhydrophobic surfaces can acquire positive charges
upon their coalescence-induced jumping17. To demonstrate such a
CE process, we prepared two kinds of superhydrophobic surfaces
by depositing self-assembled mercaptan monolayers, including
1H,1H,2H,2H-perfluorodecanethiol (FDT) andn-decanethiol (DT), on the
nano-structured copper oxide substrates (Fig. 2a). To visually assess the
polarity of charges in jumping droplets, we applied an upward electric
field (with a strength of ∼15 kVm−1) by using the homemade setup
illustrated in Fig. 2b. Consistentwith thefindings in theprevious study17,
droplets jumping from the superhydrophobic FDT surfaces acquire
positive charges, evidenced by their continuous ascent motion under
the upward electric field (Fig. 2c). However, the droplet jumping from
superhydrophobic DT surfaces only attains a limited height under the
upward electric field (upper part of Fig. 2d), which allows the rational
speculation from two possibilities. First, jumping droplets acquire lim-
ited or negligible positive charges, leading to insufficient upward elec-
tric forces on droplets. Second, jumping droplets acquire negative
charges, subjecting them to a downward electric force. To clarify this
issue, we reversed the direction of the electric field and observed the
continuous ascentmotion of condensate droplets jumping from theDT
surfaces (Supplementary Fig. 1a), proving the generation of negative
charges in condensate droplets during liquid-solid CE (lower part of
Fig. 2d). Based on the force balance on uniformly moving droplets
(Supplementary Fig. 1b), we calculated the droplet charges (q) by using
the following equation: q= ðFD +mgÞ=E, where FD is the air drag force
derived from the Stokes’ Law,m is themass of droplet, E is the strength
of applied electric force, respectively. According to the detailed dis-
cussion in Supplementary Note 1 and Supplementary Fig. 2, the charge
magnitude of a randomly selected jumping droplet (with a radius of
∼10.3μm and a terminal velocity of ∼11.9mms−1) is calculated as
−5.77 fC. We also analyzed the radius distribution of the jumping dro-
plet and corresponding charge magnitude (Supplementary Fig. 3) by
employing the methodology reported in previous work17. Such results
provide the first evidence that water can also acquire negative charges
upon contact with superhydrophobic surfaces, filling the unexplored
area in the field of liquid-solid CE shown in Fig. 1.

Simulation for the electronic structures of FDT and DT
To understand why FDT and DT determine the charge polarity during
liquid-solid CE, we conducted density functional theory calculations to
compare the inherent differences in their electronic structures. The
detailed computational setup is described in the Supplementary
Note 2. Figure 3a, b show the electronic distributions of FDT and DT,
respectively, where the FDT exhibits a highly electron-rich state due to
its abundant fluorine atoms while the DT displays a highly electron-
deficient state, and bonding orbitals near the Fermi levels of both FDT
and DT are located on the sulfur sites. Such electronic distribution
indicates that FDT tends to accept the electrons fromwater during CE,
leading to positive charges in water. In contrast, DT prefers to donate
electrons to water, leading to negative charges in water. Then, we
compared the electronic structures based on the projected partial
density of states (PDOSs) (Fig. 3c, d). Notably, S-3p orbitals of FDT
show a sharp peak on the Fermi level, which facilitates the electron
transfer from the surface adsorbed water molecules to the electron
reservoir formed by fluorine sites. The good overlapping between p
orbitals in FDT is also revealed, which guarantees the electron transfer.
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Fig. 1 | Classification for the existing studies on liquid-solid CE based on the
wettability of solid surfaces and charge polarity of water. There are three types
of solid surfaces, including polymer (FEP, etc.)18,22,51, self-assembled monolayer
(PFOTS-SiO2, etc.)

17,21,52–54, and inorganic solid that is chemically active in water
(SiO2, etc.)

20, which are distinguished by three different font colors. The solid
surfaces are located in the position of their corresponding wettability. The positive
and negative areas represent the polarity of water charges generated during liquid-
solid CE. The sign “?”means the area yet to be explored, i.e., whether the water can
acquire the negative charges from the superhydrophobic surfaces. Note that some
works report mutually conflicting results regarding the charge polarity or the
surface wettability. For example, SiO2 is reported as hydrophobic in literature21

(marked bya), and water is positively charged by PP in literature51 (marked byb).
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FDT also shows a slightly enlarged bandgap in comparison to DT,
meaning a higher barrier for electron depletion. We further compared
the p-band center of the overall structures and S sites (Fig. 3e). FDT
exhibits a much lower p-band center than DT, indicating the more
electron-rich features induced by the abundant fluorine atoms, sup-
porting their electronic distributions. Meanwhile, the p-band center of
sulfur sites in FDT is higher than in DT, which demonstrates a higher
activity of sulfur sites in FDT.

CE between water droplets and binary superhydrophobic sur-
faces with tunable work functions
The simulation results reveal the opposite preferenceof FDTandDT to
accept or donate electrons, which provides a potential means to
quantitatively control the charge generation during liquid-solid CE.We
fabricated a series of binary superhydrophobic surfaces by blending
FDT and DT together, denoted by the feeding molar ratio of FDT,
referred to as k. And k = mFDT

mFDT +mDT
, wheremFDT andmDT represents the

molar concentration of FDT and DT, respectively. Note that k does not
directly correspond to the actual ratio of FDT on the surfaces. The as-
fabricated binary self-assembled monolayers of superhydrophobic
surfaces with varied k values are verified using the X-ray photoelectron
spectroscopy spectra of three main elements in FDT and DT mole-
cules, including sulfur, carbon, and fluorine elements (Fig. 4a). With
the increase of k values, the sulfur element maintains a consistent
binding energy due to the same sulfur bond present in DT and FDT.
Meanwhile, the carbon element gradually shifts to a higher binding
energy, and the fluorine element shows an intensified peak intensity,
indicating a successful modulation of the ratio of FDT and DT on
binary superhydrophobic surfaces. As expected above, these super-
hydrophobic surfaces with varied k values directly affect both the

magnitude and polarity of charges in coalescence-induced jumping
water condensates (Supplementary Note 3 and Supplementary Fig. 4).
Themaximumnegative and positive static charges are generated from
the superhydrophobic DT surfaces (k =0) and superhydrophobic FDT
surfaces (k = 1), respectively, and there is a crossover of charge polarity
when k lies between 0.1 and 0.15.

To further understand the influence of k values on CE, we char-
acterized the work functions, the electric properties that reflect the
surface capability to donate or accept electrons, of the super-
hydrophobic surfaces and measured the static charges in water,
respectively. To determine work functions, we first measured the
surface potential (V sp) of superhydrophobic surfaces, a typical elec-
trical property in characterizing the surface charging ability40. Surface
potential decreases from ∼ 812mV to∼ −1226mV (Fig. 4b and Sup-
plementary Fig. 5) with the k values increasing from 0 to 1. We then
transformed the values of surface potential into work functions by
using the equation+sur =+tip � e � V sp, where+sur,+tip is thework
function of superhydrophobic surfaces and used probes (∼5.02 eV),
respectively. Figure 4c denotes the varied work functions of binary
superhydrophobic surfaces with the k values. Further, we quantified
the droplet charges (Q) generated during CE by collecting the water
droplets in a Faraday cup that is connected to a Coulomb meter
(Fig. 4d). Water droplets acquire static charges upon impacting and
rebounding from the superhydrophobic surfaces. We discovered that
there is a linear relationship between droplet charges and work func-
tions of superhydrophobic surfaces (Fig. 4e), which is further fitted by
a dimensionless equation expressed as Q= 1:49ð+sur � 5:10Þ with a
R-Squarevalueof∼0.993.Note that the slopeof this equationmayvary
depending on the actual experimental conditions, as the liquid-solid
CE is affected by multiple factors41, such as surface morphology
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Fig. 2 | CE between coalescence-induced jumping droplets and super-
hydrophobic surfaces. a Molecular structure of FDT and DT, as well as the mor-
phology of nano-structured copper oxide substrate with 12minutes of etching. The
scale bar is 5μm. b The schematic of the setup that allows the observation of the
contact electrification between superhydrophobic surfaces and coalescence-
induced jumping droplets. The cooler aims to trigger the condensation of vapor
and coalescence-induced jumping of condensate droplets by decreasing the tem-
perature of superhydrophobic surfaces. Two electrodes build the directional

electric field, allowing us to determine the charge polarity of jumping droplets by
observing their motion trajectory. c On superhydrophobic FDT surfaces, jumping
droplets experience a continuous ascent motion under the upward electric field,
denoting the generation of positive charges in droplets during CE. d On super-
hydrophobic DT surfaces, jumping droplets acquire negative charges, leading to
initial jumping and followed falling motion under the upward electric field. The
contact angles of water droplets on FDT and DT surfaces are∼ 156.2 o and ∼ 155.4o,
respectively, shown in the insets.
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(Supplementary Fig. 6) and droplet impact dynamic (Supplementary
Note 4 and Supplementary Fig. 7). This correlation also indicates that
the magnitude of charges in water is zero when +sur equals 5.10 eV,
and we defined such a value as the zero-charge point (indicated by the
red star in Fig. 4e). The zero-charge point represents the crossover
point for the polarity of droplet charges generated during CE. When
the +sur of superhydrophobic surfaces is larger or smaller than the
zero-charge point, water will correspondingly acquire the positive or
negative charges during CE, respectively.

Mechanism of CE between liquids and superhydrophobic
surfaces
To elucidate the mechanism of CE between water and super-
hydrophobic surfaces, we revisited the prevailing theory concerning
CE between liquids and solid surfaces exhibiting hydrophobicity (with
a contact angle of <120o) or hydrophilicity18–22. When CE occurs, both
electrons and ions serving as charge carriers are transferred to the
solid surfaces, with electrons being the dominant carriers (left part of
Fig. 5a). Previous studies have presented that ions on solid surfaces
typically originate from various sources42, mainly including ionization
reaction on chemically active solid surfaces20, water hydrolysis at the
interface31, and liquid dewetting leaving behind hydration shell (i.e.,
the residues of liquids and contained ions)37. There is an important yet
overlooked fact that ion transfer caused by liquid residues inevitably
occurs because the previously exploited surfaces always adsorb the
liquids during their contact5, and these ions are difficult to measure
directly, especially on hydrophobic surfaces like PTFE19. However,
transferred ions result in the surface potential change and deteriorate
the charging ability deterioration of the solid surfaces18,20, which could
be used as indicators of the occurrence of ion transfer during CE.

Here, we revealed that ion transfer is not involved in the liquid-
solid CE occurring on superhydrophobic surfaces by proving the

absence of ions on superhydrophobic surfaces after contact with ion-
enriched liquids. The direct evidence is the stable surface potential (or
work function) and charging ability of superhydrophobic surfaces.
Figure 5b demonstrates that the surface potentials of both super-
hydrophobic DT and FDT surfaces remain basically unchanged after
one minute of soaking in various types of liquids, including water, acid
(hydrogen chloride), alkali (sodium hydroxide), and salt (sodium
chloride) solutions. It is worth mentioning that such independence of
surface potential from ions is inherently analogous to the findings
obtained through high-sensitivity surface characterization technologies
in a recent advancement of electric field-induced hydrodynamics43.
Fig. 5c depicts the nearly samemagnitude of static charges generated in
CE between water droplets and ionic solution-impacted super-
hydrophobic surfaces, indicating the stable charging ability of super-
hydrophobic surfaces. Such stable charging ability is further
consolidated by the time-involved linearly accumulated liquid charges
(Supplementary Note 5, Supplementary Fig. 8). These results reveal that
superhydrophobic surfaces effectively prevent ion transfer during
liquid-solid CE, which benefits from its strong capacity to repel the
remnant of liquids and ions contained. Note that failure of super-
hydrophobic surfaces under certain conditions, such as overloaded
hydrostatic pressure or liquid flooding44,45, may lead to the occurrence
of liquid residues induced ion transfer during CE. Simultaneously, CE
between liquids and superhydrophobic surfaces also demonstrates a
unique property of pH independence due to the absence of ions on
surfaces. Briefly, the superhydrophobic surfaces can either positively or
negatively electrify the liquids, regardless of the pH values, which is
contrary to the existingfindingswhere acid andalkali aqueous solutions
can only be negatively and positively charged during CE, respectively.
Such difference is further discussed in Supplementary Note 6, Supple-
mentary Figs. 9 and 10. Additionally, the pH independence of liquid-
solid CE occurring on superhydrophobic surface also eliminates the
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EF, represent fluorine, sulfur, carbon elements and Fermi level, respectively.
e Difference between FDT and DT in their p-band center. The lower overall p-band
center (left y-axis) of FDT dictates its electron-rich features, whereas the higher
p-band center of S (right y-axis) demonstrates a higher activity of S sites in FDT to
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potential influenceof surface impurities that usually used to account for
some phenomena beyond the ion adsorption, given that the surface
impurities can induce the pH dependence of charged surface46,47.

After ruling out the efficacy of ions, electrons emerge as the
exclusive carriers for charge generation duringCE between liquids and
superhydrophobic surfaces (right part of Fig. 5a). In fact, the electron
transfer during liquid-solid CE has been well-documented18–23; how-
ever, it is still unclear how electron transfer is dictated by surface
properties. To further understand the electron transfer during liquid-
solid CE, we referred to the metal-involved CE because of their simi-
larity manifested in the linear correlation between generated charges
and work functions48. There has been a consensus that metal-involved
CE results from the electron transfer driven by the difference in work
functions between the contacted surfaces1,5. Based on this under-
standing, we considered the electron transfer between liquids and
superhydrophobic surfaces regarding their work functions. Both FDT
and DT have been found to effectively regulate surfacework functions
by modifying the substrates (copper oxide with a measured work
function of ∼4.9 eV), which benefit from their dipoles induced by
atomswith unequal electronegativity38,39. For FDTwith trifluoromethyl
group, its electric dipole increases the surface work function by
shifting the vacuumenergy level,EVAC (Fig. 5d, Supplementary Fig. 11a).
Conversely, DTwithmethyl group shows a dipole orientation opposite
to that of FDT, leading to the decrease of surface work function
(Fig. 5d, Supplementary Fig. 11b). Due to different work functions
between surfaces, FDT surfaces acquire the electrons (Fig. 5e)whileDT
surfaces tend to lose the electrons (Fig. 5f) upon contact with the
liquids.Accordingly, thebinary superhydrophobic surfaceswith varied
k values encompassing a range of work functions from+FDT to +DT

enables the control over electron transfer during liquid-solid CE. Note
that when the work function of liquids is exactly matches that of the

superhydrophobic surfaces (defined as +0), electron transfer is pro-
hibited (Supplementary Fig. 11c), resulting in the zero-charge point of
liquids (water Fig. 4e). Therefore, the work function of water is calcu-
lated as ∼5.10 eV.

Discussion
We design the binary self-assembled monolayer of superhydrophobic
surfaces that possess regulable work functions and liquid repellence
simultaneously. These two characteristics decouple the electrons and
ions due to their respective functions in controlling electron transfer
and excluding ion transfer during liquid-solid CE, leading to the intri-
guing phenomena of liquid-solid CE, as shown below. (1) There is a
linear relationship between the work function of superhydrophobic
surfaces and generated charges, which allows us to achieve, for the
first time, quantitative control over the magnitude of static charges
generated during liquid-solid CE. (2) The superhydrophobic surfaces
can either positively or negatively electrify the water, salt, acid, and
alkali aqueous solutions without deterioration in charging ability,
denoting the independence of CE between liquids and super-
hydrophobic surfaces on the ion types and pH levels of liquids. In
contrast, existing liquid-solidCE is subject to thepHvalues of liquids. A
typical example is that the alkali solutions can only acquire negative
charges from hydrophilic/hydrophobic surfaces during CE due to the
continuous adsorption of OH− on the solid surface, and such ion
adsorption will deteriorate the charging ability of the solid surfaces.

In summary, we describe, quantify, and modulate the contact
electrification between liquids and superhydrophobic surfaces,
thereby revisiting the dynamics of liquid-solid CE. By integrating
experimental findings and simulation results, we find that electron
transfer, driven by the work function difference between the liquids
and solid surfaces, underlies the liquid-solid CE. In addition, CE
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is connected to the nanocoulomb meter. e The linear correlation between droplet
charges and work functions of superhydrophobic surfaces. There is a crossover
point (denotedby the red star) for thepolarity of charges inwaterdroplets,which is
defined as the zero-charge point of water. The error bars in (c, e) are based on the
SD values of three tests, and the error bars in (c) are too small to allow clear
differentiation.

Article https://doi.org/10.1038/s41467-024-49088-1

Nature Communications |         (2024) 15:4762 5



occurring on superhydrophobic surfaces excludes the ion transfer
process, in contrast to the existing liquid-solid CE occurring on sur-
faces exhibiting hydrophilicity or low hydrophobicity, which proves
that ion transfer during liquid-solid CE is affected by surface wett-
ability. These findings advance the understanding of liquid-solid CE
and open potential avenues for further exploration of practical appli-
cations. Furthermore, superhydrophobicity-induced unique results on
liquid-solid CE are expected to promote the revaluation of previous
findings in liquid-solid interfacial research, for example, interfacial
chemistry under the situation of liquid flowing along a solid surface49.

Methods
Fabrication of superhydrophobic surfaces with tunable work
functions
To obtain the superhydrophobic surfaces, we first chemically etch the
cleaned coppers by using a hot (96 oC) solution with a component of
NaClO2, NaOH, Na3PO4·12H2O, and H2O at a 3.75:5:10:100 wt. ratio for
12minutes, forming superhydrophilic copper oxide surfaces with
nano-grass structures. Subsequently, the nano-structured surfaces are
immersed in a 5mM alcohol solution of FDT and DT with designed k
values for 90minutes. To dramatically eliminate the potential physical

adsorption, the fabricated superhydrophobic surfaces are carefully
rinsed with alcohol and subsequently dried using a nitrogen blow.

Characterization for the superhydrophobic surfaces
The static contact angles of water on FDT and DT surfaces were
measured by a Kruss DSA100 contact angle goniometer at room
temperature. Surface elements and their chemical shifts of the
superhydrophobic surfaces with varied k values were analyzed by
X-ray Photoelectron Spectroscopy, XPS (ESCALAB 250Xi multi-
functional spectrometer, Thermo Fisher). The surface potential was
measured using Kelvin probe force microscopy (KPFM, Dimension
Icon, Bruker). Pt-Ir-coated probe (SCM-PIT-V2, Bruker) was used, and
three regions (each with an area of 2 x 2μm2) were randomly selected
from the samples with a size of 1 x 1 cm2. A highly oriented pyrolytic
graphite (with a work function of 4.4 eV in air50) is selected as a
benchmark for the work function of superhydrophobic surfaces, and
its KPFM image is shown in Supplementary Fig. 12.

Characterization for the static charges in liquid droplets
The droplet charges, including polarity and magnitude, are detected
after the droplets are collected in a Faraday cup connected to a
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hydrophilic surfaces, both ion and electron transfer occur18–22, whereas on super-
hydrophobic surfaces, only electrons remain after the liquid recedes. b, c The
experimental evidence demonstrating the repellency of superhydrophobic sur-
faces to the ions in liquids. Here, the concentration of the ionic solutions is 0.1mM,
meaning that the pH values of acid and alkali solution are 4 and 10, respectively.
b Measured surface potentials (V sp) of the superhydrophobic surfaces in the ori-
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functions of superhydrophobic surfaces. c Static charges (in water droplets, Q)
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from liquid to FDT (e), and from DT to liquid (f).
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nanocoulombmeterwith a resolution of 0.01 nC (Monroe,Model 284).
Since the static charges in a singlewater droplet are hard to distinguish
the difference among the surfaces with varied k values, we recorded
the charges in droplets for a duration of 30 s under dropping height of
3 cm and dropping frequency of 6.7 Hz (calculated from the video
captured by a high-speed camera, Fastcam SA4, Photron Limited). The
volume of an individual water droplet is ∼15μL, which is determined
from water density and mass measured using the electronic scale with
an absolute accuracy of one ten-thousandth. Tomitigatemeasurement
discrepancies, we conducted a thrice-repeated weighing of ten indi-
vidual droplets and then calculated the average values.

The experiments for proving the absence of ions on the super-
hydrophobic surfaces
Three types of ionic solutions, including sodium chloride, hydrogen
chloride, and sodium hydroxide, were used to soak or impact the
superhydrophobic FDT and DT surfaces. In the soaking experiments,
the surface potentials of freshly fabricated superhydrophobic FDT and
DT surfaces were first measured. The surfaces were then soaked in the
target ionic solutions, such as hydrogen chloride solution, for 1min-
ute. The superhydrophobic nature of surfaces prevents the water
residual, allowing the followed direct measurements of surface
potential again without any additional treatment. Such a soaking
treatment and surface potential measurement were repeated twice, in
which the other two kinds of ionic solutions were respectively used to
soak the surfaces. As for the impacting experiments, the charges in
water droplets generated fromCE with FDT and DT surfaces were first
measured using the methods described above. Subsequently, the
superhydrophobic surfaces were subjected to the impact of the ionic
solution for 1minute. Then, the treated surfaces were impacted by the
water droplets while simultaneously recording the charges in droplets.
Such droplet impacts and charge measurements were repeated twice,
and twoother kinds of ionic solutionswereused to impact the surfaces
on each occasion. Here, the impact points on the surface by water and
ionic solution droplets are the same. Note that the measured results
are independent of the utilization orders of ionic solutions.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its supplementary information
files. Source data are provided with this paper.
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