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Abstract
Solid deformation is always a crucial factor of gas transport in sedimentary
rocks. While previous studies always adopt the assumption of isotropic poroelas-
tic deformation, anisotropic poroelastoplastic deformation is rarely considered,
despite anisotropy being a ubiquitous property of natural sedimentary rocks. In
this work, an anisotropic poromechanical model is established to analyze the
matrix porosity and apparent permeability evolutions during the process of gas
migration. Using a thermodynamic formulation that treats the fluid–solid inter-
face as an independent phase, we derive a rate form for matrix porosity and
obtain the new dissipation function that contains three parts: dissipations from
solid deformation, gas adsorption, and fluid flow. For gas adsorption, we jus-
tify the rationality of the adopted model; for fluid flow, the updated porosity
can be substituted into sophisticated apparent permeability models for full-scale
analysis; and for solid deformation, a recently developed constitutive model
appropriate for rocks exhibiting transverse isotropy in both the elastic and plas-
tic responses is adopted in this work. Through the novel stress-point simulation
incorporating two effective stress measures and adsorption strain, new patterns
of apparent permeability are obtained, which fit the experimental data quite well
and cannot be reproduced from the assumption of isotropic poroelasticity. The
advantages of our poromechanical model include thermodynamic consistency
and the ability to employ finite-element-based formulation. Finally, an initial-
boundary value problem of gas production considering anisotropic plasticity is
conducted, and the effects of the bedding plane and different adsorption models
are highlighted.
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1 INTRODUCTION

Energy markets around the world have been dramatically affected by the shale gas revolution in North America, making
shale at the heart of energy resource development. Shale, the most common sedimentary rock on Earth, is estimated to
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comprise 75% of rocks in sedimentary basins.1 Whether it concerns geothermal energy,2 carbon sequestration,3 hydraulic
fracturing,4 underground mining,5 or waste storage,6 one is likely to encounter shale. Thus, knowing the deformation
and fluid flow properties of shale is extremely important for the efficient exploration and utilization of natural resources.
Similar to many natural and engineering materials, anisotropy is a ubiquitous property7,8 due to the existence of distinct
bedding planes.9,10 The bedding plane (or layering) is the result of differences in settlement rates and source inputs during
the sedimentation process.11 Many plasticity models have been developed for anisotropic materials, see Borja et al.12,
Choo et al.13, Crook et al.14, Semnani et al.15, Zhao et al.16,17 for a sampling of these models. Nevertheless, none of these
anisotropic plasticity models have been used in the shale gas community.
Darcy’s law serves as a fundamental principle in numerous applications within the oil and gas sector.18,19 However,

it is only applicable to laminar and viscous flows, with deviations from this linear relationship termed as non-Darcy
flow.20 Shale is composed of an inorganic matrix with pore sizes ranging from 1 to 100 micrometers and an organic
kerogen matrix with pore sizes between 1 to 200 nanometers.21 For micrometer-sized pores, Darcy’s law has proven
to be suitable, but flow in nanometer pores often deviates from it, resulting in a non-Darcy flow. Wang and Sheng22
noted that non-Darcy flow behaviors differ for gases and liquids. On one hand, for liquids, Darcy’s law might overesti-
mate flow rates due to fluid-particle interactions with solid pore walls.22,23 Such interactions lead to the formation of a
boundary layer where the liquid exhibits higher viscosity.22,24 Consequently, the average fluid flow velocity is likely to
be lower than the value derived from Darcy’s law.25,26 This phenomenon is referred to as low-velocity non-Darcy flow
in literature.
Conversely, for gas flow in sedimentary rocks, several crucial mechanisms must be considered to accurately estimate

realistic flow velocities. At the nanoscale, gas molecules are of similar size to the pores, and processes such as slippage
at the pore walls, Knudsen diffusion, adsorption/desorption, and surface diffusion become significant.21,27–29 Dynamic
apparent permeability models are widely used to account for these non-Darcy flow mechanisms.21,30–32 In these models,
gas slippage at pore walls andKnudsen diffusion can be quantified using the Knudsen number𝐾𝑛, which is the ratio of the
mean free path of gas molecules to the pores’ characteristic length.33 At low 𝐾𝑛 (𝐾𝑛 < 0.001), almost all fluid molecules
experience molecule-to-molecule interactions in the bulk fluid, and flow can be described as viscous flow (Darcy’s law).
As 𝐾𝑛 increases, molecule-to-wall interactions become significant and can no longer be neglected. Consequently, slip-
flow occurs in the region 0.001 < 𝐾𝑛 < 0.1. Klinkenberg’s equation and its modifications are effective in this slip-flow
region. For 0.1 < 𝐾𝑛 < 10, flow is characterized in a transition region between slip-flow and free molecular flow. This
region is particularly interesting since most shale reservoirs naturally fall within it, and it is also the most challenging
region to model. When 𝐾𝑛 > 10, flow is described as free molecular flow, which can be accurately modeled by molecular
dynamics (MD), direct simulation Monte Carlo (DSMC), and Lattice-Boltzmann simulation.34 In this study, the focus is
on the region of 𝐾𝑛 < 10.
Furthermore, adsorption/desorption processes35 contribute to the formation of an adsorbed gas layer occupying pore

space, causing variations in gas apparent permeability.36 Additionally, stress sensitivity is another influential phenomenon
that leads to changes in porosity and permeability.37 As a result, the net change in permeability during gas extraction is
controlled by multiple competing processes.36 Numerous theoretical models have been developed to calculate apparent
permeability and predict gas production.38,39 Among the literature, Wang et al.40 provided comprehensive overviews of
multiscale and multiple gas transport/seepage mechanisms and proposed future research directions. Ip and Borja41 cap-
tures the multiscale interactions of elastic anisotropy in unsaturated clay rocks through homogenization, and it mentions
the distribution of nanopores impacts the gas transport and adsorption/desorption behavior,41,42 which motivates the
present study. However, despite extensive research on apparent permeability and related mechanisms, gas flow equa-
tions have not always been rigorously derived from poromechanics theory,11,43–46 often adopting an uncoupled form that
limits their applicability to anisotropic cases.
In this study, we present a novel framework for gas flow in sedimentary rocks experiencing both anisotropic elasto-

plasticity and gas adsorption. Even though this study is motivated by shale properties, the discussion revolves around
general sedimentary rocks whose characteristics are similar to those of shale. Inspired by Zhao and Borja11 who focused
on the slightly compressible fluid and constant permeability, we derive conservation laws ofmass,momentum, and energy
to include both adsorbed gas and free gas by using continuum principles of thermodynamics. A novel point simulation
algorithm incorporating two effective stress measures and adsorption strain is developed for porosity and permeability
updating. The paper is organized as follows. Section 2 and Section 3mathematically formulate the problem in great detail.
Section 4 conducts the stress-point simulation of the apparent permeability. An initial-boundary value problem of gas
production considering anisotropic plasticity is conducted in Section 5, and the effects of the bedding plane and different
adsorption models are highlighted.
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1020 ZHANG et al.

2 GOVERNING EQUATIONS

In this work, we follow the isothermal mixture theory formulations.47–50 We assume all the connected pores are filled
with gas, the solid is made of a single mineral, and it does not contain any occluded pores.51 The effects of the
residual/irreducible saturation of the liquid phase at the solid boundary are negligible.
Motivated by the three-phase approach originally developed by Zhang,49 wemodel the fluid–solid interface as the third

phase in mixture theory. We assume that the surface moves together with the solid skeleton, i.e., they have the same
velocity. In terms of the notation, we still use the subscript or superscript “𝑓” to represent the gas phase for the following
two reasons. First, gas definitely belongs to one type of fluid. Second, we want to derive the formulation considering the
most general cases, which implies our approach is also applicable to other types of fluids, and we will only reduce our
formulation for the case of gas in Section 3.

2.1 Mass balance

Consideringmass exchange between the interface and the pore fluid, the individualmass balance equations in the current
configuration could be written as

d𝜌𝑠

d𝑡
+ 𝜌𝑠∇ ⋅ 𝒗𝑠 = 0 , (1)

d𝑓𝜌𝑓

d𝑡
+ 𝜌𝑓∇ ⋅ 𝒗𝑓 + 𝑟 = 0 , (2)

d(𝜌surf𝐴𝑠)

d𝑡
+ 𝜌surf𝐴𝑠∇ ⋅ 𝒗𝑠 − 𝑟 = 0 , (3)

where 𝜌𝑠 = 𝜌𝑠(1 − 𝜙) and 𝜌𝑓 = 𝜌𝑓𝜙 (with superscript) are partial densities of the solid and fluid, 𝜌𝑠 and 𝜌𝑓 (with subscript)
are intrinsic densities, and 𝜙 is the porosity (1 − 𝜙 could be viewed as the solid porosity48). For the time derivative in the
above three equations, d∕d𝑡 implies the material time derivative following the solid motion, while d𝑓∕d𝑡 follows the
fluid motion, and they are related to the solid velocity 𝒗𝑠 and fluid interstitial velocity 𝒗𝑓 , respectively. For the new mass
balance equation of the interface, 𝐴𝑠 plays a similar role to 𝜙 but has a different dimension, it represents the amount of
interface area per unit of current control volume,49 simply known as the specific surface area. Similarly, 𝜌surf plays the
role of intrinsic surface fluid density and therefore, 𝜌surf𝐴𝑠 has the same unit as 𝜌𝑠 and 𝜌𝑓 . Finally, 𝑟measures the rate of
adsorption by mass.
For the following algebraic simplifications, it is beneficial to express Equations 2, 3 by using some Lagrangian quantities

and relative seepage velocity as

d
(
𝜌𝑓𝜙𝐿

)
d𝑡

+ 𝐽∇ ⋅ 𝒘̂𝑓 + 𝐽𝑟 = 0 , (4)

d
(
𝜌surf 𝐴̄𝑠

)
d𝑡

= 𝐽𝑟 , (5)

where 𝜙𝐿 = 𝐽𝜙 is the Lagrangian porosity (the amount of pore space per unit of reference control volume) and 𝐴̄𝑠 = 𝐽𝐴𝑠

is the Lagrangian specific surface area. In these two definitions, the important term 𝐽 is known as deformation Jacobian
thatmeasures the volume change during deformation, and it has an important property such that d𝐽∕d𝑡 = 𝐽∇ ⋅ 𝒗𝑠. Finally,
𝒘̂𝑓 = 𝜌𝑓𝜙(𝒗𝑓 − 𝒗𝑠) is the Eulerian relative mass flux vector. Note that the symbol∇ always implies spatial derivative with
respect to the current configuration.

2.2 Momentum balance

The balance of linear momentum states that (assuming quasi-static condition throughout the paper)

∇ ⋅ 𝝈𝑠 + 𝜌𝑠𝒈 + 𝒉𝑠 = 𝟎 , (6)
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ZHANG et al. 1021

∇ ⋅ 𝝈𝑓 + 𝜌𝑓𝒈 + 𝒉𝑓 = −𝑟𝒗𝑓 , (7)

∇ ⋅ 𝝈surf + 𝜌surf𝐴𝑠𝒈 + 𝒉surf = 𝑟𝒗𝑠 , (8)

where𝝈𝛼 (𝛼 = 𝑠, 𝑓, surf ) denotes the partial stress tensor of each phase,𝒈 is the gravity acceleration vector, and𝒉𝛼 denotes
the dragging force (Zhang49 interpreted it as the linear momentum exchange among phases) and satisfies

∑
𝛼 𝒉

𝛼 = 𝟎.
Summation of the above three equations gives the overall balance of linear momentum as

∇ ⋅ 𝝈 +
(
𝜌𝑠 + 𝜌𝑓 + 𝜌surf𝐴𝑠

)
𝒈 + 𝑟𝒗𝑓 = 𝟎 , (9)

where 𝝈 = 𝝈𝑠 + 𝝈𝑓 + 𝝈surf is the total Cauchy stress tensor and 𝒗𝑓 is defined as 𝒗𝑓 = 𝒗𝑓 − 𝒗𝑠. By using 𝒗𝑓 , 𝒘̂𝑓 could also
be represented as 𝒘̂𝑓 = 𝜌𝑓𝜙𝒗𝑓 .
It is worth noting that Equation 9 implies the mass transfer 𝑟 affects the variation of the overall linear momentum,

which is supported by similar equations in Choo and Borja52, Choo et al.53, Coussy54, Zhao and Borja11 for double porosity
media. However, in Zhang,49 the overall balance of linear momentum takes the same form as the usual porous media
(without the 𝑟𝒗𝑓 term). This difference comes from the treatment of the linear momentum balance for each phase: the
term on the right-hand side (RHS) of Equations 7, 8 is a direct result of the Reynolds transport theorem55; while Zhang49
added the same one on the left-hand side (LHS), in order to cancel out this RHS term. In our study, we do not choose
to add such a term, which is consistent with our previous treatment in double porosity media, see Zhang et al.56 Similar
issues also exist in the energy balance as shown below, but we will state our assumptions clearly beforehand.

2.3 Energy balance: The first law of thermodynamics

Let𝒦 be the kinetic energy and ℐ be the internal energy of the whole material. The first law of thermodynamics states
that

Dℐ

D𝑡
= 𝒫 −

D𝒦

D𝑡
, (10)

where 𝒫 is the total power and the symbol D(⋅)/D𝑡 denotes the total material time derivative, which is obtained as the
sum of the material time derivatives for each phase. By using the Reynolds transport theorem,55 the time derivative of
kinetic energy could be expressed as

D𝒦

D𝑡
= ∫
Ω(𝑡)

𝑟

2

(‖𝒗𝑠‖2 − ‖‖‖𝒗𝑓‖‖‖2
)
d𝑉𝑡 , (11)

where Ω(𝑡) implies the current configuration. Note for the dynamic case, Equation 11 should incorporate acceleration
terms. For the power term, by using the Gauss divergence theorem, it could be derived as

𝒫 = ∫
Ω(𝑡)

{
𝝈 ∶ 𝒅 − 𝑝𝜙∇ ⋅ 𝒗𝑓 + 𝑟

(‖𝒗𝑠‖2 − ‖‖‖𝒗𝑓‖‖‖2
)
− 𝒉𝑓 ⋅ 𝒗𝑓

}
d𝑉𝑡 , (12)

where 𝒅 is the rate of deformation tensor, 𝑝 is the pore fluid pressure and it emanates from the assumption on the form
of 𝝈𝑓 , that is, 𝝈𝑓 = −𝜙𝑝𝟏 where 𝟏 is the second-order identity tensor, and this form suggests the isotropic characteristic
of the fluid pressure. Note in the evaluation of𝒫, we only consider the power of the surface forces and gravity forces,43,54
in other words, the power done by dragging force and mass transfer 𝑟 is not involved. This is emphasized in Coussy54 and
we thus follow this recipe, and it could lead to differences with the formulation of Zhang.49 In order to further simplify
Equation 12, we could solve for𝒉𝑓 fromEquation 7 and substitute it into Equation 12. After some algebraicmanipulations,
we obtain

𝒫 −
D𝒦

D𝑡
= ∫
Ω(𝑡)

{
𝝈 ∶ 𝒅 − ∇ ⋅

(
𝑝

𝜌𝑓
𝒘̂𝑓

)
+ 𝒈 ⋅ 𝒘̂𝑓 +

𝑟

2
‖‖‖𝒗𝑓‖‖‖2

}
d𝑉𝑡 . (13)
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1022 ZHANG et al.

Nowwework on the time derivative of internal energyℐ. We define the overall internal energy per unit current volume
𝑒 to be

𝑒 = 𝜌𝑠𝑒𝑠 + 𝜌𝑓𝑒𝑓 + 𝜌surf𝐴𝑠𝑒surf , (14)

where 𝑒𝛼 represents the mass-specific (i.e., per mass unit) internal energy of each phase.50 By using the deformation
Jacobian 𝐽, we also define the Lagrangian counterpart 𝐸 as 𝐸 = 𝐽𝑒, which represents the overall internal energy per unit
reference volume.50 The LHS of Equation 10 can be represented as

Dℐ

D𝑡
=

d

d𝑡 ∫
Ω(𝑡)

(𝜌𝑠𝑒𝑠 + 𝜌surf𝐴𝑠𝑒surf ) d𝑉𝑡 +
d𝑓

d𝑡 ∫Ω(𝑡) 𝜌
𝑓𝑒𝑓 d𝑉𝑡 , (15)

which could be simplified into the following more compact form

Dℐ

D𝑡
= ∫
Ω(𝑡)

{
d𝑒

d𝑡
+ 𝑒∇ ⋅ 𝒗𝑠 + ∇ ⋅

(
𝑒𝑓𝒘̂𝑓

)}
d𝑉𝑡 . (16)

Note this is the most complete result for the rate of overall internal energy. The results derived in Borja48, Zhang et al.56,
Zhao and Borja11 are approximate results that only consider the first term. By combining Equation 13 and Equation 16, we
obtain the energy balance equation in the current configuration as

d𝑒

d𝑡
+ 𝑒∇ ⋅ 𝒗𝑠 = 𝝈 ∶ 𝒅 − ∇ ⋅

(
ℎ̂𝑓𝒘̂𝑓

)
+ 𝒈 ⋅ 𝒘̂𝑓 +

𝑟

2
‖‖‖𝒗𝑓‖‖‖2 , (17)

where we define ℎ̂𝑓 = 𝑒𝑓 + 𝑝∕𝜌𝑓 as the mass-specific enthalpy.49,54 We can also express the above equation using 𝐸 as

d𝐸

d𝑡
= 𝝉 ∶ 𝒅 − 𝐽∇ ⋅

(
ℎ̂𝑓𝒘̂𝑓

)
+ 𝐽𝒈 ⋅ 𝒘̂𝑓 +

𝐽𝑟

2
‖‖‖𝒗𝑓‖‖‖2 , (18)

where 𝝉 = 𝐽𝝈 is known as the Kirchoff stress tensor.55

2.4 Entropy inequality: The second law of thermodynamics

We can do exactly the same thing to the overall entropy, and define the Eulerian quantity 𝑠 and Lagrangian counterpart
quantity 𝑆 = 𝐽𝑠. The (isothermal) second law of thermodynamics (entropy inequality) states that

d𝑆

d𝑡
+ 𝐽∇ ⋅

(
𝑠𝑓𝒘̂𝑓

)
=

Φ𝐿

𝑇
≥ 0 , (19)

where according to Equation 14, 𝑠𝑓 could be inferred as the mass-specific fluid entropy, 𝑇 is temperature, which is treated
as a positive constant, and Φ𝐿 is the total dissipation per unit reference volume.
Now we introduce the overall Lagrangian density of Helmholtz free energy Ψ = 𝐸 − 𝑇𝑆 and take time derivatives on

both sides, we obtain

𝑇
d𝑆

d𝑡
=

d𝐸

d𝑡
−

dΨ

d𝑡
. (20)

Since we have provided the expression of d𝐸∕d𝑡 in Equation 18, we could combine with Equation 20 to get

Φ𝐿 = 𝝉 ∶ 𝒅 + 𝐽

[
𝒈 ⋅ 𝒘̂𝑓 +

𝑟

2
‖‖‖𝒗𝑓‖‖‖2 − ∇ ⋅

(
𝑔̂𝑓𝒘̂𝑓

)]
−

d

d𝑡

(
𝐽𝜌𝑠𝜓̂𝑠 + 𝜌surf 𝐴̄𝑠𝜓̂surf + 𝜌𝑓𝜙𝐿𝜓̂𝑓

) ≥ 0 , (21)

where 𝑔̂𝑓 = ℎ̂𝑓 − 𝑇𝑠𝑓 is known as themass-specificGibbs potential andwehave decomposed the overallΨ into three parts,
that is, free energy stored in solid, fluid-solid interface, and the fluid itself. 𝜓̂𝛼 represents the mass-specific Helmholtz free
energy and 𝜓̂𝑓 is related to 𝑔̂𝑓 through 𝜓̂𝑓 = 𝑔̂𝑓 − 𝑝∕𝜌𝑓 .
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ZHANG et al. 1023

Before continuing the simplification, we need to review the fluid state equations.50,54 So far, we have introduced many
mass-specific fluid quantities such as 𝑔̂𝑓 and 𝜓̂𝑓 . They depend on the fluid pressure 𝑝, fluid density 𝜌𝑓 , mass-specific fluid
entropy 𝑠𝑓 , and temperature 𝑇. For 𝑔̂𝑓 , we choose 𝑝 and 𝑇 to be the complete set of independent thermodynamical state
variables, and the dependent conjugate set is 1∕𝜌𝑓 and 𝑠𝑓 . The two sets are related by

d𝑔̂𝑓 =
1

𝜌𝑓
d𝑝 − 𝑠𝑓 d𝑇

⏟⏟⏟
= 0

. (22)

While for 𝜓̂𝑓 , 1∕𝜌𝑓 and 𝑇 are chose as the independent set, which is related to 𝑝 and 𝑠𝑓 through

d𝜓̂𝑓 = −𝑝 d

(
1

𝜌𝑓

)
− 𝑠𝑓 d𝑇
⏟⏟⏟
= 0

. (23)

In Appendix A, we provide the specific form of 𝑔̂𝑓 and 𝜓̂𝑓 for an ideal monoatomic gas (e.g., He, Ne, Ar, Kr, Xe, and Rn),
so one can use them to verify the above two state Equations 22 and 23.
By using Equations 22, 23 and the mass balance equations, we could finally simplify Equation 21 as

Φ𝐿 = 𝝉 ∶ 𝒅 + 𝑝
d𝜙𝐿
d𝑡

− 𝐽𝜌𝑠
d𝜓̂𝑠

d𝑡
− 𝜌surf 𝐴̄𝑠

d𝜓̂surf

d𝑡
+ 𝐽𝑟

[
𝑔̂𝑓 +

1

2
‖‖‖𝒗𝑓‖‖‖2 − 𝜓̂surf

]
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

Φ𝑠
𝑀 + Φ𝑎𝑑

𝑀

+ 𝐽
(
−∇𝑝 + 𝜌𝑓𝒈

)
⋅
𝒘̂𝑓

𝜌𝑓
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

Φ𝑓

≥ 0 ,

(24)

where we split the total dissipation Φ𝐿 into three parts, which represent dissipations from solid deformation Φ𝑠
𝑀 , gas

adsorption Φ𝑎𝑑
𝑀 , and fluid flow Φ𝑓 .

In order to evaluate the dissipation from solid deformationΦ𝑠
𝑀 , we need towork on the d𝜙𝐿∕d𝑡 term, that is, the porosity

evolution. Therefore, in Section 2.5 and Section 2.6, we first derive the porosity evolution equation and reduced dissipation,
and then in Section 3, the specific constitutive laws will be specified.

2.5 Porosity evolution equation

The porosity evolution starts from the mass balance of the solid (Equation 1), while during the derivation, some
assumptions are needed, which are summarized in the following bullet form:

1. Only infinitesimal deformation is considered. Therefore, the infinitesimal strain tensor 𝝐 = ∇sym𝒖 is applicable where
∇sym is the symmetric gradient operator and 𝒖 is the displacement.

2. The infinitesimal strain 𝝐 is expressed as the sum of elastic strain 𝝐𝑒, plastic strain 𝝐𝑝, and adsorption strain 𝝐𝑎𝑑. The
mechanical strain only contains 𝝐𝑒 and 𝝐𝑝. This is analogous to the thermo-poromechanics.

3. For elastic strain 𝝐𝑒, by making an analogy between the adsorption strain and thermal strain,57,58 we assume 𝝈̄ = 𝝈 +

𝜶𝑝 = ℂ𝑒 ∶ 𝝐𝑒 is still valid, whereℂ𝑒 is the fourth-order elastic tensor, 𝜶 is the Biot coefficient tensor,59 and 𝝈̄ is denoted
as the Biot effective stress (note that 𝝈′ is reserved for other use). In other words, if we express the poroelastic relation
in terms of purely mechanical strain and effective stress, the form will be identical to that of the “standard” porous
media.60–62

4. The time derivative of 𝜎surf𝑚 = Tr(𝝈surf )∕3 introduced in Equation 8 ismuch smaller (inmagnitude) than the solid grain
bulk modulus 𝐾𝑠, i.e., we assume 1∕𝐾𝑠 × d𝜎surf𝑚 ∕d𝑡 ≈ 0.

According to the definition of 𝐾𝑠 given by Borja48

𝐾𝑠 = 𝜌𝑠
d𝑝𝑠
d𝜌𝑠

, (25)
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1024 ZHANG et al.

where 𝑝𝑠 is the intrinsic solid pressure (positive for compression), Equation 1 can be simplified to

1 − 𝜙

𝐾𝑠

d𝑝𝑠
d𝑡

−
d𝜙

d𝑡
+ (1 − 𝜙)∇ ⋅ 𝒗𝑠 = 0 . (26)

Then by using the fact that 𝝈 = 𝝈𝑠 + (−𝜙𝑝𝟏) + 𝝈surf and Tr(𝝈𝑠)∕3 = −(1 − 𝜙)𝑝𝑠, Equation 26 can be further simplified to
eliminate d𝑝𝑠∕d𝑡 as (

1 +
𝑝 − 𝑝𝑠
𝐾𝑠

)
d𝜙

d𝑡
= (1 − 𝜙)∇ ⋅ 𝒗𝑠 −

1

𝐾𝑠

(
d𝜎𝑡
d𝑡

−
d𝜎surf𝑚

d𝑡
+ 𝜙

d𝑝

d𝑡

)
, (27)

where 𝜎𝑡 = Tr(𝝈)∕3 is the mean total stress. To further eliminate d𝜎𝑡∕d𝑡, we make use of assumption 3, which yields

𝟏 ∶ ℂ𝑒

3
∶
d𝝐𝑒

d𝑡
=

d𝜎𝑡
d𝑡

+
𝜶 ∶ 𝟏

3

d𝑝

d𝑡
. (28)

We next substitute Equation 28 into Equation 27 and ignore the d𝜎surf𝑚 ∕d𝑡 term according to assumption 4, and the result
reads (

1 +
𝑝 − 𝑝𝑠
𝐾𝑠

)
d𝜙

d𝑡
= (1 − 𝜙)∇ ⋅ 𝒗𝑠 −

𝟏 ∶ ℂ𝑒

3𝐾𝑠
∶
d𝝐𝑒

d𝑡
+

1

𝐾𝑠

(
𝜶 ∶ 𝟏

3
− 𝜙

)
d𝑝

d𝑡
. (29)

We note that (𝑝 − 𝑝𝑠)∕𝐾𝑠 is on the order of strain, which should be much less than 1 for infinitesimal deformation.11 As a
result, we could ignore this term and further simplify Equation 29 by using assumption 2, we obtain

d𝜙

d𝑡
= (𝜶 − 𝜙𝟏) ∶

d𝝐𝑒

d𝑡
+ (𝟏 − 𝜙𝟏) ∶

d𝝐𝑝

d𝑡
+ (𝟏 − 𝜙𝟏) ∶

d𝝐𝑎𝑑

d𝑡
+

1

𝐾𝑠

(
𝜶 ∶ 𝟏

3
− 𝜙

)
d𝑝

d𝑡
. (30)

A simple implicit backward integration leads to

𝜙 =

𝜶 ∶ (𝝐𝑒 − 𝝐𝑒n) + 𝟏 ∶
(
𝝐𝑝 − 𝝐

𝑝
n

)
+ 𝟏 ∶

(
𝝐𝑎𝑑 − 𝝐𝑎𝑑n

)
+

(𝜶 ∶ 𝟏)(𝑝 − 𝑝n)

3𝐾𝑠
+ 𝜙n

1 +
(
𝜖𝑣 − 𝜖𝑣,n

)
+

𝑝 − 𝑝n
𝐾𝑠

, (31)

where the quantities with subscript “n” (in normal font) simply imply their values at the previous time step. For a bet-
ter comparison, the porosity evolution equation emanated from poroelasticity theory is derived in Appendix B, which
confirms the correctness of Equation 31. In addition, Equation 31 could also be recast into other prototypes of porosity
evolution,49,60,62 which confirms the generalizability of Equation 31.
We can rewrite Equation 30 by using Lagrangain porosity 𝜙𝐿, which is given as

1

𝐽

d𝜙𝐿
d𝑡

= 𝜶 ∶
d𝝐𝑒

d𝑡
+ 𝟏 ∶

d𝝐𝑝

d𝑡
+ 𝟏 ∶

d𝝐𝑎𝑑

d𝑡
+

1

𝐾𝑠

(
𝜶 ∶ 𝟏

3
− 𝜙

)
d𝑝

d𝑡
. (32)

Now we could substitute the above equation into Equation 24 and obtain an equivalent form as

Φ =
Φ𝐿

𝐽
= 𝝈̄ ∶

d𝝐𝑒

d𝑡
+ (𝝈 + 𝑝𝟏) ∶

d𝝐𝑝

d𝑡
+

𝑝

𝐾𝑠

(
𝜶 ∶ 𝟏

3
− 𝜙

)
d𝑝

d𝑡
− 𝜌𝑠

d𝜓̂𝑠

d𝑡

+ (𝝈 + 𝑝𝟏) ∶
d𝝐𝑎𝑑

d𝑡
− 𝜌surf𝐴𝑠

d𝜓̂surf

d𝑡
+ 𝑟

[
𝑔̂𝑓 +

1

2
‖‖‖𝒗𝑓‖‖‖2 − 𝜓̂surf

]
+
(
−∇𝑝 + 𝜌𝑓𝒈

)
⋅
𝒘̂𝑓

𝜌𝑓
,

(33)

where we have already made the small strain approximation such that the rate of deformation tensor 𝒅 can be
approximated by d𝝐∕d𝑡.54
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ZHANG et al. 1025

2.6 Reduced dissipation

As a final preclude to the constitutive modeling in Section 3, we will derive the reduced dissipation from Equation 33.
We assume the mass-specific free energy of solid 𝜓̂𝑠 has an additive form of a “recoverable energy” part and a “trapped
energy” part, and 𝜓̂𝑠 is a function of the following variables

𝜓̂𝑠 = 𝜓̂𝑠

(
𝝐𝑒, 𝑝, 𝛏𝑝

)
, (34)

where 𝝐𝑒 and 𝑝 belong to the “recoverable” part, and 𝛏𝑝 is a vector of strain-like plastic internal variables that belongs to
the “trapped energy” part. By substituting Equation 34 into Equation 33 and using the standard Coleman argument, we
get the following relations

𝝈̄ = 𝜌𝑠
𝜕𝜓̂𝑠

𝜕𝝐𝑒
,

𝑝

𝐾𝑠

(
𝜶 ∶ 𝟏

3
− 𝜙

)
= 𝜌𝑠

𝜕𝜓̂𝑠

𝜕𝑝
. (35)

Note the first relation is exactly the elastic functional relation between the Biot effective stress 𝝈̄ and solid skeleton elastic
strain 𝝐𝑒. The reduced dissipation simplified from Φ now takes the form

 = (𝝈 + 𝑝𝟏) ∶
d𝝐𝑝

d𝑡
+ 𝛘 ⋅

d𝛏𝑝

d𝑡

+ (𝝈 + 𝑝𝟏) ∶
d𝝐𝑎𝑑

d𝑡
− 𝜌surf𝐴𝑠

d𝜓̂surf

d𝑡
+ 𝑟

[
𝑔̂𝑓 +

1

2
‖‖‖𝒗𝑓‖‖‖2 − 𝜓̂surf

]
+
(
−∇𝑝 + 𝜌𝑓𝒈

)
⋅
𝒘̂𝑓

𝜌𝑓
≥ 0 ,

(36)

where 𝛘 = −𝜌𝑠𝜕𝜓̂𝑠∕𝜕𝛏
𝑝 is a vector of stress-like plastic internal variables conjugate to 𝛏𝑝.

The first line in Equation 36 after  is a reduced version of Φ𝑠
𝑀 , which implies the maximum plastic dissipation prin-

ciple. Therefore, the Terzaghi effective stress 𝝈′ = 𝝈 + 𝑝𝟏 should be used in the plastic yield function 𝑓(𝝈′, 𝛘) ≤ 0 and
flow rule.11 This highlights the non-uniqueness of effective stress in poromechanics.63 In fact, experiments have revealed
that the initial part of yield leading to failure is caused by the destruction of the pore structure,51 rather than the elastic
deformation of the solid grain.
The second line in Equation 36 is related to gas adsorption. If we can specify the expression of 𝜓̂surf as a function of 𝝐𝑎𝑑,

the above equation would give a constitutive law for 𝝐𝑎𝑑. Similarly, the rate of adsorption by mass 𝑟 should be related to
themass-specific fluid Gibbs potential 𝑔̂𝑓 and interface Helmholtz free energy 𝜓̂surf . In fact, this termwith 𝑟 is very similar
to (3.109) in Coussy54 for double porosity media, in which 𝑔̂𝑓 − 𝜓̂surf is replaced by the pressure difference between the
two continua (micro-fracture network and nanoporous matrix).44,54,56 Nevertheless, we cannot give the specific form of
𝜓̂surf at this moment. Therefore, it is reasonable to use alternative empirical relations that are also used in other reservoir
geomechanics studies,36,58 which bypasses these yet undetermined constitutive relations. More details will be given in
Section 3.
The third line in Equation 36 is related to the seepage constitutive law, by assuming a linear form for 𝒘̂𝑓 with a positive

definite permeability tensor, the positiveness of Φ𝑓 will be automatically satisfied. Nevertheless, the determination of the
permeability for gas flow in sedimentary rocks is not trivial, which will also be discussed in Section 3.

3 CONSTITUTIVE RELATIONS

3.1 Gas adsorption

As mentioned in Section 2.6, in this section, we specify the empirical constitutive laws for 𝝐𝑎𝑑 and 𝑟. Firstly, for 𝝐𝑎𝑑, the
Langmuir monolayer adsorption model (Langmuir isotherm) is adopted,64 which gives

𝜖𝑎𝑑
𝑖𝑗

=
𝜖𝐿𝑝

3(𝑃𝐿 + 𝑝)
𝛿𝑖𝑗 , (37)
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1026 ZHANG et al.

where 𝜖𝐿 is a constant representing the maximum sorption-induced volumetric strain, which is a function of surface
area, and 𝑃𝐿 is the Langmuir pressure. Note we assume 𝝐𝑎𝑑 is isotropic and exclude the hysteresis effect, though we fully
acknowledge that the adsorption process could be different in the bed-normal and bed-parallel directions for a transversely
isotropic rock.49,65,66
Secondly, for 𝑟, two specific forms are adopted in this study. The first one is widely used in reservoir engineering and

reservoir geomechanics,36,58,67,68 which is given as

𝑚
(1)
𝑎𝑑

= 𝜌𝑟(𝐽 − 𝜙𝐿)
𝑀gas

𝑉m, std

𝑝𝑉𝐿

𝑝 + 𝑃𝐿
, 𝐽𝑟(1) =

d𝑚
(1)
𝑎𝑑

d𝑡
, (38)

where 𝜌𝑟 ≈ 𝜌𝑠 is the rock density, 𝑀gas is the gas molar mass, 𝑉m, std = 22.4 L/mol is the gas molar volume at the stan-
dard temperature and pressure (STP) condition, 𝑉𝐿 is the Langmuir volume, and 𝑃𝐿 is the same Langmuir pressure as
Equation 37. The second one is derived in Zhang49 and copied here

𝑚
(2)
𝑎𝑑

= 𝑀gas𝐴̄𝑠

Γmax
gas 𝐵gas𝑝

1 + 𝐵gas𝑝
⏟⎴⎴⏟⎴⎴⏟

Surf. concentration

, 𝐴̄𝑠 =
3

𝑅𝐼
𝜙
1∕3
0 𝜙

2∕3
𝐿 , 𝐽𝑟(2) =

d𝑚
(2)
𝑎𝑑

d𝑡
, (39)

where 𝑅𝐼 is the micro-structure parameter, Γmax
gas and 𝐵gas are adsorption parameters. It should be emphasized that the

adsorption process is actually a surface process, and the amount of adsorbed gas should be proportional to the surface
area. From this perspective, Equation 39 appears to be a superior selection. However, given that Equation 38 is a well-
established and extensively utilized formula, its existence undoubtedly holds significance. We remark that the Langmuir
volume 𝑉𝐿 could contain information on micro-pore surface area,67 thus the consistency with Equation 39 is guaranteed.
In addition, as 𝑟(1) is undoubtedly suitable for undeformable porous media, it should be approximately applicable when
the porosity change is small for deformable porous media. More importantly, by tuning 𝑅𝐼 , Γmax

gas , and 𝐵gas, we could have
a fair match between 𝑚

(1)
𝑎𝑑

and 𝑚
(2)
𝑎𝑑
, for both elastic and plastic cases, as shown in Section 5, together with a thorough

discussion on gas production.

3.2 Apparent permeability model

The linear form for mass flux 𝒘̂𝑓 emanated from Equation 36 is described in detail here. We define the Darcy velocity 𝒒
as 𝒒 = 𝒘̂𝑓∕𝜌𝑓 . According to the non-Darcy flow of shale gas, 𝒒 can be calculated through the following formula

𝒒 = −
𝑘𝑎
𝜇𝑔

∇𝑝 . (40)

where 𝑘𝑎 is the apparent permeability scalar and 𝜇𝑔 is the gas viscosity. Note we only consider isotropic permeability
in this study, the idea of anisotropic permeability combined with non-Darcy flow69 seems to be contradictory with the
physical meaning of pore radius, which is not covered in this study. In order to calculate the apparent permeability 𝑘𝑎,
we need to first introduce the concepts of the effective radius 𝑟𝑒 and the Knudsen number 𝐾𝑛. The effective radius 𝑟𝑒 is
calculated as36

𝑟𝑒 = 𝑟 − 𝑑𝑚
𝑝

𝑃𝐿 + 𝑝
, (41)

where 𝑟 is the current (deformed) pore radius due to a change of the porosity 𝜙 whose formula is given in the following
Equation 43, 𝑑𝑚 = 4 × 10−10 m is the gas molecule diameter, 𝑃𝐿 is the same Langmuir pressure as Equations 37, 38. In
this work, we adopt the Kozeny-Carman equation to update the matrix intrinsic permeability 𝑘∞ as

𝑘∞ = 𝑘0

(
𝜙

𝜙0

)3(
1 − 𝜙0
1 − 𝜙

)2

, (42)
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ZHANG et al. 1027

where 𝑘0 is the initial matrix intrinsic permeability, 𝜙0 is the initial porosity, and 𝜙 is evaluated from Equation 31. Then
we use 𝑘∞ to back-calculate 𝑟 as

𝑟 = 2
√
2𝜏

√
𝑘∞
𝜙

= 2
√
2𝜏

1 − 𝜙0
𝜙0

𝜙

1 − 𝜙

√
𝑘0
𝜙0

, (43)

where 𝜏 is the tortuosity. The Knudsen number 𝐾𝑛 is defined as the ratio of the molecular mean free path 𝜆 to the
characteristic length 𝑟𝑒 (some papers use 2𝑟𝑒 as the characteristic length)

𝐾𝑛 =
𝜆

𝑟𝑒
=

𝑘𝐵 𝑇√
2𝜋 𝑑2𝑚 𝑝 𝑟𝑒

, (44)

where 𝑘𝐵 = 1.380649 × 10−23 J∕K is the Boltzmann constant and 𝑇 is the model temperature. The magnitude of the
Knudsen number determines different regimes of gas flow. Now we can give the expression for 𝑘𝑎36,70,71

𝑘𝑎 =
𝑟2𝑒
8

𝜙

𝜏
(1 + 𝛼𝐾𝐾𝑛)

(
1 +

4𝐾𝑛

1 + 𝐾𝑛

)
, (45)

where 𝛼𝐾 is known as the gas rarefaction factor given as36,72

𝛼𝐾 =
128

15𝜋2
arctan

(
4𝐾0.4

𝑛

)
. (46)

Although 𝑘𝑎 is suitable for most non-Darcy flow scenarios, in the case of extremely small pore radius and low gas pres-
sure, Equation 45 would still underestimate the overall gas flow capacity. In that case, the surface diffusion is dominant.
Therefore, a more complete version of apparent permeability should include surface diffusion, which is always denoted
as 𝑘𝑠𝑑. According to Song et al.33 and Sun et al.,73 𝑘𝑠𝑑 adopts the following expression

𝑘𝑠𝑑 =
𝜇𝑔𝑀gas𝐷𝑠𝐶max

𝜌𝑓

d𝜃𝑔

d𝑝

[
1 −

(𝑟𝑒
𝑟

)2]
, (47)

where 𝜃𝑔 is known as the gas coverage that is defined in an exact Langmuir-type functional relationship 𝜃𝑔 = 𝑝∕(𝑝 + 𝑃𝐿),
which implies that Equation 41 can also be expressed as 𝑟𝑒 = 𝑟 − 𝑑𝑚𝜃𝑔, 𝐶max is the maximum adsorbed gas concentration
(mol∕m3), and 𝐷𝑠 is the surface diffusion coefficient (m2∕s). In the earlier work, 𝐷𝑠 is assumed to be a constant,27 while
in the more recent work such as Song et al.33 and Sun et al.,73 𝐷𝑠 is a dynamic function of 𝜃𝑔, as shown in the following
equation

𝐷𝑠 = 𝐷𝑠0

(
1 − 𝜃𝑔

)
+

𝜅

2
𝜃𝑔
(
2 − 𝜃𝑔

)
+
{
𝐻(1 − 𝜅)

}
(1 − 𝜅)

𝜅

2
𝜃2𝑔(

1 − 𝜃𝑔 +
𝜅

2
𝜃𝑔

)2 , (48)

where 𝐷𝑠0 is the surface diffusion coefficient when gas coverage is zero (i.e., 𝜃𝑔 = 0), 𝐻(1 − 𝜅) is the Heaviside step
function, and 𝜅 is the ratio of the rate constant for the blockage to the rate constant for forwardmigration (dimensionless).
In the following numerical analysis, we will always explicitly state whether our permeability model includes 𝑘𝑠𝑑.

3.3 Anisotropic elastoplasticity

As the final part of this constitutive section, we need to specify the solid constitutive model. While the maximum plastic
dissipation leads to the associative flow rule for plastic flow and associative hardening, for rocks, however, neither the flow
rule nor hardening is associative. In this study, we review a recently developed rate-independent anisotropic plasticity
model,10,15 and demonstrate how to incorporate 𝝈̄, 𝝈′, and 𝝐𝑎𝑑.
For a transversely isotropicmaterialwhere the unit normal vector to the bedding plane is𝒏, we define themicrostructure

tensor as𝑴 = 𝒏⊗ 𝒏. Using this microstructure tensor, we can expressℂ𝑒 in the tensorial form in terms of five constants,
which are detailed in Zhang and Borja.9 These constants are: 𝐸𝑣 and 𝐸ℎ, which are Young’s moduli in the vertical (𝑣)
and horizontal (ℎ) directions; 𝜈ℎℎ, 𝜈𝑣ℎ, and 𝜈ℎ𝑣, which are Poisson’s ratios; and 𝐺𝑣ℎ, which is the shear modulus. These
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1028 ZHANG et al.

constants are directly measurable in laboratory experiments. Note that Poisson’s ratios 𝜈ℎ𝑣 and 𝜈𝑣ℎ are not independent
and are correlated through the equation74

𝜈𝑣ℎ
𝐸𝑣

=
𝜈ℎ𝑣
𝐸ℎ

. (49)

For a transversely isotropic material with positive elastic moduli (𝐸ℎ, 𝐸𝑣 > 0) to be stable, the following inequality must
be satisfied, as suggested by Ip et al.75

1 − 𝜈ℎℎ > 2𝜈2
𝑣ℎ

𝐸ℎ
𝐸𝑣

. (50)

For isotropic material, Equation 50 gives −1 < 𝜈 < 0.5.
As mentioned earlier, the plasticity model is now expressed in terms of the Terzaghi effective stress 𝝈′, which reminds

us to rewrite the elastic relation 𝝈̄ = ℂ𝑒 ∶ 𝝐𝑒 in terms of 𝝈′. The result reads

𝝈′ = ℂ𝑒 ∶ (𝝐 − 𝝐𝑝) , 𝝐 =
(
𝝐 − 𝝐𝑎𝑑

)
+ (ℂ𝑒)

−1
∶ (𝟏 − 𝜶)𝑝 =

(
𝝐 − 𝝐𝑎𝑑

)
+

𝑝𝟏

3𝐾𝑠
, (51)

where 𝝐 is known as the alternative strain tensor field. The plasticity model for the solid skeleton can thus be formulated
in terms of the pair (𝝈′, 𝝐) alone.11 To construct the anisotropic yield surface for a transversely isotropic material based on
existing yield criteria, we first define a rank-four projection tensorℙ (withmajor andminor symmetries) to map the stress
tensor 𝝈′ into a fictitious stress configuration 𝝈∗ = ℙ ∶ 𝝈′. The projection tensor is given by the following equation76

ℙ = 𝑐1𝕀 + 𝑐2𝑴 ⊙𝑴 +
𝑐3
2
(𝑴 ⊙ 𝟏 + 𝟏 ⊙𝑴) , (52)

where 𝑐1, 𝑐2, and 𝑐3 are the anisotropy parameters, 𝕀 is the symmetric fourth-order identity tensor, and the tensorial “⊙”
operator is defined as (𝑨 ⊙ 𝑩)𝑖𝑗𝑘𝑙 = (𝐴𝑖𝑘𝐵𝑗𝑙 + 𝐴𝑖𝑙𝐵𝑗𝑘)∕2. With the fictitious and real configurations, we now define the
anisotropic yield surface as

𝑓 =
𝑞∗

2

𝑀2
+ 𝑝′

(
𝑝′ − 𝑝𝑐

) ≤ 0 , (53)

where 𝑝′ = Tr(𝝈′)∕3, 𝑝∗ = Tr(𝝈∗)∕3, 𝑞∗ =
√
3∕2‖𝒔∗‖, 𝒔∗ = 𝝈∗ − 𝑝∗𝟏,𝑀 is the slope of the critical state line, and 𝑝𝑐 < 0

is the preconsolidation pressure. The associative flow rule is given by the equation in the incremental form

Δ𝝐𝑝 = Δ𝝐𝑝 = Δ𝜆
𝜕𝑓

𝜕𝝈′
, (54)

where Δ𝜆 is the plastic multiplier, and the phenomenological hardening law is given by the exponential function77

𝑝𝑐 = 𝑝𝑐0 exp

(
−
𝜖
𝑝
𝑣

𝜆𝑝

)
, (55)

where 𝑝𝑐0 < 0 is the initial preconsolidation pressure, 𝜆𝑝 > 0 is the plastic compressibility parameter, and 𝜖𝑝𝑣 is the plas-
tic volumetric strain. The return mapping algorithm takes the usual form: Given 𝝐, find 𝝈′. Details of the numerical
implementation and derivation of the algorithmic consistent tangent operator can be found in Zhang76 and Zhao et al.10

4 STRESS-POINT SIMULATION OF THE APPARENT PERMEABILITY

In this section, we conduct the stress-point simulation to investigate the evolution of apparent permeability 𝑘𝑎 and clarify
the effects of various parameters. Different from the traditional parametric analysis of shale gas apparent permeability,33
in which only one factor could be changed at a time, the stress-point simulation efficiently takes the element deformation
into consideration10,15 without solving the actual boundary value problem. In other words, it allows the simultaneous
consideration of changes in gas pressure 𝑝 and porosity 𝜙.
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ZHANG et al. 1029

F IGURE 1 Schematic of the stress point simulation. 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are the total horizontal and vertical stresses, respectively. This is
equivalent to a representative elementary volume (REV) with uniform deformation.

Table C.1 summarizes simulation parameters for the reference case, in which some parameters will be changed later
for the sensitivity analysis. Note the form of 𝑟 in Section 3.1 is not necessary for the stress-point simulation. The values of
moduli are consistent with the reported values in literature,7,30,78,79 which are categorized as soft shale.80 Three different
types of point simulation are possible: strain-driven, stress-driven, and hybrid-driven. In our setting, we prescribe the
total horizontal and vertical stresses 𝜎𝑥𝑥 and 𝜎𝑦𝑦 , respectively, as shown in Figure 1. Next, the gas pressure decays from
the initial value to the final bottom-hole pressure (BHP), and at each pressure level, we calculate the corresponding strain
variation from the previous pressure level through Newton’s method. However, since we assume 𝜖𝑧𝑧 = 0 (plane strain
condition), the total stress 𝜎𝑧𝑧 is unknown, which makes this point simulation a hybrid-driven problem. In addition, due
to the incorporation of an alternative strain 𝝐 in Equation 51, special attentionmust be paid to the 𝑧-component. Therefore,
the algorithm is not trivial and should be carefully designed, as shown in Box 1.

4.1 Impacts of elastoplastic parameters and surface diffusion

Firstly, we investigate the impact of elastoplastic parameters, as most of these parameters did not appear in the exist-
ing 𝑘𝑎 models, so it would be meaningful to see their influences. The results are discussed in the next few figures.
For these results, 𝑘𝑠𝑑 is not considered. As seen from Figure 2, an obvious transition point on the curve of 𝑘𝑎 implies
that the stress state has reached the yield surface and plastic deformation accumulates. The larger the 𝜆𝑝, the more
pore spaces are compressed (plastic compression), which could dominate the decrease of 𝑘𝑎 for the middle stage.
When the gas pressure is close to BHP, the impact of gas slippage is more significant due to a large Knudsen num-
ber 𝐾𝑛. As a result, three out of four curves increase in the final stage. While if we further increase 𝜆𝑝 to 0.07, the
curve of 𝑘𝑎 monotonically decreases due to a dramatic decrease in porosity, which cannot be offset by non-Darcy
flow mechanisms.
Figure 3 investigates the impact of preconsolidation pressure, and it indicates that the change of 𝑝𝑐0 alters the transition

point. For elastic deformation, the blue curve is quite similar to fig. 2 of Yang et al.,81 which indicates the robustness of
the porosity evolution model Equation 31. It is also worthwhile to mention that the blue curves of Figure 2 and Figure 3
are in fact different since the former contains plastic deformation. Their similar values of 𝑘𝑎 is attributed to the fact that
the value of d𝜙∕d𝑝 in the plastic region does not deviate a lot from that in the elastic region.
We also investigate the impact of ℂ𝑒 and anisotropy denoted by the bedding plane orientation 𝜃 (or equivalently, 𝒏).

The results are shown in Figure 4 and Figure 5, respectively. As displayed by Figure 4, |ℂ𝑒| controls the compression of
pore spaces in both elastic and plastic stages, and a hard material enhances the non-Darcy flow effect.81 Figure 5 suggests
that 𝒏 affects the transition point, and for one given gas pressure, 𝜃 = 𝜋∕2 predicts the highest 𝑘𝑎 and 𝜃 = 0 predicts the
lowest 𝑘𝑎. However, in the elastic stage, a change in 𝜃 does not affect the value of 𝑘𝑎 at all, which may not be expected
from one’s intuition.
Now we include 𝑘𝑠𝑑 in the evaluation of apparent permeability and redo the above parametric analysis. Figure 6 and

Figure 7 replot the results. Surprisingly, the evident differences among different curves in Figure 2 to Figure 5 almost
disappear by adding 𝑘𝑠𝑑. What is more noteworthy is that the brown and black curves may go beyond the blue curve when
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1030 ZHANG et al.

Box 1: Stress-point simulation algorithm for apparent permeability

Step 1. Calculate the following quantities from the given current gas pressure 𝑝 and the previous gas pressure
𝑝n = 𝑝 − Δ𝑝 (in this simulation, Δ𝑝 is negative)

𝐓ext =

⎛⎜⎜⎜⎝
𝜎𝑥𝑥 + 𝑝

𝜎𝑦𝑦 + 𝑝

0

⎞⎟⎟⎟⎠ ; Δ𝜖̃𝑧𝑧 =
Δ𝑝

3𝐾𝑠
− 𝜖𝑎𝑑𝑧𝑧 (𝑝) + 𝜖𝑎𝑑𝑧𝑧 (𝑝n) .

Step 2. The old stress fields 𝜎′𝑥𝑥, 𝜎′𝑦𝑦 , and 𝜎′𝑧𝑧 are known (other stress components are zero). Initialize the itera-
tion counter (𝑣) = (0) and the initial guess Δ𝜖̃(0)𝑥𝑥 , Δ𝜖̃

(0)
𝑦𝑦 , Δ𝜖̃

(0)
𝑥𝑦 = 0. Please note that Δ𝜖̃𝑥𝑧 and Δ𝜖̃𝑦𝑧 are always zero

throughout the whole simulation.
Step 3. From Δ𝝐(𝑣) and the old stress 𝝈̊′, the solid constitutive model would predict a temporary stress (𝑣)𝝈′ and
temporary tangent operator 𝕔(𝑣) through the return mapping function. The 𝕔(𝑣) is given as a 6 × 6 square matrix,
while strain and stress are stored as 6 × 1 column vectors. This is known as the 3D Voigt notation. However, in the
next step, we only need a 3 × 3 sub-matrix of 𝕔(𝑣) that corresponds to 𝑥𝑥, 𝑦𝑦, and 𝑥𝑦 components. This sub-matrix
is denoted as 𝕔(𝑣)

sub
.

Step 4. Construct the residual vector 𝐫(𝑣) and update Δ𝝐(𝑣) to Δ𝝐(𝑣+1) as (Δ𝜖̃𝑧𝑧 is fixed as shown in Step 1, all the
other components Δ𝜖̃𝑥𝑧 and Δ𝜖̃𝑦𝑧 remain zero)

𝐫(𝑣) =

⎧⎪⎨⎪⎩
(𝑣)𝜎′𝑥𝑥

(𝑣)𝜎′𝑦𝑦

(𝑣)𝜎′𝑥𝑦

⎫⎪⎬⎪⎭ − 𝐓ext ;

⎧⎪⎪⎨⎪⎪⎩
Δ𝜖̃

(𝑣+1)
𝑥𝑥

Δ𝜖̃
(𝑣+1)
𝑦𝑦

2Δ𝜖̃
(𝑣+1)
𝑥𝑦

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩
Δ𝜖̃

(𝑣)
𝑥𝑥

Δ𝜖̃
(𝑣)
𝑦𝑦

2Δ𝜖̃
(𝑣)
𝑥𝑦

⎫⎪⎪⎬⎪⎪⎭
−
[
𝕔
(𝑣)
sub

]−1
𝐫(𝑣) .

Step 5. Assign 𝑣 ← 𝑣 + 1 and return to Step 3 until the norm of 𝐫(𝑣) is below the tolerance value. From the
converged stress 𝝈′, old stress 𝝈̊′, and converged Δ𝝐 (the iteration counter (𝑣) is omitted here), the elastic
strain increment and plastic strain increment could be calculated as Δ𝝐𝑒 = [𝐶𝑒]−1(𝝈′ − 𝝈̊′) − Δ𝑝1̂∕(3𝐾𝑠), Δ𝝐𝑝 =

Δ𝝐 − [𝐶𝑒]−1(𝝈′ − 𝝈̊′) where 𝐶𝑒 is the 6 × 6 elastic stiffness matrix and 1̂ is the 3D Voigt form of the second-order
identity tensor 𝟏. Note that the increment of 𝝐𝑎𝑑 can be calculated directly from Equation 37.
Step 6. Calculate 𝜙 from Equation 31 using the elastic strain increment Δ𝝐𝑒, plastic strain increment Δ𝝐𝑝, and
adsorption strain increment Δ𝝐𝑎𝑑. The equations in Section 3.2 can be applied now to calculate 𝑘𝑎 (briefly
speaking, 𝜙 ⇒ 𝑟 ⇒ 𝑟𝑒 ⇒ 𝐾𝑛 ⇒ 𝑘𝑎).
Step 7. Assign 𝝈̊′ ← 𝝈′ and 𝑝n ← 𝑝, acquire the new current gas pressure 𝑝, and return to Step 1 until
reaching BHP.

𝑝 is close to BHP, as shown by Figure 6(A) and Figure 7(B). This is because, at that pressure level, a small ratio of 𝑟𝑒∕𝑟 (i.e.,
𝑑𝑚𝜃𝑔 is comparable to 𝑟) gives a large 𝑘𝑠𝑑 from Equation 47, while for other higher pressure levels, we have 𝑑𝑚𝜃𝑔 ≪ 𝑟 and
𝑘𝑠𝑑 ≈ 0. Figure 8 suggests the same conclusion for 𝜖𝐿.

4.2 Pattern in experimental permeability data

Having figured out the impact of various parameters, we now try to use this apparent permeability model to explain the
experimental permeability data. We do not choose data with extremely low gas pressure, as then the curve should mono-
tonically increase with decreasing pressure,73 failing to highlight our model’s advantage. Here we use the data from Wei
et al.,82 in which a triaxial holder was utilized for measuring coal permeability and the test gas was Helium (no adsorption
and surface diffusion). The axial direction of the cylindrical coal sample was constrained to have zero displacement, and
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ZHANG et al. 1031

F IGURE 2 Variation of the normalized apparent permeability 𝑘𝑎 with gas pressure 𝑝 for different values of 𝜆𝑝 , while 𝑝𝑐0 and 𝜃 are kept
constant at -20 MPa and 𝜋∕4, respectively.

F IGURE 3 Variation of the normalized apparent permeability 𝑘𝑎 with gas pressure 𝑝 for different values of 𝑝𝑐0, while 𝜆𝑝 and 𝜃 are kept
constant at 0.01 and 𝜋∕4, respectively.

F IGURE 4 Variation of the normalized apparent permeability 𝑘𝑎 with gas pressure 𝑝 for different values of ℂ𝑒 , while 𝑝𝑐0, 𝜆𝑝 , and 𝜃 are
kept constant at -20 MPa, 0.01, and 𝜋∕4, respectively. In the figure legend, a large |ℂ𝑒| implies a multiplication of 𝐸𝑣 , 𝐸ℎ, and 𝐺𝑣ℎ by 3, while a
small |ℂ𝑒| implies a division of 2.
the circumferential boundary was subjected to compression through the use of a pump,82 thus the previously designed
algorithm applies. Since some parameters are not given in the original publication such as the bulk mechanical proper-
ties, they are tuned to match the pattern in the experimental data, which are given in Table C.2. The comparison result
is given in Figure 9. It is noticeable that our model gives a better agreement with the experimental data, compared with
the original numerical model by Wei et al.82 The mechanisms behind this pattern can be summarized as follows: the
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1032 ZHANG et al.

F IGURE 5 Variation of the normalized apparent permeability 𝑘𝑎 with gas pressure 𝑝 for different values of bedding plane orientation 𝜃

(or equivalently, 𝒏), while 𝜆𝑝 and 𝑝𝑐0 are kept constant at 0.05 and -20 MPa, respectively.

(A) (B)

F IGURE 6 Impact of 𝜆𝑝 and 𝑝𝑐0 on normalized apparent permeability 𝑘𝑎 + 𝑘𝑠𝑑 with surface diffusion. Parameter settings can be found
in Figure 2 and Figure 3.

non-Darcy effect of 𝑘𝑎 is not very strong during the elastic deformation, while the material yield causes a decline in 𝑘𝑎
as we further decrease gas pressure (a material yield could happen in this range, that is, several megapascals, see Zhao
and Borja11), but finally, when the gas pressure is extremely low, 𝑘𝑎 increases again due to a strong non-Darcy effect.
This type of curve has not been reported in any of the previous publications related to numerical apparent permeability
models.

5 NUMERICAL EXAMPLE OF GAS PRODUCTION

5.1 Model setup

The proposed framework in Section 2 and Section 3 fits nicely into the finite element formulation,83 with solid displace-
ment 𝒖 and gas pressure 𝑝 as the primary unknowns. Here, we implement this problem in a slightly different finite
element framework known as the smoothed finite element method (S-FEM)18,84,85 with equal order interpolation for 𝒖
and 𝑝. For this numerical example, we want to focus our discussion on the influence of the elastoplasticity and adsorption
model on gas production. The computational domain is of size 2 m × 2 m (plane strain, no gravity), with a well at the
center of the domain (Dirichlet boundary for both 𝒖 and 𝑝: 𝒖 = 𝟎 and 𝑝 = BHP). The well radius is 0.1 m. We choose this
geometry size to better capture the dynamics near the well since a fine mesh is required near the well, similar to those in
Cao et al.72 and Zhang et al.86 We think for the field scale, our findings are still applicable.87 Tractions are applied at the
outer boundary as 𝜎𝑥𝑥 = −35MPa and 𝜎𝑦𝑦 = −40MPa. The finite element mesh information of the problem is given in
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ZHANG et al. 1033

(A) (B)

F IGURE 7 Impact of ℂ𝑒 and 𝜃 on normalized apparent permeability 𝑘𝑎 + 𝑘𝑠𝑑 with surface diffusion. Parameter settings can be found in
Figure 4 and Figure 5.

F IGURE 8 Variation of the normalized apparent permeability with gas pressure 𝑝 for different values of 𝜖𝐿, while 𝑃𝐿, 𝑝𝑐0, 𝜆𝑝 , and 𝜃 are
kept constant at 4 MPa, -20 MPa, 0.01, and 𝜋∕4, respectively.

F IGURE 9 Validation with coal sample permeability measurements.82 A good match with experimental data is achieved by tuning
parameters in the proposed model.

Figure 10. The simulation parameters are based on Table C.1 with 𝜆𝑝 changed to 0.05 and 𝜃 = 𝜋∕6. 𝑘𝑠𝑑 is included in the
apparent permeability. In addition, more parameters from Section 3.1 need to be specified, as the point simulation does
not use these parameters. Since we have two specific forms of 𝑟, their parameters are given in the following bullet form.

∙ For 𝑟(1), we have 𝜌𝑟 = 2500 kg∕m3,𝑀gas = 16.04 g/mol,𝑉𝐿 = 0.015m3∕kg, and 𝑃𝐿 = 4MPa. Note some parameters are
also mentioned in Table C.1.

∙ For 𝑟(2), we have 𝑅𝐼 = 15 nm, 𝜙0 = 0.06, Γmax
gas = 1.3 × 10−4 mol∕m2, and 𝐵gas = 0.3.
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1034 ZHANG et al.

F IGURE 10 Finite element mesh generation of the gas production problem. We have a total of 2249 nodes and 4362 triangle elements.

F IGURE 11 The horizontal and vertical displacement fields at the end of Step 40 (66.6 days) for a small-scale gas production problem.
Both displacement contours are asymmetric with respect to the center well.

For the simulation time step setting, a total of 55 steps cover a time range of 500 days. Let Δ𝑡𝑘 represent the time incre-
ment of 𝑘th step, we have Δ𝑡1∼10 = 10 s, Δ𝑡𝑘 = 1.5Δ𝑡𝑘−1 for 𝑘 = 11,… , 40, Δ𝑡41∼54 = 30 d, and Δ𝑡55 is calculated based on
the total time range of 500 days.
The simulation is performed on the “ASUS TUF Gaming F15 Laptop” in the “Performance” mode. The Memory is 32

GBDDR4, the CPU is 13th Gen Intel(R) Core(TM) i7-13700H, and the GPU is NVIDIAGeForce RTX 4060 GDDR6@ 8GB.
The whole simulation takes about 20 min on this laptop.

5.2 Model results

We initially present the cloud plot of displacement, stress, gas pressure, and equivalent plastic strain at a specific time
slot (66.6 days) utilizing the adsorption model 𝑟(1). As illustrated by Figure 11, the numerical model accurately captures
the inclined displacement contours due to a bedding plane orientation of 𝜃 = 𝜋∕6. The vertical displacement contour is
approximately parallel to the bedding plane. From the cloud plot of horizontal displacement, it is observed that the block
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F IGURE 1 2 The equivalent plastic strain
√
2∕3‖𝝐𝑝‖ field at the end of Step 40 (66.6 days) for a small-scale gas production problem. The

global maximum and minimum ‖𝝐𝑝‖ all occur near the wellbore, one in the bed-normal direction, and the other in the bed-parallel direction.

F IGURE 13 The Terzaghi effective stress field at the end of Step 40 (66.6 days) for a small-scale gas production problem. All the stress
components’ distributions are affected by the bedding plane orientation.

swings to the right, aligning with the findings in Zhao et al.10 Consequently, localized plastic zones (large ‖𝝐𝑝‖) develop,
originating from the wellbore and propagating in the weaker bed-normal direction, as corroborated by Figure 12. At this
moment, the entire block undergoes plastic deformation, and due to the constraint at the wellbore, the global minimum of‖𝝐𝑝‖ also occurs near the wellbore in the bed-parallel direction. The Terzaghi effective stress field is depicted in Figure 13,
revealing that the bedding plane contributes to the re-orientation of the stress distribution, and the pattern of 𝜎′𝑥𝑥 appears
more complex than others. However, the solid anisotropy scarcely impacts the gas pressure distribution, as demonstrated
by Figure 14. This is a distinctive feature of gas, in contrast to the nearly incompressible fluid.11 Throughout the production
process, the primary “driving force” is gas compressibility, not the compression of pore spaces.Moreover, fromEquation 4,
𝐽∇ ⋅ 𝒘̂𝑓 would result in an additional 𝐽∇𝜌𝑓 ⋅ 𝒒 term, which is typically disregarded for the nearly incompressible fluid.
Consequently, the main pressure drop is more concentrated around the wellbore.
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F IGURE 14 The gas pressure field at the end of Step 40 (66.6 days) for a small-scale gas production problem. In contrast to the other
fields, the gas pressure contours are still symmetric with respect to the center well.

F IGURE 15 Impact of adsorption models 𝑟(1) and 𝑟(2) on the cumulative gas production. Two adsorption models yield similar outcomes
under elasticity (shown on the left), in contrast to the obvious differences under elastoplasticity (shown on the right). The axis label Sm3

represents the gas volume inm3 at the standard condition.

Next, we explore the impacts of 𝑟(1) and 𝑟(2) through the cumulative gas production curve and pressure decay curve at the
corner point.We take into account both the elastic deformation (by adjusting𝑝𝑐0 to -200MPa) and plastic deformation. The
comparative results are displayed in Figures 15, 16. For elasticity, we observe that the two adsorption models yield similar
outcomes, aswe have adjusted themodel parameters such that𝑚(1)

𝑎𝑑
(𝑝) ≈ 𝑚

(2)
𝑎𝑑
(𝑝) in the point simulation, see Figure 17(A).

However, for plasticity, the aforementioned result does not consistently hold, and findings suggest that 𝑟(2) would expedite
the transport of adsorbed gas. This can be discerned from Figure 15(B): the time scale difference between the release of
the adsorbed gas and the release of the free gas diminishes when we employ 𝑟(2). We would explain this behavior from the
curve of𝑚(2)

𝑎𝑑
with gas pressure 𝑝 (adsorption isotherm) in the point simulation, as shown by Figure 17(B): the curve gets

steeper when 𝑝 drops below the transition point, indicating that the release of the adsorbed gas would rapidly increase.
This significant change of slope originates from the porosity 𝜙𝐿 evolution with 𝑝 under elastoplasticity.
For pressure dissipation in Figure 16, both 𝑟(1) and 𝑟(2)would lead to the “double-shell” characteristic20,44 in gas pressure

decay curve under plastic deformation, while the elastic deformation would lead to a perfect “S-shaped” curve.

5.3 Summary

One of the key strengths of our work is the novel incorporation of anisotropic elastoplasticity into the gas permeability
model and small-scale gas production problem, which, to the best of our knowledge, has not been done before. Through
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ZHANG et al. 1037

F IGURE 16 Impact of adsorption models 𝑟(1) and 𝑟(2) on the pressure decay at the corner point. The “double-shell” characteristic is
shown on the right, in contrast to the perfect “S-shape” shown on the left.

F IGURE 17 Adsorption isotherm for two adsorption models that can be used to explain the behavior in Figure 15. We assume 𝜙𝐿 is
obtained from the stress-point simulation in Section 4 with 𝜆𝑝 changed to 0.05 and 𝜃 = 𝜋∕6, which is then substituted into Equations 38, 39.

the solution, we could observe the new apparent permeability patterns and production behaviors especially when the gas
adsorption depends on the porosity.49 However, we also recognize certain limitations. For instance, our model operates
under the isothermal assumption, which may not accurately reflect reality as gas behavior is sensitive to temperature.
Additionally, our model only considers single-phase gas, while in actual underground reservoirs, the flow is typically
multi-phase. Furthermore, our study still relies on empirical adsorption formulas, and we acknowledge that more work
needs to be done on the free energy side, such as the second line of Equation 36. We will strive to address these limitations
in our future work.

6 CLOSURE

Ananisotropic poromechanics framework is introduced into gas flowmodeling by utilizingmixture theory and continuum
principles of thermodynamics, enabling us to derive novel governing equations for mass, momentum, and energy balance
in sedimentary rocks with significant gas adsorption. The resulting porosity evolution equation is shown to be identical
to the one derived from the phenomenological poroelasticity theory under the conditions of isotropic elastic deformation
and 𝜖𝑎𝑑 = 𝜙𝜖

𝑝

𝑎𝑑
, thereby confirming the validity of both approaches. As two effective stressmeasures and adsorption strain

emerge from the formulation, a novel stress-point simulation algorithm is developed to update porosity and permeability.
Through the stress-point simulation, we demonstrate that the overall evolution of the apparent permeability depends on
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1038 ZHANG et al.

the competition among three factors: gas slippage, surface diffusion, and porosity change. The former two factors can
accelerate the gas flow capacity, while the last factor generally plays the opposite role. Under specific combinations of
plasticity parameters, new patterns of apparent permeability could be generated, and they are more consistent with the
experimental data.We believe the apparent permeabilitymodel proposed here could provide amore accurate evaluation of
tight gas reservoirs. An initial-boundary value problem of gas production is carried out to highlight the role of the bedding
plane, the importance of gas compressibility, and the significance of adsorption models.
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APPENDIX A: STATE EQUATIONS FOR AN IDEALMONOATOMIC GAS
We first convert the Gibbs potential 𝐺(𝑇, 𝑝, 𝑛) provided by Láng88 (cf. 25b) to the dimension of per unit mass (mass-
specific) by dividing 𝑛𝑀gas, where 𝑛 is the chemical amount of substance of the gas and𝑀gas is the gas molar mass, the
result reads

𝑔̂𝑓 (𝑝, 𝑇) =
5𝑅𝑇

2𝑀gas
− 𝑇(𝑠𝑓)0 −

5𝑅𝑇

2𝑀gas
ln

(
𝑇

𝑇0

)
+

𝑅𝑇

𝑀gas
ln

(
𝑝

𝑝0

)
, (A.1)

where (𝑠𝑓)0 is denoted as the referencemass-specific fluid entropy and 𝑅 is the gas constant. Similarly, from (22) of Láng,88
we know

ℎ̂𝑓 =
5𝑅𝑇

2𝑀gas
. (A.2)

Since 𝑔̂𝑓 = ℎ̂𝑓 − 𝑇𝑠𝑓 , we can solve 𝑠𝑓 from Equations A.1, A.2 as

𝑠𝑓 = (𝑠𝑓)0 +
5𝑅

2𝑀gas
ln

(
𝑇

𝑇0

)
−

𝑅

𝑀gas
ln

(
𝑝

𝑝0

)
. (A.3)
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This expression for 𝑠𝑓 is quite intuitive as the entropy would increase with a higher temperature and would decrease with
a larger pressure, and it is also consistent with (4.57) in Coussy.54 Now by using the rule of total differentiation, we can
verify (note the use of ideal gas law)

d𝑔̂𝑓 =
𝜕𝑔̂𝑓

𝜕𝑝
d𝑝 +

𝜕𝑔̂𝑓

𝜕𝑇
d𝑇 ,

𝜕𝑔̂𝑓

𝜕𝑝
=

𝑅𝑇

𝑝𝑀gas
=

1

𝜌𝑓
,

𝜕𝑔̂𝑓

𝜕𝑇
= −𝑠𝑓 , (A.4)

which is exactly Equation 22.
Secondly, to verify Equation 23, we first use the relation 𝜓̂𝑓 = 𝑔̂𝑓 − 𝑝∕𝜌𝑓 = 𝑔̂𝑓 − 𝑅𝑇∕𝑀gas and express 𝜓̂𝑓 as

𝜓̂𝑓 =
3𝑅𝑇

2𝑀gas
− 𝑇(𝑠𝑓)0 −

5𝑅𝑇

2𝑀gas
ln

(
𝑇

𝑇0

)
+

𝑅𝑇

𝑀gas
ln

(
𝑝

𝑝0

)
. (A.5)

Next, by noting that

𝑝

𝑝0
=

𝜌𝑓

(𝜌𝑓)0

𝑇

𝑇0
, (A.6)

Equation (A.3) could also be written as

𝑠𝑓 = (𝑠𝑓)0 +
3𝑅

2𝑀gas
ln

(
𝑇

𝑇0

)
−

𝑅

𝑀gas
ln

[
1∕(𝜌𝑓)0

1∕𝜌𝑓

]
, (A.7)

and 𝜓̂𝑓 depends on 1∕𝜌𝑓 and 𝑇 as

𝜓̂𝑓(1∕𝜌𝑓, 𝑇) =
3𝑅𝑇

2𝑀gas
− 𝑇(𝑠𝑓)0 −

3𝑅𝑇

2𝑀gas
ln

(
𝑇

𝑇0

)
+

𝑅𝑇

𝑀gas
ln

[
1∕(𝜌𝑓)0

1∕𝜌𝑓

]
. (A.8)

By using the rule of total differentiation, it is easy to verify that

d𝜓̂𝑓 =
𝜕𝜓̂𝑓

𝜕(1∕𝜌𝑓)
d

(
1

𝜌𝑓

)
+

𝜕𝜓̂𝑓

𝜕𝑇
d𝑇 ,

𝜕𝜓̂𝑓

𝜕(1∕𝜌𝑓)
= −

𝑅𝑇

𝑀𝑔 × 1∕𝜌𝑓
= −𝑝 ,

𝜕𝜓̂𝑓

𝜕𝑇
= −𝑠𝑓 , (A.9)

which is exactly Equation 23.

APPENDIX B: POROSITY EVOLUTION EQUATION FROM POROELASTICITY THEORY
Suppose we have a porous material with volume𝑉, where the interconnected pore space has a volume of𝑉𝑝. The porosity
𝜙 is defined as the ratio of 𝑉𝑝 to 𝑉. The material is subjected to a total pressure of 𝑃 and a pore pressure of 𝑝.89 We
can describe the volumetric response of the material to loading {𝑃, 𝑝} in terms of Δ𝑉∕𝑉, the volumetric strain of the
bulk material, and Δ𝑉𝑝∕𝑉𝑝, the volumetric strain of the pore space. The linearity assumption copied from (23a)(23b) of
Detournay and Cheng90 implies (assuming that before loading, there is zero stress and pore pressure)

Δ𝑉

𝑉
= −

𝑃′

𝐾
−

𝑝

𝐾′
𝑠

, (B.1)

Δ𝑉𝑝

𝑉𝑝
= −

𝑃′

𝐾𝑝
−

𝑝

𝐾′′
𝑠

, (B.2)

where 𝑃′ = 𝑃 − 𝑝 is the Terzaghi effective pressure, 𝐾 is the bulk modulus for the bulk volumetric strain, and 𝐾𝑝 is
the bulk modulus for the pore volumetric strain. The coefficients 𝐾′

𝑠 and 𝐾′′
𝑠 are two bulk moduli, which under the

assumption of ideal porous media90 can be both identified with the bulk modulus 𝐾𝑠 of the solid constituent, and this
equivalence is accepted by default in the following derivations as well as in the mixture theory. 𝐾′

𝑠 ≠ 𝐾′′
𝑠 implies the

micro-heterogeneity of the material, which is not the focus of this work. Interested readers may refer to Cheng51 and
Zhang et al.87 for more details.
Since the adsorption strain could exist in this study, we may modify Equations B.1, B.2 as

Δ𝑉

𝑉
= −

𝑃′

𝐾
−

𝑝

𝐾𝑠
+ 𝜖𝑎𝑑 , (B.3)
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Δ𝑉𝑝

𝑉𝑝
= −

𝑃′

𝐾𝑝
−

𝑝

𝐾𝑠
+ 𝜖

𝑝

𝑎𝑑
, (B.4)

where a new parameter 𝜖𝑝
𝑎𝑑
, namely, the sorption strain of the pores, has been introduced. There are some researchers

that assume 𝜖𝑝
𝑎𝑑

= 𝜖𝑎𝑑,86,91 while others suggest 𝜖
𝑝

𝑎𝑑
= 𝜂𝜖𝑎𝑑 and 𝜂 is generally a negative constant.81 Note in this appendix,

we use 𝜖𝑎𝑑 to represent the trace of 𝝐𝑎𝑑 introduced in the body text, in order to keep the notation consistency with other
references for isotropic poroelasticity. By subtracting (25b) from (25a) of Detournay and Cheng,90 we obtain an important
relation

Δ𝜙

𝜙
=

Δ𝑉𝑝

𝑉𝑝
−

Δ𝑉

𝑉
. (B.5)

Substituting Equations B.3, B.4 into Equation B.5 yields

Δ𝜙

𝜙
=

(
1

𝐾
−

1

𝐾𝑝

)
(𝑃 − 𝑝) +

(
𝜖
𝑝

𝑎𝑑
− 𝜖𝑎𝑑

)
. (B.6)

As long as 𝜖𝑝
𝑎𝑑

= 𝜖𝑎𝑑, it is the Terzaghi effective pressure 𝑃′ that controls pore structure change.51 By invoking the Betti-
Maxwell reciprocal theorem,86,90 we obtain

𝐾𝑝 =
𝜙

𝛼
𝐾 , (B.7)

where𝛼 = 1 − (𝐾∕𝐾𝑠) is the Biot-Wills coefficient89 and it is identical to the Biot coefficient tensor𝜶 under the assumption
of isotropy. The isotropic linear elasticity constitutive law leads to the following equation

𝜖𝑒𝑣 = 𝜖𝑣 − 𝜖𝑎𝑑 = −
𝑃̄

𝐾
= −

𝑃 − 𝛼𝑝

𝐾
⟹ 𝑃 − 𝑝 = −𝐾

(
𝜖𝑣 +

𝑝

𝐾𝑠
− 𝜖𝑎𝑑

)
, (B.8)

where 𝑃̄ = 𝑃 − 𝛼𝑝 is known as the Biot effective pressure. By using Equations B.7 and B.8 in Equation B.6, we have

Δ𝜙 = (𝛼 − 𝜙)

(
𝜖𝑣 +

𝑝

𝐾𝑠
− 𝜖𝑎𝑑

)
+ 𝜙

(
𝜖
𝑝

𝑎𝑑
− 𝜖𝑎𝑑

)
. (B.9)

As mentioned earlier, Equation B.9 is derived from the assumption of zero stress and zero pore pressure before loading, so
Δ𝜙 can be represented as 𝜙 − 𝜙0, where 𝜙0 is the initial porosity before loading. Solving 𝜙 from Equation B.9 yields (note
that 𝜖𝑒𝑣 = 𝜖𝑣 − 𝜖𝑎𝑑)

𝜙 =

𝜙0 + 𝛼

(
𝜖𝑒𝑣 +

𝑝

𝐾𝑠

)
1 + 𝜖𝑣 +

𝑝

𝐾𝑠
− 𝜖

𝑝

𝑎𝑑

. (B.10)

In Equation 31, by assuming a zero initial state, that is, all the quantities with subscript “n” are zero (except 𝜙n) and
𝜙n = 𝜙0, we obtain

𝜙 =

𝜙0 + 𝜶 ∶ 𝝐𝑒 + 𝜖
𝑝
𝑣 + 𝜖𝑎𝑑 +

(𝜶 ∶ 𝟏)𝑝

3𝐾𝑠

1 + 𝜖𝑣 +
𝑝

𝐾𝑠

, (B.11)

A comparison between Equation B.10 and Equation B.11 indicates that two equations are identical when 𝜖𝑎𝑑 = 𝜙𝜖
𝑝

𝑎𝑑
and

isotropic elasticity is assumed to be valid, in other words, 𝜖𝑝𝑣 ≡ 0 and 𝜶 = 𝛼𝟏.
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APPENDIX C: TABLE OFMATERIAL PARAMETERS

TABLE C . 1 Solid and gas flow parameters of the plane strain stress-point simulation and the initial-boundary value problem.

Parameter Value Unit
Young’s modulus 𝐸𝑣

1 4.286 GPa
Young’s modulus 𝐸ℎ

1 7.3 GPa
Poisson’s ratio 𝜈ℎ𝑣2 0.15 1
Poisson’s ratio 𝜈ℎℎ in the plane of isotropy 0.17 1
Shear modulus 𝐺𝑣ℎ

3 2.17 GPa
Bedding plane orientation 𝜃4 𝜋∕4 rad
Plastic anisotropy parameter 𝑐1 in Equation 52 0.7 1
Plastic anisotropy parameter 𝑐2 in Equation 52 -0.36 1
Plastic anisotropy parameter 𝑐3 in Equation 52 0.6 1
Slope of the critical state line𝑀 1.07 1
Plastic compressibility parameter 𝜆𝑝 0.01 1
Initial preconsolidation pressure 𝑝𝑐0 -20 MPa
Intrinsic bulk modulus of solid 𝐾𝑠 30 GPa
Initial matrix porosity 𝜙0 0.06 1
Initial 𝜎′

𝑥𝑥 , 𝜎′
𝑦𝑦 , and 𝜎′

𝑧𝑧 -5, -10, -5 MPa
Total horizontal stress 𝜎𝑥𝑥 (constant) -35 MPa
Total vertical stress 𝜎𝑦𝑦 (constant) -40 MPa
Gas molar mass𝑀gas 16.04 g/mol
Langmuir pressure 𝑃𝐿 4 MPa
Model temperature 𝑇 80 ◦C
Gas viscosity 𝜇𝑔 2 × 10−5 Pa ⋅ s

𝜖𝐿 in sorption model 5 × 10−4 1
Initial matrix intrinsic permeability 𝑘0 2 × 10−19 m2

Tortuosity 𝜏 2 1
Coefficient 𝐷𝑠0 under 𝜃𝑔 = 0 7.09767 mm2∕s

Maximum adsorbed gas concentration 𝐶max 328.7 mol∕m3

𝜅 in Equation 48 0.5 1
Initial gas pressure 30 MPa
BHP 2 MPa

1𝐸𝑣 is in the bed-normal (BN) direction and 𝐸ℎ is in the bed-parallel (BP) direction.
2𝜈ℎ𝑣 = 𝜀𝑒,𝐵𝑁∕𝜀𝑐,𝐵𝑃 : ratio of induced extension in BN to compression in BP direction.
3𝐺𝑣ℎ characterizes the angular deformation between BN and BP directions.
4Bedding normal 𝒏 = [− sin 𝜃, cos 𝜃, 0]⊤
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TABLE C . 2 Solid and gas flow parameters of the stress-point simulation for two sets of experimental data from coal sample. The
remaining parameters can be found in Table C.1.

Parameter Data set 1 Data set 2 Unit
Young’s modulus 𝐸𝑣 0.5357 0.7143 GPa
Young’s modulus 𝐸ℎ 0.9125 1.2167 GPa
Shear modulus 𝐺𝑣ℎ 0.2712 0.3617 GPa
Bedding plane orientation 𝜃 0 0 rad
Slope of the critical state line𝑀 0.75 0.75 1
Plastic compressibility parameter 𝜆𝑝 0.03 0.03 1
Initial preconsolidation pressure 𝑝𝑐0 -8 -8 MPa
Intrinsic bulk modulus of solid 𝐾𝑠 +∞ +∞ GPa
Initial matrix porosity 𝜙0 0.05 0.05 1
Total confining stress (constant) -9 -12 MPa
Gas molar mass𝑀gas (Helium) 4 4 g/mol
Langmuir pressure 𝑃𝐿 +∞ +∞ MPa
Model temperature 𝑇 50 50 ◦C
Initial nanopore radius 𝑟01 22 15 nm
Tortuosity 𝜏 3 3 1
Initial gas pressure 7 7 MPa
BHP 1 1 MPa

1Initial matrix intrinsic permeability 𝑘0 = 𝜙0𝑟
2
0∕(8𝜏).
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