Biomechanical Role of Bone Grafting for Calcaneal Fracture Fixation

in the Presence of Bone Defect: A Finite Element Analysis

- 3 Zhihao Su 1,2,6, Ming Ding 3,6, Ning Zhu 1,2, James Chung-Wai Cheung 4, Duo Wai-Chi Wong 4, Wanju
- 4 Sun ^{2*}, Ming Ni ^{2,5*}

5

1

- 6 School of Medical Instrument, Shanghai University of Medicine and Health Sciences, Shanghai 201318,
- 7 China.
- ²Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China.
- ³School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China.
- ⁴Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University,
- Hong Kong 999077, China.
- 12 ⁵Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine,
- 13 Shanghai 200025, China.
- ⁶Both authors contributed equally: Zhihao Su, Ming Ding.

15 16

*Correspondence authors, email: <u>476773533@qq.com</u> (W.S.), gendianqing@163.com (M.N.)

17

Authors	Email	ORCID
Zhihao Su	zhihaosu98@163.com	0009-0004-1760-350X
Ming Ding	dingming2017@163.com	0009-0006-4469-1917
Ning Zhu	zn1370427296@163.com	0009-0000-2055-9264
James Chung-Wai Cheung	james.chungwai.cheung@polyu.edu.hk	0000-0001-7446-0569
Duo Wai-Chi Wong	duo.wong@polyu.edu.hk	0000-0002-8805-1157
Wanju Sun*	476773533@qq.com	
Ming Ni*	gendianqing@163.com	0000-0003-3255-4211

18

19 Word count: abstract (190), main text (3515)

20

22

23

24

26 Abstract

27 **Background**

- 28 The purpose of this study was to compare the biomechanical stress and stability of
- 29 calcaneal fixations with and without bone defect, before and after bone grafting, through
- 30 a computational approach.

31 *Methods*

- 32 A finite element model of foot-ankle complex was reconstructed, impoverished with a
- 33 Sanders III calcaneal fracture without bone defect and with moderate and severe bone
- defects. Plate fixations with and without bone grafting were introduced with walking
- stance simulated. The stress and fragment displacement of the calcaneus were evaluated.

36 Findings

- 37 Moderate and severe defect increased the calcaneus stress by 16.11% and 32.51%,
- respectively and subsequently decreased by 10.76% and 20.78% after bone grafting.
- 39 The total displacement was increased by 3.99% and 24.26%, respectively by moderate
- and severe defect, while that of posterior joint facet displacement was 86.66% and
- 41 104.44%. The former was decreased by 25.73% and 35.96% after grafting, while that of
- 42 the latter was reduced by 88.09% and 84.78% for moderate and severe defect,
- 43 respectively.

44 Interpretation

- Our finite element prediction supported that bone grafting for fixation could enhance the
- stability and reduce the risk of secondary stress fracture in cases of bone defect in
- 47 calcaneal fracture.

48

- 49 Keywords: Stress fracture; Hindfoot; Ankle; Finite element method; in silico
- 50 simulation

Introduction

52

Calcaneal fractures are the most common tarsal bone fractures, typically caused by 53 high-energy injuries, such as traffic accidents and falls, and more than two-thirds of 54 them are displaced intra-articular calcaneal fractures (DIACFs) (Schepers et al., 2008). 55 They account for approximately 1% to 2% of all body fractures and are prevalent 56 among young and middle-aged adults (Zwipp et al., 2004). Calcaneal fractures could 57 induce life-changing injuries with serious disability that might not be restorable 58 (Spierings et al., 2019). Patients might have a rehabilitation period more than six months, 59 imposing a significant burden on themselves, their families, and society (Jiang et al., 60 2012). Besides, the majority of these severe and compound calcaneal fractures involve 61 displacement of articular fragments and collapse of posterior articular, leading to bone 62 defects that adversely impact fixation outcomes (Park et al., 2021b). Stabilizing these 63 fractures present a challenge because of the "neutral zone" of bone defects, particularly 64 65 in cases of impaction fractures (Andermahr et al., 1999; Richter et al., 2005). The use of bone grafting in fracture fixation for cases with bone defects remains popular, despite 66 the lack of substantial evidence to support its efficacy and benefits (Bulut et al., 2018; 67 Longino and Buckley, 2001; Luo et al., 2022; Zheng et al., 2018). 68 The need for bone grafting to fill the defect has been a question for a long time 69 (Diniz et al., 2019; Park et al., 2021b). Although it was believed that bone grafting may 70 repair bone defects to prevent late-stage collapse and post-traumatic arthritis (Elsner et 71 al., 2005; Jiang et al., 2008), the idea remains controversial (Diniz et al., 2019). 72 73 Research has shown that fixation procedures can achieve similar functional and radiological outcomes with or without grafting and bone grafting might be reserved for 74 cases where the bone defect is pronounced (Gusic et al., 2015; Khorbi et al., 2006; 75 Longino and Buckley, 2001; Park et al., 2021b; Rammelt and Zwipp, 2004; Yang et al., 76 77 2012). Singh and Vinay (2013) showed that bone grafting induced a higher infection rate and worse AOFAS (American Orthopaedic Foot and Ankle Society) score, though 78 the findings were not significant, while bone grafting might also lead to a significant 79

occurrence of postoperative pain (Cao et al., 2018). Bone grafting, as an additional procedure, increases the cost and duration of the procedure, as well as necessitate more intensive postoperative care and rehabilitation.

Conversely, the need of bone graft was argued by the risk of secondary stress fractures in cases of bone defects, where the absence of grafting may lead to increased stress on the calcaneus, potentially compromising the stability of fixation and the quality of bone healing (Duymus et al., 2017; Singh and Vinay, 2013). Evidence suggested that bone grafting is crucial for maintaining better fracture reduction (Singh and Vinay, 2013). Inadequate reduction or unstable fixation may result in malunion, potentially leading to subsequent development of post-traumatic arthritis (Rammelt and Zwipp, 2013). A meta-analysis has demonstrated that bone grafts resulted in better AOFAS scores compared to non-grafting, without an elevated risk of postoperative complications (Zheng et al., 2018). Although recommended treatment algorithms exist to guide the choice between conservative or surgical interventions, as well as the type of surgical interventions for various severities and classes of calcaneal fractures (Salameh et al., 2023), there is no consensus regarding the use of bone grafting. Definitive guidelines based on patient characteristics, fracture patterns, or imaging findings are lacking. Further investigation into the role of bone defects and their biomechanical interaction with bone grafting is essential for informed surgical decision-making.

Evaluating the biomechanical stability of calcaneal fixation in the presence of bone defects could enhance our understanding of the need for bone graft. Computational methods, or in silico approaches, offer a versatile platform for analyzing the internal biomechanical environment under controlled conditions. The use of in silico finite element models has been extensively employed to investigate foot and ankle biomechanics, pathomechanics, and the assessment of interventions (Behforootan et al., 2017; Talbott et al., 2023; Wang et al., 2016). However, existing in silico studies have primarily concentrated on evaluating various calcaneal fixation techniques and/or implants (Lv et al., 2022; Ni et al., 2016a; Ni et al., 2019a; Xu et al., 2022; Zhang et al.,

2020). The novelty of this study lies in its focus on a bone defect model that addresses the research question concerning the relationship between bone integrity and the stability of calcaneal fixation, thereby offering insights into the necessity of bone grafting.

This study aimed to investigate how moderate and severe bone defects and the application of bone grafting influence the stress and biomechanical stability of the calcaneus using computational (in silico) methods. We hypothesized that larger bone defects would increase the stress and decrease biomechanical stability of the calcaneus. Furthermore, we hypothesized that the application of bone grafting could reduce the elevated stress and restore stability.

Methods

Model Participant

We recruited a healthy male volunteer aged 30, 172 cm tall, and weighed 60 kg. He had no foot deformities, history of trauma and surgery. The participant was informed of the research and signed an informed consent. The study was approved by the Ethical Committee of Shanghai Pudong New Area People's Hospital (reference number: 2021.K12).

FE Modeling

Computed tomography (CT) imaging of the left lower leg was taken using a GE CT 750 HD (750 High Definition), with 1-mm slice interval and 0.5-mm pixel size. Sagittal Magnetic Resonance (MR) images were also acquired using Siemens Skyra 3.0 with a slice thickness of 1.25 mm and a pixel size of 0.68 mm. They were processed using Mimics 15.0 (Materialize, Leuven, Belgium) to reconstruct the model geometry. The FE model (Fig. 1) included 30 bones (tibia, fibula, talus, calcaneus, cuboid, navicular, 3 cuneiforms, 5 metatarsals, 14 phalanges, and 2 sesamoids). Ligaments and plantar fascia were drawn as truss units. The cartilaginous structures were created by filling up the volume between the articular joint space.

We considered the calcaneus fracture plating system (Gorilla® Calc Fracture Plating System, Paragon 28® Incorp., Englewood, United States), which consisted of 15 locking screws and a perimeter plate (locking plate). It was modeled by Solidworks 2021 (Dassault Systèmes, Concord, USA). The screw threads were simplified and replaced by a "tie" operation to fasten the bone-thread interface.

Sanders Type III fracture was plotted and generated on the reconstructed intact model with an osteotomized gap of 0.1 mm by an orthopaedic surgeon (Fig. 2) (Ni et al., 2021). Thereafter, we created two different sizes of irregular geodesic dome-shaped cavities on the common location of bone defects (i.e., under the posterior facet) to resemble moderate and severe levels of bone defect based on previous report (Fig. 2) (Demcoe et al., 2009). The moderate defect was approximately 4500 mm³ in volume, whereas that of the severe case was 9000 mm³ (Lykoudis et al., 2013; Park et al., 2021b). Bone grafts were formed by filling the one defect and secured with screws. A "tie" contact is performed to secure the interface between the calcaneus and the bone graft.

The material properties are shown in appendix (Table A1) (Cheung and Nigg, 2008; Cheung et al., 2005; Morales-Orcajo et al., 2016; Ramlee et al., 2014). Bones were assumed to be homogeneous, isotropic, and linearly elastic. The material properties of encapsulated soft tissue were considered hyperelastic (Lemmon et al., 1997; Reeves et al., 2005).

As shown in Table 1, three representative walking stance instants were simulated by applying a tilting on the ground plate, ground reaction forces, and muscle forces (Bulaqi et al., 2015; Morales-Orcajo et al., 2017; Peng et al., 2021a; Wong et al., 2021b; Yu et al., 2016b). The proximal ends of the tibia and fibula were fully fixed. The friction coefficient between the plantar tissues and ground support was set at 0.6 (Dai et al., 2006), while it was set at 0.2 between the bone fragments (Bulaqi et al., 2015). The simulation was performed using Abaqus (Dassault Systèmes, Vélizy-Villacoublay, France).

Mesh Creation and Verification

Bones, cartilaginous structures, and the encapsulated soft tissue were meshed using four-node tetrahedral elements (C3D4). The plantar fascia and ligaments were assigned tension-only two-node truss elements (T3D2), while the ground supports were mapped with eight-node reduced integral hexahedral elements (C3D8R). Accordingly, the model incorporating a bone defect comprised 140,013 nodes, 815,320 elements, and 145 trusses, while that without bone defect comprised 141,121 nodes, 865,401 elements, and 145 trusses.

A mesh convergence test was conducted on the intact model under a balanced standing condition (GRF: 300 N; tendon Achilles force: 225 N). The test involved reducing the mesh size by about 10% (global mesh size from 3.2 mm to 2.88 mm.) This mesh size reduction changed the peak plantar pressure, the peak compressive principal stress of the first metatarsal shaft and talonavicular joint by 2.36%, 0.26%, and 1.48%, respectively. It was determined that the mesh size was adequately fine, as the outcome changes converged to less than 5% (Wong et al., 2018).

Outcome Measure and Data Analysis

The primary outcome measures were the maximum total displacement and posterior joint facet displacement of the calcaneus. To determine the changes of joint facet displacement, ten paired nodes from both sides of the fragments were identified with their average distance (Ni et al., 2016b; Ni et al., 2019b). The total and facet displacement served as indicators of fracture site stability, and their magnitudes reflected the risk of nonunion or malunion. The secondary outcome measure was the maximum von Mises stresses of bone fragments. High stress in the calcaneus indicated a risk of stress fracture.

We compared these outcome measures of the fixation on the calcaneus with and without defects, as well as before and after bone grafting.

Results

Model validation

Model validation was carried out by comparing the FE predicted plantar pressure (intact, balanced standing) with plantar pressure measured from the model participant using a pressure plate (TPScan System, Biomechanics Co. Ltd., Goyang-Si, South Korea). Both measured and simulated plantar pressures concentrated at the rearfoot, with peak values of 0.253 MPa and 0.257 MPa, respectively, accounting for a difference of 1.56%. The plantar contact areas were 56.84 cm² and 59.06 cm², respectively, for measurement and FE prediction, with a difference of 3.80% (Fig. 3).

Total Displacement and Facet Displacement

Fig.4 illustrates that the maximum displacement in the calcaneal fracture model with fixation, both with and without bone defect or bone graft, occurred at the calcaneal tuberosity. This can be attributed to the tension applied to the Achilles tendon. During the push-off instant, compared to the calcaneus without defects, the total displacement of the calcaneus with moderate and severe defects increased by 3.99% and 24.26% respectively, which then decreased by 25.73% and 35.96% respectively after bone grafting (Table 2).

The trend of the posterior joint facet displacement was the same as that of the total displacement. During the push-off instant, compared to the calcaneus without defects, the posterior joint facet displacement of the calcaneus with moderate and severe defects increased by 86.66% and 104.44% respectively, which then decreased by 88.09% and 84.78% respectively after bone grafting (Table 2).

von Mises Stress of Calcaneus

The distribution of stress predominantly localizes to the posterior articular surface of the calcaneus, the screw junction, and the ligament connection (Fig. 5). During the three gait instants, the maximum stress experienced by the calcaneus under defect conditions demonstrated an increase when compared to the non-bone defect calcaneus,

as follows: moderate defect at 16.11%, severe defect at 32.51%. After bone grafting, the maximum stress in the calcaneus with moderate and severe defects decreased by 10.76% and 20.78%, respectively (Table 2).

Discussion

Calcaneal fractures could induce collapse in the posterior articular surface and misalignment (White et al., 2019), especially in cases with bone defects. Bone density in the trabecular core center was relatively low in calcaneus that may have contributed to the development of bone defects upon fractures. The bone defect problem might not be able to be solved by surgical reduction alone (Sarkar et al., 2002), and bone grafting might be intervened at a cost of potential complications (Park et al., 2021b). While bone grafting was carried out in one-fifth of the cases routinely (Schepers et al., 2008), a meta-analysis reported that there was no significant difference in Böhler angle and Gissane's angle between the graft and non-graft groups. This could be among the first few studies that endeavored to investigate the biomechanical variations of calcaneal fracture fixation with and without bone defect by a computational approach to support future research on whether bone grafting is essential.

The merit of this study lies in its comprehensive representation of both the bones and the encapsulated soft tissue, which contrasts with some prior studies that often resorted to oversimplification, such as employing solely the calcaneus model (Gu et al., 2015; Ni et al., 2016a; Ni et al., 2019a; Ouyang et al., 2017; Pînzaru et al., 2023; Xu et al., 2022; Yu et al., 2016a). These models typically neglected the dynamic interactions of the forefoot regions and the load transmission from these areas, which are crucial for a thorough analysis of the biomechanics of the foot and ankle complex (Wang et al., 2018). Qiang et al. (2020) extended their model to include the hindfoot and encompassed the deltoid ligaments to evaluate the influence of sustentaculum screw placement on joint contact area, stress, and displacement. Additionally, some studies have reconstructed the complete foot model, incorporating all bones, the plantar fascia

and encapsulated soft tissue, yet omitting ligaments (Chen et al., 2018; Chen et al., 2017). The simplification of loading condition might affect the model accuracy and clinical interpretation. For example, Pînzaru et al. (2023) investigated implant stability by applying vertical loading to the subtalar joint surfaces to simulate weight-bearing conditions. Gültekin et al. (2021) examined the relationship between Böhler's angle and calcaneal strength by applying a 500 N axial load to the tibia alone. In contrast, our model more accurately simulates the walking stance, providing a better representation of physiological conditions.

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Our FE predictions suggested that bone grafting could enhance the stability of calcaneal fractures with bone defects. Primary outcome measures, the total displacement and posterior joint facet displacement of the calcaneus, demonstrated marked improvements. Post-grafting, calcaneal total and posterior facet displacements with moderate and severe defects decreased by 25.73%, 35.96% and 88.09%, 84.78% respectively, compared to calcanei with defect. We observed increased displacement in calcanei with defects, suggesting higher instability compared to those without defects. However, bone grafting substantially improved this instability, as evidenced by reductions in both total and joint facet displacement post-grafting. Interestingly, these reductions led to displacements even lower than those in calcanei without defects. We attribute this enhanced stability to the bone cement acting as an internal splint within the calcaneus, effectively limiting micro-motion at fracture sites and providing a favorable mechanically stable environment for bone union. As for the secondary outcome measure, maximum von Mises stresses in the bone fragments, our analyses showed that defects increased peak stress, potentially exceeding the bone's fracture stress (120 MPa) (Frost, 1997). This suggested an increased risk of stress fractures in calcanei with defects. However, bone grafting significantly reduced peak stress on the calcaneus and the implant, hence lowering the risk of stress fractures. We also observed that severe bone defect calcanei demonstrated better stability after grafting than moderate defect calcanei. This could be due to the larger contact surface between the bone cement, bone

fragments, and implants after cement solidification in severe defects, which may enable superior stress distribution.

Another notable finding in this study is that the biomechanical data of the calcaneus after bone grafting is even superior to that of the calcaneus without bone defect. Findings from a cadaveric study indicated that, when compared to conventional fixed-angle locking plate osteosynthesis, cemented-augmented screw osteosynthesis significantly outperformed in aspects of primary stability and range of motion during cyclic testing (Rausch et al., 2014). The application of bone cement appears to facilitate an improved biomechanical load distribution at the interface of the bone and osteosynthesis material, while concurrently mitigating the shear stresses experienced at the fracture locus (Belaid et al., 2018). Bone cement, when applied to fractures with a collapsed articular surface, may function as a biomechanical prop, offering essential support and stabilization.

The success of surgical fixation in calcaneal fractures can be significantly influenced by the choice of bone graft or filling. Different types of grafts, such as autografts (from patient's own bone stock), allografts (from cadaveric bone stock), and synthetic substitutes, each possess distinct biomechanical and biological properties that impact the stability and success of the bone repair and fixation (Beaman et al., 2006). Essential properties to consider when selecting an appropriate bone graft include biocompatibility, biodegradability, osteoconductivity, and the capability to promote bone formation and osteogenesis (Beaman et al., 2006; Kolk et al., 2012). While Pan et al. (2018) have recommended the use of collagen artificial bone putty due to its lower complication rates, it is crucial to recognize that each bone graft or biomaterial has its own set of drawbacks. For instance, autografting can lead to new trauma and bone defects (García-Gareta et al., 2015); allografts or xenografts carry a high risk of immunologic rejection or infection (Pomajzl et al., 2016; Simonds et al., 1992); bioceramics are non-degradable and offer limited osteoconductivity (Conz et al., 2011); and synthetic biopolymers (e.g. polylactic acid, polyglycolic acid, etc.) may produce

acidic degradation products that are detrimental to bone degeneration (Barber et al., 2011). In terms of finite element analysis, while it cannot directly account for the biological processes, it can provide insights into how the varying stiffness of bone grafts might influence the mechanical performance of surgical fixation. Additionally, the moldability of bone grafts over irregular defects can also be considered within finite element simulations to predict the mechanical stability post-surgery.

There are some limitations in this study. Studies using finite element models often lacked external validity, because only one subject-specific representative model was reconstructed and did not account for the variation in fracture patterns (Ni et al., 2021; Wong et al., 2021a). Particularly, our calcaneal fracture and fixation model was reconstructed and impoverished from a healthy individual, which might lose some necessary clinical features, such as irregularities between the fracture surfaces. From a modeling perspective, model geometry has been simplified for ligaments and plantar fascia (as trusses) and therefore, their interactions with encapsulated soft tissue were also neglected (Peng et al., 2021c). Material properties were assumed to be isotopic and homogeneous, in addition to the fact that the trabecular core and cortical shell were not segmented, which might overestimate the strength of the bone in the simulation. With respect to the boundary and loading conditions, the information was acquired from existing literature. Loading profile acquired from the same model participant was recommended to predict the muscle forces via musculoskeletal (multibody) modelling and to drive the patient-specific finite element model (Peng et al., 2021b).

Furthermore, inherent limitations arise from the methodological nature of in silico studies, finite element method in our case. Finite element analysis excels at simulating complex physiological conditions from a mechanical point perspective and predicting the mechanical behavior of tissues or implants under a variety of scenarios, offering insights that may be challenging or impossible to obtain through experimental methods or clinical trials. However, finite element analysis cannot fully replicate the intricate biological processes and patient-specific variations and responses that occur in vivo.

The outcomes of finite element studies suggest potential clinical implications from a biomechanical perspective. For example, surgeons can predict the mechanical behavior of the repair construct by inputting the patient-specific geometries and loading conditions and make informed choice about screw placement, graft material selection, and other surgical variables. Manufacturers can use the finite element model to evaluate the mechanical performance of their designs under a range of conditions before prototyping and clinical trials. Nonetheless, it is important to recognize that finite element methods cannot account for certain factors, including the biocompatibility of grafts, rehabilitation protocols (Park et al., 2021a), delayed treatments (Cao et al., 2018), physical activity levels (Schindler et al., 2021), comorbidities (SooHoo et al., 2011), and concurrent injuries (Schindler et al., 2021). As such, the role of finite element analysis is to supplement, not supplant, the clinical decision-making process and to provide a biomechanical framework that support, but not direct, clinical practice and patient care (Wong et al., 2021a).

Conclusion

In conclusion, our in-silico study has provided evidence that bone grafting can mitigate stress on the calcaneus and minimize fragment displacement, thereby enhancing stability and reducing the risk of secondary fractures. Future studies should expand on this work to investigate the biomechanical impacts of screws, external fixation, and other methods in conjunction with bone grafting, which would be crucial for a more comprehensive understanding of the optimal approaches to calcaneal fracture treatment.

Statements & Declarations

Declaration of Completing Interest

The authors declare that the research was conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of interest.

Funding

This work was supported by General project of NSFC (82272128); New Interdisciplinary Project of

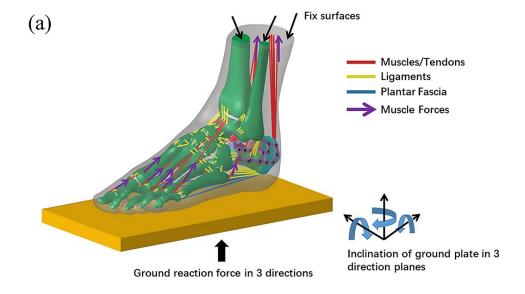
Shanghai Pudong New Area (PWXX2020-08); The Science and Technology Planning Project from the

Science and Technology Commission of Shanghai Municipality (21410760200, 22S31900700).

References

- Andermahr, J., Helling, H.-J., Rehm, K.E., Koebke, Z., 1999. The vascularization of the os calcaneum
- and the clinical consequences. Clinical Orthopaedics and Related Research® 363, 212-218.
- Barber, F.A., Dockery, W., Hrnack, S.A., 2011. Long-term degradation of a poly-lactide co-
- 371 glycolide/β-tricalcium phosphate biocomposite interference screw. Arthroscopy: The Journal of
- 372 Arthroscopic & Related Surgery 27, 637-643.
- Beaman, F.D., Bancroft, L.W., Peterson, J.J., Kransdorf, M.J., Menke, D.M., DeOrio, J.K., 2006. Imaging
- characteristics of bone graft materials. Radiographics 26, 373-388.
- Behforootan, S., Chatzistergos, P., Naemi, R., Chockalingam, N., 2017. Finite element modelling of
- the foot for clinical application: a systematic review. Medical engineering & physics 39, 1-11.
- Belaid, D., Vendeuvre, T., Bouchoucha, A., Brémand, F., Brèque, C., Rigoard, P., Germaneau, A., 2018.
- Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive
- methods: a finite element analysis. Clinical Biomechanics 56, 27-35.
- Bulagi, H.A., Mashhadi, M.M., Safari, H., Samandari, M.M., Geramipanah, F., 2015. Dynamic nature
- of abutment screw retightening: finite element study of the effect of retightening on the settling
- effect. The Journal of prosthetic dentistry 113, 412-419.
- Bulut, T., Gursoy, M., Ozturk, T., Ozcan, C., Sener, M., 2018. Sanders type 3-4 calcaneal fractures
- fixed with locking plate: does tri-cortical iliac bone autograft provide extra benefit for stabilization?
- Therapeutics and Clinical Risk Management, 1665-1670.
- Cao, H., Li, Y.-G., An, Q., Gou, B., Qian, W., Guo, X.-P., Zhang, Y., 2018. Short-term outcomes of
- open reduction and internal fixation for sanders type III calcaneal fractures with and without bone
- grafts. The Journal of Foot and Ankle Surgery 57, 7-14.
- 389 Chen, C.-H., Huang, Y.-H., Hung, C., Chen, C.-S., Chiang, C.-C., 2018. Finite Element Analysis of
- 390 Tongue Type Calcaneal Fracture with Open Reduction and Internal Fixation with Locking Plate.
- Journal of Medical and Biological Engineering 38, 1-9.
- 392 Chen, C.-H., Hung, C., Hsu, Y.-C., Chen, C.-S., Chiang, C.-C., 2017. Biomechanical evaluation of
- 393 reconstruction plates with locking, nonlocking, and hybrid screws configurations in calcaneal
- fracture: a finite element model study. Medical & biological engineering & computing 55, 1799-
- 395 1807.
- 396 Cheung, J.T.-M., Nigg, B.M., 2008. Clinical applications of computational simulation of foot and
- 397 ankle. Sport-Orthopädie-Sport-Traumatologie-Sports Orthopaedics and Traumatology 23, 264-
- 398 271.
- 399 Cheung, J.T., Zhang, M., Leung, A.K., Fan, Y.B., 2005. Three-dimensional finite element analysis of
- the foot during standing--a material sensitivity study. J Biomech 38, 1045-1054.
- 401 Conz, M.B., Granjeiro, J.M., Soares, G.d.A., 2011. Hydroxyapatite crystallinity does not affect the
- repair of critical size bone defects. Journal of Applied Oral Science 19, 337-342.
- 403 Dai, X.Q., Li, Y., Zhang, M., Cheung, J.T., 2006. Effect of sock on biomechanical responses of foot
- during walking. Clin Biomech (Bristol, Avon) 21, 314-321.
- Demcoe, A.R., Verhulsdonk, M., Buckley, R.E., 2009. Complications when using threaded K-wire
- fixation for displaced intra-articular calcaneal fractures. Injury 40, 1297-1301.
- Diniz, P., Pacheco, J., Flora, M., Quintero, D., Stufkens, S., Kerkhoffs, G., Batista, J., Karlsson, J.,
- 408 Pereira, H., 2019. Clinical applications of allografts in foot and ankle surgery. Knee Surg Sports

- 409 Traumatol Arthrosc 27, 1847-1872.
- Duymus, T.M., Mutlu, S., Mutlu, H., Ozel, O., Guler, O., Mahirogullari, M., 2017. Need for Bone
- 411 Grafts in the Surgical Treatment of Displaced Intra-Articular Calcaneal Fractures. J Foot Ankle Surg
- 412 56, 54-58.
- Elsner, A., Jubel, A., Prokop, A., Koebke, J., Rehm, K.E., Andermahr, J., 2005. Augmentation of
- intraarticular calcaneal fractures with injectable calcium phosphate cement: densitometry, histology,
- and functional outcome of 18 patients. J Foot Ankle Surg 44, 390-395.
- Frost, H.M., 1997. On our age-related bone loss: insights from a new paradigm. Journal of Bone
- 417 and Mineral Research 12, 1539-1546.
- 418 García-Gareta, E., Coathup, M.J., Blunn, G.W., 2015. Osteoinduction of bone grafting materials for
- bone repair and regeneration. Bone 81, 112-121.
- 420 Gu, Z., Pang, Q., Yu, X., Chen, L., Guo, Z., 2015. Sustentaculum tali screw fixation for the treatment
- 421 of Sanders type II and III calcaneal fractures. Zhongguo gu Shang= China Journal of Orthopaedics
- 422 and Traumatology 28, 31-35.
- Gültekin, A., Acar, E., Uğur, L., Yıldız, A., Serarslan, U., 2021. The importance of Böhler's angle in
- calcaneus geometry: A finite element model study. Joint diseases and related surgery 32, 420.
- 425 Gusic, N., Fedel, I., Darabos, N., Lovric, Z., Bukvic, N., Bakota, B., Lemac, D., 2015. Operative
- treatment of intraarticular calcaneal fractures: anatomical and functional outcome of three different
- 427 operative techniques. Injury 46, S130-S133.
- Jiang, N., Lin, Q.R., Diao, X.C., Wu, L., Yu, B., 2012. Surgical versus nonsurgical treatment of
- displaced intra-articular calcaneal fracture: a meta-analysis of current evidence base. Int Orthop 36,
- 430 1615-1622.
- Jiang, S.D., Jiang, L.S., Dai, L.Y., 2008. Surgical treatment of calcaneal fractures with use of beta-
- 432 tricalcium phosphate ceramic grafting. Foot Ankle Int 29, 1015-1019.
- 433 Khorbi, A., Chebil, M., Maitigue, B., Khemiri, C., Haddad, N., Kanoun, M., Hachem, A., 2006. Screw
- 434 fixation without bone graft of calcaneal joint fractures: 35 cases. Revue de Chirurgie Orthopedique
- et Reparatrice de L'appareil Moteur 92, 45-51.
- 436 Kolk, A., Handschel, J., Drescher, W., Rothamel, D., Kloss, F., Blessmann, M., Heiland, M., Wolff, K.-D.,
- 437 Smeets, R., 2012. Current trends and future perspectives of bone substitute materials-from space
- holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery 40, 706-718.
- Lemmon, D., Shiang, T.Y., Hashmi, A., Ulbrecht, J.S., Cavanagh, P.R., 1997. The effect of insoles in
- therapeutic footwear--a finite element approach. J Biomech 30, 615-620.
- 441 Longino, D., Buckley, R.E., 2001. Bone graft in the operative treatment of displaced intraarticular
- calcaneal fractures: is it helpful? Journal of orthopaedic trauma 15, 280-286.
- Luo, G., Fan, C., Gao, P., Huang, W., Ni, W., 2022. An evaluation of the efficacy of percutaneous
- reduction and screw fixation without bone grafting in Sanders Type-II and Type-III displaced intra-
- articular calcaneal fractures. BMC Musculoskeletal Disorders 23, 562.
- Lv, M.L., Ni, M., Sun, W., Wong, D.W.-C., Zhou, S., Jia, Y., Zhang, M., 2022. Biomechanical analysis of
- a novel double-point fixation method for displaced intra-articular calcaneal fractures. Frontiers in
- 448 Bioengineering and Biotechnology 10, 10.
- 449 Lykoudis, E.G., Gantsos, A., Dimou, A.O., 2013. Complex calcaneal defect reconstruction with
- 450 osteotomized free fibula-flexor hallucis longus osteomuscular flap. Microsurgery 33, 63-68.
- Morales-Orcajo, E., Bayod, J., Barbosa de Las Casas, E., 2016. Computational foot modeling: scope


- and applications. Archives of Computational Methods in Engineering 23, 389-416.
- 453 Morales-Orcajo, E., Souza, T.R., Bayod, J., de Las Casas, E.B., 2017. Non-linear finite element model
- to assess the effect of tendon forces on the foot-ankle complex. Medical engineering & physics 49,
- 455 71-78.
- 456 Ni, M., Lv, M.L., Sun, W., Zhang, Y., Mei, J., Wong, D.W.-C., Zhang, H., Jia, Y., Zhang, M., 2021.
- Fracture mapping of complex intra-articular calcaneal fractures. Annals of translational medicine 9.
- Ni, M., Wong, D.W.-C., Mei, J., Niu, W., Zhang, M., 2016a. Biomechanical comparison of locking
- plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures.
- Science China Life Sciences 59, 958-964.
- 461 Ni, M., Wong, D.W.-C., Niu, W., Wang, Y., Mei, J., Zhang, M., 2019a. Biomechanical comparison of
- 462 modified Calcanail system with plating fixation in intra-articular calcaneal fracture: a finite element
- analysis. Medical Engineering & Physics 70, 55-61.
- 464 Ni, M., Wong, D.W., Mei, J., Niu, W., Zhang, M., 2016b. Biomechanical comparison of locking plate
- 465 and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures. Sci
- 466 China Life Sci 59, 958-964.
- Ni, M., Wong, D.W., Niu, W., Wang, Y., Mei, J., Zhang, M., 2019b. Biomechanical comparison of
- 468 modified Calcanail system with plating fixation in intra-articular calcaneal fracture: A finite element
- 469 analysis. Med Eng Phys 70, 55-61.
- Ouyang, H., Deng, Y., Xie, P., Yang, Y., Jiang, B., Zeng, C., Huang, W., 2017. Biomechanical
- 471 comparison of conventional and optimised locking plates for the fixation of intraarticular calcaneal
- 472 fractures: a finite element analysis. Computer methods in biomechanics and biomedical
- 473 engineering 20, 1339-1349.
- Pan, Y.-X., Yang, G.-G., Li, Z.-W., Shi, Z.-M., Sun, Z.-D., 2018. Clinical observation of biomimetic
- 475 mineralized collagen artificial bone putty for bone reconstruction of calcaneus fracture.
- 476 Regenerative Biomaterials 5, 61-67.
- 477 Park, E.S., Choi, Y., Lee, J., Park, S.-H., Lee, H.S., 2021a. Calcaneal fracture: results of earlier
- 478 rehabilitation after open reduction and internal fixation. Archives of Orthopaedic and Trauma
- 479 Surgery 141, 929-936.
- 480 Park, Y.H., Cho, H.W., Choi, J.W., Choi, G.W., Kim, H.J., 2021b. Bone defects after surgery for
- displaced intraarticular calcaneal fractures spontaneously improve without bone grafting. Clinical
- 482 Orthopaedics and Related Research 479, 1265.
- 483 Peng, Y., Niu, W., Wong, D.W.-C., Wang, Y., Chen, T.L.-W., Zhang, G., Tan, Q., Zhang, M., 2021a.
- 484 Biomechanical comparison among five mid/hindfoot arthrodeses procedures in treating flatfoot
- using a musculoskeletal multibody driven finite element model. Computer Methods and Programs
- 486 in Biomedicine 211, 106408.
- 487 Peng, Y., Wong, D.W.-C., Chen, T.L.-W., Wang, Y., Zhang, G., Yan, F., Zhang, M., 2021b. Influence of
- 488 arch support heights on the internal foot mechanics of flatfoot during walking: A muscle-driven
- finite element analysis. Computers in Biology and Medicine 132, 104355.
- 490 Peng, Y., Wong, D.W.-C., Wang, Y., Chen, T.L.-W., Zhang, G., Yan, F., Zhang, M., 2021c.
- 491 Computational models of flatfoot with three-dimensional fascia and bulk soft tissue interaction for
- orthosis design. Medicine in Novel Technology and Devices 9, 100050.
- 493 Pînzaru, R.M., Pavăl, S.D., Perțea, M., Alexa, O., Sîrbu, P.D., Filip, A., Carp, A.C., Savin, L., Forna, N.,
- 494 Veliceasa, B., 2023. Biomechanical comparison of conventional plate and the C-Nail® system for

- the treatment of displaced intra-articular calcaneal fractures: A finite element analysis. Journal of
- 496 Personalized Medicine 13, 587.
- 497 Pomajzl, R.J., Baker, E.A., Baker, K.C., Fleischer, M.M., Salisbury, M.R., Phillips, D.M., Fortin, P.T., 2016.
- 498 Case series with histopathologic and radiographic analyses following failure of fresh osteochondral
- allografts of the talus. Foot & Ankle International 37, 958-967.
- 500 Qiang, M.f., Singh, R.K., Chen, Y.x., Zhang, K., Jia, X.y., Chen, S., Wang, S.g., Wang, X., Shi, Z.m., 2020.
- 501 Computational biomechanical analysis of postoperative calcaneal fractures with different
- placement of the sustentaculum screw. Orthopaedic Surgery 12, 661-667.
- Ramlee, M.H., Kadir, M.R., Murali, M.R., Kamarul, T., 2014. Finite element analysis of three
- commonly used external fixation devices for treating Type III pilon fractures. Med Eng Phys 36,
- 505 1322-1330.
- Rammelt, S., Zwipp, H., 2004. Calcaneus fractures: facts, controversies and recent developments.
- 507 Injury 35, 443-461.
- 508 Rammelt, S., Zwipp, H., 2013. Corrective arthrodeses and osteotomies for post-traumatic hindfoot
- malalignment: indications, techniques, results. International orthopaedics 37, 1707-1717.
- Rausch, S., Klos, K., Wolf, U., Gras, M., Simons, P., Brodt, S., Windolf, M., Gueorguiev, B., 2014. A
- 511 biomechanical comparison of fixed angle locking compression plate osteosynthesis and cement
- augmented screw osteosynthesis in the management of intra articular calcaneal fractures.
- 513 International orthopaedics 38, 1705-1710.
- Reeves, N.D., Maganaris, C.N., Ferretti, G., Narici, M.V., 2005. Influence of 90-day simulated
- 515 microgravity on human tendon mechanical properties and the effect of resistive countermeasures.
- 516 J Appl Physiol (1985) 98, 2278-2286.
- Richter, M., Gosling, T., Zech, S., Allami, M., Geerling, J., Droste, P., Krettek, C., 2005. A comparison
- of plates with and without locking screws in a calcaneal fracture model. Foot & ankle international
- 519 26, 309-319.
- 520 Salameh, M., Al-Hashki, L., Al-Juboori, S., Rayyan, R., Hantouly, A., Blankenhorn, B., 2023.
- 521 Management of displaced intra-articular calcaneal fractures; current concept review and treatment
- 322 algorithm. European Journal of Orthopaedic Surgery & Traumatology 33, 779-785.
- 523 Sarkar, M.R., Stahl, J.-P., Wachter, N., Schwamborn, M., Schnettler, R.W., Kinzl, L., 2002. Defect
- reconstruction in articular calcaneus fractures with a novel calcium phosphate cement. European
- 525 Journal of Trauma 28, 340-348.
- 526 Schepers, T., Van Lieshout, E., Van Ginhoven, T., Heetveld, M., Patka, P., 2008. Current concepts in
- 527 the treatment of intra-articular calcaneal fractures: results of a nationwide survey. International
- 528 orthopaedics 32, 711-715.
- 529 Schindler, C., Schirm, A., Zdravkovic, V., Potocnik, P., Jost, B., Toepfer, A., 2021. Outcomes of intra-
- articular calcaneal fractures: surgical treatment of 114 consecutive cases at a maximum care trauma
- center. BMC Musculoskeletal Disorders 22, 234.
- 532 Simonds, R., Holmberg, S.D., Hurwitz, R.L., Coleman, T.R., Bottenfield, S., Conley, L.J., Kohlenberg,
- 533 S.H., Castro, K.G., Dahan, B.A., Schable, C.A., 1992. Transmission of human immunodeficiency virus
- type 1 from a seronegative organ and tissue donor. New England Journal of Medicine 326, 726-
- 535 732.
- 536 Singh, A., Vinay, K., 2013. Surgical treatment of displaced intra-articular calcaneal fractures: is bone
- grafting necessary? Journal of Orthopaedics and Traumatology 14, 299-305.

- 538 SooHoo, N.F., Farng, E., Krenek, L., Zingmond, D.S., 2011. Complication rates following operative
- treatment of calcaneus fractures. Foot and ankle surgery 17, 233-238.
- 540 Spierings, K.E., Min, M., Nooijen, L.E., Swords, M.P., Schepers, T., 2019. Managing the open
- calcaneal fracture: A systematic review. Foot and Ankle Surgery 25, 707-713.
- Talbott, H., Jha, S., Gulati, A., Brockett, C., Mangwani, J., Pegg, E.C., 2023. Clinically useful finite
- 543 element models of the natural ankle-A review. Clinical Biomechanics. 106006.
- Wang, Y., Li, Z., Wong, D.W.-C., Cheng, C.-K., Zhang, M., 2018. Finite element analysis of
- 545 biomechanical effects of total ankle arthroplasty on the foot. Journal of orthopaedic translation 12,
- 546 55-65.
- 547 Wang, Y., Wong, D.W., Zhang, M., 2016. Computational Models of the Foot and Ankle for
- Pathomechanics and Clinical Applications: A Review. Ann Biomed Eng 44, 213-221.
- White, E.A., Skalski, M.R., Matcuk, G.R., Heckmann, N., Tomasian, A., Gross, J.S., Patel, D.B., 2019.
- 550 Intra-articular tongue-type fractures of the calcaneus: anatomy, injury patterns, and an approach
- to management. Emergency Radiology 26, 67-74.
- 552 Wong, D.W.-C., Chen, T.L.-W., Peng, Y., Lam, W.-K., Wang, Y., Ni, M., Niu, W., Zhang, M., 2021a. An
- instrument for methodological quality assessment of single-subject finite element analysis used in
- computational orthopaedics. Medicine in Novel Technology and Devices 11, 100067.
- Wong, D.W.-C., Wang, Y., Leung, A.K.-L., Yang, M., Zhang, M., 2018. Finite element simulation on
- posterior tibial tendinopathy: load transfer alteration and implications to the onset of pes planus.
- 557 Clinical Biomechanics 51, 10-16.
- Wong, D.W.-C., Wang, Y., Niu, W., Zhang, M., 2021b. Finite element analysis of subtalar joint
- arthroereisis on adult-acquired flexible flatfoot deformity using customised sinus tarsi implant.
- Journal of orthopaedic translation 27, 139-145.
- 561 Xu, Z., Sun, W., Li, P., Wang, Y., Wong, D.W.-C., Cheung, J.C.-W., Niu, W., Zhang, H., Ni, M., 2022.
- 562 Modified Ni-Nail and C-Nail systems for intra-articular fractures of the calcaneus: A biomechancial
- 563 study. Injury 53, 3904-3911.
- Yang, Y., Zhao, H., Zhou, J., Yu, G., 2012. Treatment of displaced intraarticular calcaneal fractures
- with or without bone grafts: a systematic review of the literature. Indian journal of orthopaedics 46,
- 566 130-137.
- 567 Yu, B., Chen, W.-C., Lee, P.-Y., Lin, K.-P., Lin, K.-J., Tsai, C.-L., Wei, H.-W., 2016a. Biomechanical
- 568 comparison of conventional and anatomical calcaneal plates for the treatment of intraarticular
- 569 calcaneal fractures-a finite element study. Computer methods in Biomechanics and Biomedical
- 570 engineering 19, 1363-1370.
- Yu, J., Wong, D.W., Zhang, H., Luo, Z.P., Zhang, M., 2016b. The influence of high-heeled shoes on
- 572 strain and tension force of the anterior talofibular ligament and plantar fascia during balanced
- standing and walking. Med Eng Phys 38, 1152-1156.
- 574 Zhang, H., Lv, M.L., Liu, Y., Sun, W., Niu, W., Wong, D.W., Ni, M., Zhang, M., 2020. Biomechanical
- analysis of minimally invasive crossing screw fixation for calcaneal fractures: Implications to early
- weight-bearing rehabilitation. Clin Biomech (Bristol, Avon) 80, 105143.
- 577 Zheng, W., Xie, L., Xie, H., Chen, C., Chen, H., Cai, L., 2018. With versus without bone grafts for
- 578 operative treatment of displaced intra-articular calcaneal fractures: A meta-analysis. International
- 579 Journal of Surgery 59, 36-47.
- Zwipp, H., Rammelt, S., Barthel, S., 2004. Calcaneal fractures--the most frequent tarsal fractures.

Therapeutische Umschau. Revue Therapeutique 61, 435-450.
582
583
584

Figure legend

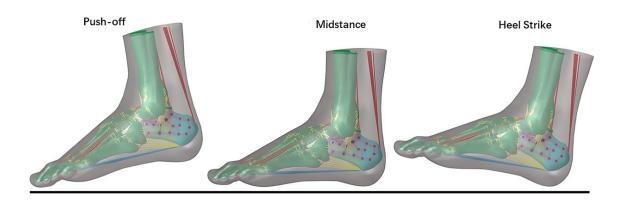


Fig.1. Model geometry and loading/boundary conditions for the finite element analyses and the illustration of the simulation of walking gait.

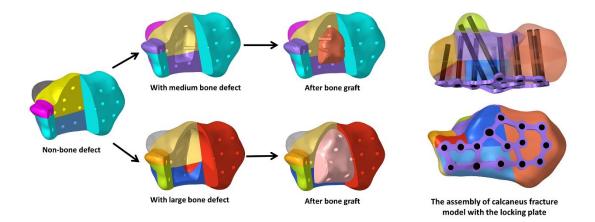


Fig.2. Calcaneus under five conditions: non-bone defect, moderate bone defect, severe bone defect, moderate bone defect with bone graft, severe bone defect with bone graft, and the assembled position of the implants-fixed bone block.

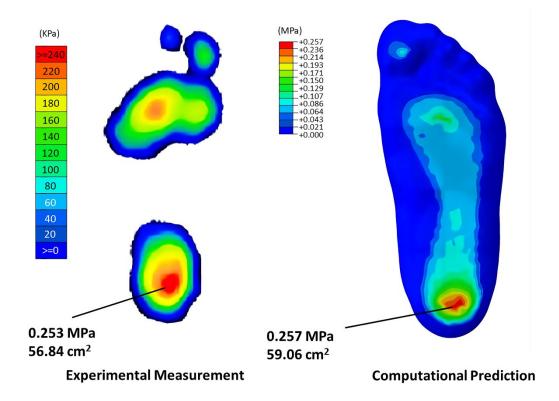


Fig.3. Comparison of the plantar pressure between experimental measurem and computational prediction.



Fig.4. Resultant displacement (mm) of the calcaneus and implant under different conditions, respectively.

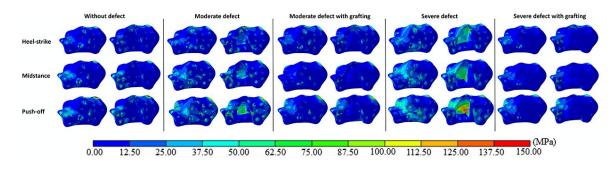


Fig.5. von Mises stress (in MPa) of inside and outside calcaneus under different conditions, respectively.