
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 33, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 2021--2040

RELATIVE LIPSCHITZ-LIKE PROPERTY OF PARAMETRIC
SYSTEMS VIA PROJECTIONAL CODERIVATIVES*

WENFANG YAO\dagger AND XIAOQI YANG\dagger 

Abstract. This paper concerns upper estimates of the projectional coderivative of implicit
mappings and corresponding applications on analyzing the relative Lipschitz-like property. Under
different constraint qualifications, we provide upper estimates of the projectional coderivative for
solution mappings of parametric systems. For the solution mapping of affine variational inequalities,
a generalized critical face condition is obtained for sufficiency of its Lipschitz-like property relative to
a polyhedral set within its domain under a constraint qualification. The necessity is also obtainable
under some regularity or when the polyhedral set is further the domain of the solution mapping. We
further discuss possible conditions for the necessity and consider the solution mapping of a linear
complementarity problem with a Q0 matrix as an example.
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1. Introduction. In this paper, we focus on the relative Lipschitz-like property
of the solution mapping of the following fully parametric system:

S(w) := \{ x\in \BbbR n | 0\in G(w,x) +M(w,x)\} ,(1.1)

where G : \BbbR m+n \rightarrow \BbbR d is a \scrC 1 mapping, and M : \BbbR m+n \rightrightarrows \BbbR d is a multifunction with
closed graph. The Lipschitz-like property, originated from [1], plays a central role in
stability analysis. The Mordukhovich criterion provides a complete characterization
of a Lipschitz-like property by using the coderivative (see [26, 27, 31]).

An upper estimate, as well as the attainable equality, of the coderivative of the
mapping S in (1.1) were obtained in [23] under some constraint qualifications and
applied to obtain the Lipschitz-like property for the stationary point multifunction of
a parametric optimization problem. On the other hand, a critical face condition was
developed in [8] (see also [9]) as sufficient and necessary conditions for the Lipschitz-
like property of the solution mapping of an affine variational inequality (AVI) problem
over a polyhedral set.

Sufficient conditions for a Lipschitz-like property of quasi-variational inequalities
were obtained in [29] by developing a new coderivative calculus for special composi-
tions. Sufficient conditions for the Lipschitz-like property of implicit multifunctions
(that is, G in (1.1) vanishes) were established in [11] by using a directional limiting
coderivative, which was introduced in [10] (with a slightly different form in [13]). A
formula was also derived for computing the directional limiting coderivative of the
normal-cone map with a polyhedral set, which matches the well-known critical face
condition framework in [8]. Determinantal conditions for the existence of a single-
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2022 WENFANG YAO AND XIAOQI YANG

valued, Lipschitz continuous, piecewise-affine solution trajectory to an AVI subject to
both a canonical parameter and a perturbed normal cone of a polyhedral convex cone
were obtained in [24]. Further extension of a critical face condition to the Lipschitz-
like property of solution mapping to a generalized equation can also be found in [12]
under the framework of [29]. Characterizations of a Lipschitz-like property for the
solution mapping of linear semi-infinite and infinite systems were obtained in [6] by
developing a Mordukhovich criterion in an arbitrary Banach space based on general-
ized differentiation. For more investigation on parametric optimization problems, see
the monographs [4, 9, 18, 19].

The coderivative of a normalcone mapping was computed and applied to give
some sufficient condition for the Lipschitz-like property of the stationary point multi-
function of minimizing a quadratic function with a ball constraint in [21]. In [16, 17],
the condition for coderivative equality in [23] was applied to study the Lipschitz-like
property and the Robinson metric regularity of a parametric affine constraint system
with a closed set under full perturbations. See also a recent monograph [20] on the
study of stability of parametric quadratic programs and AVIs.

On the application side of stability theory, the calmness of the solution mapping
of the Lasso relative to the positive half-line was established in [3, 5] (see also [15]
for the relative q-order calmness for the \ell q-regularization problem (0 < q \leq 1).) As
noted in [10], in order to guarantee some stationarity conditions, one may only need
a regular behavior of the constraint systems with respect to one single critical direc-
tion, not on the whole space. These applications of stability properties are concerned
with the case where the reference point may lie on the boundary of the domain or
a set under consideration. In the case of the Lipschitz-like property, the well-known
Mordukhovich criterion is not applicable. Recently, by virtue of a directional limiting
coderivative of the normal-cone mapping and a variant of a critical face condition,
sufficient conditions were obtained in [2] for the Lipschitz-like property relative to a
closed set for the solution map of a class of parameterized variational systems. By
employing the projection of the normal cone of the restricted graph of a multifunction
on the product of the tangent cone of the concerned closed set and the solution space,
a projectional coderivative was introduced and applied in [25] to derive a general-
ized Mordukhovich criterion for the Lipschitz-like property relative to a closed and
convex set.

In this paper we begin by giving a comparison between the sufficient conditions for
a relative Lipschitz-like property in [2, 25]. While an example was given to illustrate
that the sufficient condition of the generalized Mordukhovich criterion in [25] holds
but the sufficient condition in [2] does not hold, we further show that the sufficient
condition of the relative Lipschitz-like property for an explicit multifunction in [2]
implies the one in [25] when the relative set is closed and convex. We then focus
on the investigation of a projectional coderivative and Lipschitz-like property of fully
parametric systems. We first obtain an upper estimate of the projectional coderivative
of the solution mapping (1.1) by posing different constraint qualifications. Following
[23] and using the definition of the projectional coderivative, we calculate the outer
limit of the projection of the normal cone of the restricted graph to the tangent cone
of the relative set. The upper estimate becomes tight under a regularity condition
and the relative set being a manifold. We also obtain some upper estimates of the
projectional coderivative of (1.1) for the two special cases in which (i) G(w,x) vanishes
and (ii) M(w,x) =M(x) and the relative set is equal to the dom S.
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2023

The obtained upper estimates of the projectional coderivative of S(x) are applied
to an AVI, where G(q,x) = q+Mx and M(x) =NC(x) with M being an n\times n matrix
and C a polyhedron. Some upper estimates of the projectional coderivative of the
solution mapping of the AVI are obtained under different constraint qualifications and
regularity conditions. The upper estimate is tight if either the graph of the normal
cone NC and the relative set are both regular or the relative set is equal to the domain
of S. For studying the relative Lipschitz-like characterization of AVI, we consider that
the relative set is a polyhedral subset of the domain. We obtain a sufficient condition
for S to be relative Lipschitz-like under a constraint qualification and represent this
condition in the form of critical face condition as in [8]. This sufficient condition
becomes necessary if the graph of the normal cone NC is regular or the relative set
is further the dom S along with convexity. Further, we simplify the condition when
necessity is possible, where equivalent descriptions can be given. For the regularity of
gph NC , we show that it involves the property of the reference point and that instead
of checking the condition with all combinations of the faces, the condition reduces
to the critical cone only. For AVI on polyhedral cones, via equivalent description
of dom S, we are able to give explicit expression of Ndom S(\=q). We then illustrate
this condition with an example: a linear complementarity problem (LCP) with a
Q0 matrix. It is known that the domain of LCP with a Q0 matrix is a polyhedron
(see [7]). We thus consider this domain as the relative set. Therefore the estimate of
the projectional coderivative is tight and we are able to represent this condition in
terms of a normal cone of the complementarity conditions of the LCP.

The organization of the paper is as follows. Section 2 introduces the standard
notation and tools. Section 3 presents upper estimates of projectional coderivatives of
parametric systems. Section 4 characterizes the Lipschitz-like property of the solution
mapping of AVIs relative to a polyhedral set. Section 5 discusses the necessity of the
generalized critical face condition and the corresponding simplification, along with an
example on LCP relative to its domain.

2. Preliminaries. In this section, we review some notations and preliminary
results that will be used in the following sections. The notations adopted are standard
in variational analysis. Most of them can be found in monographs [28] and [31].

The norm and scalar product of an Euclidean space \BbbR n are denoted as \| \cdot \| and
\langle \cdot , \cdot \rangle , respectively. The symbol \BbbB r(x) stands for the closed unit ball with radius r > 0
centered at x and \BbbB := \BbbB 1(0). By A\ast we denote the transpose of matrix A and also
the adjoint operator of linear operator A, and by A - 1 we denote the inverse mapping
of A.

For a vector v \in \BbbR n we denote [v] := \{ \lambda v | \lambda \in \BbbR \} the linear subspace generated by
v. For a nonempty set C \subseteq \BbbR n, the interior, the convex hull, and the positive hull of C
are denoted, respectively, by int C, conv C, and pos C. The orthogonal complement
C\bot and the polar cone C\ast are defined, respectively, by

C\bot := \{ v \in \BbbR n | \langle v,x\rangle = 0 \forall x\in C\} ,
C\ast := \{ v \in \BbbR n | \langle v,x\rangle \leq 0 \forall x\in C\} .

The distance from x to C is defined by d(x,C) := infy\in C | | y  - x| | . The projection
mapping projC is defined by projC(x) := \{ y \in C | d(x, y) = d(x,C)\} . For a set
X \subset \BbbR n, we denote the projection of X onto C by

projCX := \{ y \in C | \exists x\in X withd(x, y) = d(x,C)\} .

If C = \emptyset , by convention we set that d(x,C) :=+\infty , projC(x) := \emptyset , and projCX := \emptyset .
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2024 WENFANG YAO AND XIAOQI YANG

Let x \in C. We use TC(x) to denote the tangent/contingent cone to C at x,
i.e., w \in TC(x) if there exist sequences tk \searrow 0 and \{ wk\} \subset \BbbR n with wk \rightarrow w and
x + tkwk \in C \forall k. The regular/Fr\'echet normal cone, \widehat NC(x), is the polar cone of
TC(x), which is equivalent to

\widehat NC(x) =

\left\{       v \in \BbbR n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| limsup

x\prime C -  -  - \rightarrow 
x\prime \not =x

x

\langle v,x\prime  - x\rangle 
\| x\prime  - x\| 

\leq 0

\right\}       .

The (basic/limiting/Mordukhovich) normal cone to C at x, NC(x), is defined via the
outer limit of \widehat NC as

NC(x) :=
\Bigl\{ 
v \in \BbbR n | \exists sequences xk

C - \rightarrow x, vk \rightarrow v, vk \in \widehat NC(xk) \forall k
\Bigr\} 
.

We say that C is locally closed at a point x\in C if C \cap U is closed for some closed
neighborhood U \in \scrN (x). C is said to be regular at x in the sense of Clarke if it
is locally closed at x and \widehat NC(x) = NC(x). C is regular around x if there exists a
neighborhood of x such that C is regular at every point in it. For any x /\in C, we set
by convention TC(x) = \emptyset , NC(x) = \emptyset , \widehat NC(x) = \emptyset .

Let C \subset \BbbR n be a nonempty convex set. A face of C is a convex subset C \prime of
C such that every closed line segment in C with a relative interior point in C \prime has
both endpoints in C \prime . See the book [30] for more details. Moreover, we say C is a
polyhedral set if it can be expressed as the intersection of a finite number of closed
half-spaces of hyperplanes (and is therefore convex).

For a multifunction S : \BbbR n \rightrightarrows \BbbR m, we denote by gph S := \{ (x,u) | u \in S(x)\} and
dom S := \{ x | S(x) \not = \emptyset \} the graph and the domain of S, respectively.

For a set X \subset \BbbR n, we denote by

S| X(x) := S(x) if x\in X; \emptyset if x \not \in X

the restricted mapping of S on X. It is clear to see that gph S| X = gph S\cap (X\times \BbbR m),
dom S| X =X \cap dom S and also

limsup

x
X - \rightarrow \=x

S(x) = limsup
x\rightarrow \=x

S| X(x).

Definition 2.1 (outer semicontinuity [31, Definition 5.4]). A multifunction S :
\BbbR n \rightrightarrows \BbbR m is outer semicontinuous (osc) at \=x if limsupx\rightarrow \=x S(x) = S(\=x).

Definition 2.2 (local boundedness relative to a set [31, p. 162]). For a multi-
function S : \BbbR n \rightrightarrows \BbbR m, a closed set X \subset \BbbR n, and a given point \=x \in X, if for some
neighborhood V \in \scrN (\=x), S(V \cap X) is bounded, we say S is locally bounded relative to
X at \=x. Such a definition is equivalent to the local boundedness of S| X at \=x.

Next we present the definition of the relative Lipschitz-like property of a multi-
function.

Definition 2.3 (Lipschitz-like property relative to a set [31, Definition 9.36]).
A multifunction S : \BbbR n \rightrightarrows \BbbR m is Lipschitz-like relative to X at \=x for \=u, where \=x \in X
and \=u\in S(\=x), if gph S is locally closed at (\=x, \=u) and there are neighborhoods V \in \scrN (\=x)
and W \in \scrN (\=u) and a constant \kappa \in \BbbR + such that

S(x\prime )\cap W \subset S(x) + \kappa \| x\prime  - x\| \BbbB \forall x,x\prime \in X \cap V.(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2025

The graphical modulus of S relative to X at \=x for \=u is defined as

lip XS(\=x | \=u) := inf\{ \kappa \geq 0 | \exists V \in \scrN (\=x),W \in \scrN (\=u), such that

S(x\prime )\cap W \subset S(x) + \kappa \| x\prime  - x\| \BbbB \forall x,x\prime \in X \cap V \} .

The property with V in place of X \cap V in (2.1) is the Lipschitz-like property along
with the graphical modulus lip S(\=x | \=u).

Another notion of Lipschitz continuity mentioning \=u is the local Lipschitz con-
tinuity around (\=x, \=u), with the sets S(x), X \cap V being replaced by S(x) \cap W and
X \cap V , respectively (see [8]). It is also known as truncated Lipschitz continuity
(see [9, p. 165]) and is generally stronger than the Lipschitz-like property.

Now we recall a projectional coderivative and a complete characterization of a
Lipschitz-like property relative to a closed and convex set.

Definition 2.4 (see [25, Definition 2.2]). The projectional coderivative D\ast 
XS(\=x | 

\=u) : \BbbR m \rightrightarrows \BbbR n of multifunction S : \BbbR n \rightrightarrows \BbbR m at \=x \in X \subseteq \BbbR n for any \=u \in S(\=x) with
respect to X is defined as

t\ast \in D\ast 
XS(\=x | \=u)(u\ast )\Leftarrow \Rightarrow (t\ast , - u\ast )\in limsup

(x,u)
\mathrm{g}\mathrm{p}\mathrm{h} S| X -  -  -  -  - \rightarrow (\=x,\=u)

projTX(x)\times \BbbR mNgph S| X (x,u).

A connection between projectional coderivative and coderivative is shown in the
following corollary.

Corollary 2.5. For a multifunction S : \BbbR n \rightrightarrows \BbbR m, and a closed set X \subseteq \BbbR n,
for any (\=x, \=u)\in gph S| X ,

D\ast S| X(\=x | \=u) - 1(0)\subseteq D\ast 
XS(\=x | \=u) - 1(0).

Proof. For u\ast \in D\ast S| X(\=x | \=u) - 1(0), it is equivalent that (0, - u\ast )\in Ngph S| X (\=x, \=u).
As projTX(\=x)(0) = 0, we have (0, - u\ast ) \in projTX(\=x)\times \BbbR mNgph S| X (\=x, \=u). Then by the
definition of projectional coderivatives, u\ast \in D\ast 

XS(\=x | \=u) - 1(0).

Theorem 2.6 (generalized Mordukhovich criterion [25, Theorem 2.4]). Consider
a multifunction S : \BbbR n \rightrightarrows \BbbR m and (\=x, \=u) \in gph S| X . Suppose that gph S is locally
closed at (\=x, \=u) and that X is closed and convex. Then S has the Lipschitz-like property
relative to X at \=x for \=u if and only if D\ast 

XS(\=x | \=u)(0) = \{ 0\} .
When \=x \in int X, the projectional coderivative mapping D\ast 

XS(\=x | \=u) reduces to
the coderivative D\ast S(\=x | \=u) and accordingly, the generalized Mordukhovich criterion
reduces to the Mordukhovich criterion (see [26, 31]).

3. Projectional coderivative and parametric systems. In this section, we
give a complete comparison between sufficient conditions for a relative Lipschitz-like
property in [2, 25] and derive some upper estimates of a projectional coderivative for
a fully parametric system (1.1).

First we introduce the definitions of the directional limiting normal cone and the
directional limiting coderivative.

Definition 3.1 (see [13, Definition 2.3]). For a closed set \Omega \subset \BbbR n with \=x \in \Omega 
and a direction u \in \BbbR n, the directional limiting normal cone to \Omega in direction u at \=x
is defined by

N\Omega (\=x;u) := limsup
t\downarrow 0, u\prime \rightarrow u

\widehat N\Omega (\=x+ tu\prime ),(3.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2026 WENFANG YAO AND XIAOQI YANG

while for a set-valued mapping S : \BbbR n \rightrightarrows \BbbR m having a locally closed graph around
( \=w, \=x) \in gph S and a pair of directions (u, v) \in \BbbR n \times \BbbR m, the set-valued mapping
D\ast S(( \=w, \=x); (u, v)) :\BbbR m \rightrightarrows \BbbR n, defined by, for all v\ast \in \BbbR m,

D\ast S(( \=w, \=x); (u, v))(v\ast ) := \{ u\ast \in \BbbR n | (u\ast , - v\ast )\in Ngph S(( \=w, \=x); (u, v))\} ,(3.2)

is called the directional limiting coderivative of S in the direction (u, v) at ( \=w, \=x).

In the next theorem, we show that when we are referring to the set X := dom S,
the sufficient condition in [2, Theorem 3.5] implies the generalized Mordukhovich
criterion when dom S is closed and convex. For direct comparison, we adopt the
explicit form introduced in [25, Theorem 2.5].

Theorem 3.2. Consider S : \BbbR n \rightrightarrows \BbbR m, \=x \in dom S \subset \BbbR n, and \=u \in S(\=x). Assume
that gph S is locally closed at (\=x, \=u) and that dom S is closed and convex around \=x.
Further assume that the following conditions are satisfied:

(i) For every x \in Tdom S(\=x) and every sequence tk \downarrow 0, there exists some u \in \BbbR n

such that

lim inf
k\rightarrow \infty 

d((\=x+ tkx, \=u+ tku),gph S)

tk
= 0.

(ii) The equality

D\ast S ((\=x, \=u); (x,u)) (0) = \{ 0\} 

holds for all x\in Tdom S(\=x) and (x,u)\in Tgph S(\=x, \=u) with (x,u) \not = (0,0).
Then D\ast 

dom SS(\=x | \=u)(0) = \{ 0\} and S has the Lipschitz-like property relative to dom S
at \=x for \=u.

Proof. Let t\ast \in D\ast 
dom SS(\=x | \=u)(0). By the definition of the projectional coderiva-

tive, there exist sequences

(xk, uk)
gph S -  -  -  - \rightarrow (\=x, \=u), (x\ast 

k, - u\ast 
k)\in Ngph S(xk, uk), t

\ast 
k =projT\mathrm{d}\mathrm{o}\mathrm{m} S(xk)

(x\ast 
k)

such that t\ast k \rightarrow t\ast , u\ast 
k \rightarrow 0. Then by the definition of normal cones, we know that

there exist sequences

(xkt, ukt)
gph S -  -  -  - \rightarrow (xk, uk),(x

\ast 
kt, - u\ast 

kt)\in \^Ngph S(xkt, ukt), such that (x\ast 
kt, u

\ast 
kt)\rightarrow (x\ast 

k, u
\ast 
k).

If (xk, uk) \not = (\=x, \=u), let

\tau kt := \| (xkt  - \=x,ukt  - \=u)\| , (x\prime 
kt, u

\prime 
kt) :=

(xkt - \=x,ukt - \=u)
\| (xkt - \=x,ukt - \=u)\| , (x\prime 

k, u
\prime 
k) :=

(xk - \=x,uk - \=u)
\| (xk - \=x,uk - \=u)\| .

(3.3)

Then we have

(x\prime 
kt, u

\prime 
kt)\rightarrow (x\prime 

k, u
\prime 
k), \tau kt \searrow 0 and (x\ast 

kt, - u\ast 
kt)\in \^Ngph S ((\=x, \=u) + \tau kt(x

\prime 
kt, u

\prime 
kt)) .

By the definition of a directional normal cone we have (x\ast 
k, - u\ast 

k) \in Ngph S((\=x, \=u);
(x\prime 

k, u
\prime 
k)). Besides, by the definition of tangent cones, (x\prime 

k, u
\prime 
k)\in Tgph S(\=x, \=u)\cap \BbbS (where

\BbbS denotes the unit sphere) and x\prime 
k \in Tdom S(\=q). By condition (ii), we have that u\ast 

k \rightarrow 0
indicates x\ast 

k \rightarrow 0. Therefore

t\ast k =projTdomS(xk)
(x\ast 

k)\rightarrow 0 = t\ast .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2027

If (xk, uk) = (\=x, \=u), then we have

(x\ast , - u\ast )\in Ngph S(\=x, \=u) and t\ast =projT\mathrm{d}\mathrm{o}\mathrm{m} S(\=x)(x
\ast ), u\ast = 0.

Without loss of generality, we can further assume that (x\ast , - u\ast ) \in \^Ngph S(\=x, \=u), as
otherwise by the construction in (3.3) we can always find some (x\prime 

k, u
\prime 
k)\in Tgph S(\=x, \=u)\cap 

\BbbS and the argument is similar to the above. Given t\ast \in Tdom S(\=x), by condition (i), we
can find accordingly u\prime such that (t\ast , u\prime )\in Tgph S(\=x, \=u). By the polar relation between
tangent cones and regular normal cones, we have

\langle (t\ast , u\prime ), (x\ast , - u\ast )\rangle = \langle t\ast , x\ast \rangle \leq 0.

Given the convexity of Tdom S(\=x), the decomposition of x\ast = t\ast + y\ast is unique with
t\ast = projT\mathrm{d}\mathrm{o}\mathrm{m} S(\=x)(x

\ast ) and y\ast = projN\mathrm{d}\mathrm{o}\mathrm{m} S(\=x)(x
\ast ), and t\ast \bot y\ast by [31, Exercise 12.22].

Therefore we have t\ast = 0 andD\ast 
dom SS(\=x | \=u)(0) = \{ 0\} . By Theorem 2.6 S is Lipschitz-

like relative to dom S at \=x for \=u.

Next we give an example where a fixed-point expression of the projectional
coderivative can be given when the set X is a smooth manifold around the point
\=x (see [31, Example 6.8] for the definition of smooth manifold).

Lemma 3.3 (projectional coderivatives of a set-valued mapping restricted on a
smooth manifold). Consider S :\BbbR n \rightrightarrows \BbbR m and \=u\in S(\=x). Suppose that gph S is locally
closed at (\=x, \=u) and X is a smooth manifold around \=x. Then we have

D\ast 
XS(\=x | \=u)(u\ast ) = projTX(\=x)D

\ast S| X(\=x | \=u)(u\ast ) \forall u\ast .

Proof. By Definition 2.4, it suffices to show

D\ast 
XS(\=x | \=u)(u\ast )\subseteq projTX(\=x)D

\ast S| X(\=x | \=u)(u\ast ) \forall u\ast .

Let y\ast \in D\ast 
XS(\=x | \=u)(u\ast ). Then there exist some sequences (xk, uk)

gph S| X -  -  -  -  - \rightarrow (\=x, \=u)
and x\ast 

k \in D\ast S| X(xk | uk)(u
\ast 
k) such that u\ast 

k \rightarrow u\ast and y\ast k := projTX(xk)
(x\ast 

k) \rightarrow y\ast . By
a representation of a tangent cone of the smooth manifold [31, Example 6.8], TX(\cdot )
is continuous at \=x relative to X. Together with [31, Exercise 5.35], we have that
y\ast =projTX(\=x)(x

\ast ). This completes the proof.

We now investigate upper estimates of a projectional coderivative of the mapping
S defined in (1.1). Recall that upper estimates of coderivatives of S have been given
in [23, Theorem 2.1]. We also discuss the upper estimates under two special cases: (i)
G(w,x) = 0, (ii) M(w,x) =M(x) and X =dom S.

Theorem 3.4. Consider the implicit mapping S : \BbbR m \rightrightarrows \BbbR n of the form (1.1)
with G :\BbbR m+n \rightarrow \BbbR d a \scrC 1 mapping, and M :\BbbR m+n \rightrightarrows \BbbR d a multifunction with closed
graph. Consider a pair ( \=w, \=x) \in gph S| W , where W \subseteq dom S is a closed set. Let
\scrM (w,x, y) :=\nabla G(w,x)\ast y+D\ast M | W\times \BbbR n((w,x)|  - G(w,x).)(y). If the following basic
constraint qualification holds,

(0,0)\in \scrM ( \=w, \=x, y) =\Rightarrow y= 0,(3.4)

then we have

D\ast 
WS ( \=w | \=x) (r)\subseteq limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| W -  -  -  -  - \rightarrow ( \=w,\=x)
r\prime \rightarrow r

\bigcup 
y\in \BbbR d

\Bigl\{ 
projTW (w)(v) | (v, - r\prime )\in \scrM (w,x, y)

\Bigr\} 
.

(3.5)
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2028 WENFANG YAO AND XIAOQI YANG

If the following strong constraint qualification is satisfied,

(0,0)\in limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| W -  -  -  -  - \rightarrow ( \=w,\=x)
y\prime \rightarrow y

projTW (w)\times \BbbR n\scrM (w,x, y\prime ) =\Rightarrow y= 0,(3.6)

then the limsup in (3.5) can be equivalently put into the bracket as

D\ast 
WS ( \=w | \=x) (r)\subseteq 

\biggl\{ 
t\in \BbbR m

\bigm| \bigm| \bigm| \bigm| \exists y \in \BbbR d with (t, - r)

\in limsup

(w,x, - G(w,x))
\mathrm{g}\mathrm{p}\mathrm{h} M| W\times \BbbR n -  -  -  -  -  -  -  - \rightarrow ( \=w,\=x, - G( \=w,\=x))

y\prime \rightarrow y

projTW (w)\times \BbbR n\scrM (w,x, y\prime )

\biggr\} 
.

(3.7)

If in addition, M | W\times \BbbR n is graphically regular at ( \=w, \=x, - G( \=w, \=x)) and W is a smooth
manifold around \=w, then

D\ast 
WS ( \=w | \=x) (r) =

\biggl\{ 
t\in \BbbR m

\bigm| \bigm| \bigm| \bigm| \exists y \in \BbbR d with (t, - r)\in projTW ( \=w)\times \BbbR n\scrM ( \=w, \=x, y)

\biggr\} 
.(3.8)

Proof. By a simple statement of contradiction with the osc of D\ast M | W\times \BbbR n , (3.4)
also indicates that

(0,0)\in \scrM (w,x, y) =\Rightarrow y= 0

for any (w,x) \in gph S| W sufficiently close to ( \=w, \=x). According to [23, Theorem 2.1],
for any pair (w,x)\in gph S| W sufficiently near ( \=w, \=x), we have

Ngph S| W (w,x)\subseteq 
\bigcup 

y\in \BbbR d

\scrM (w,x, y).(3.9)

Therefore we have

limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| W -  -  -  -  - \rightarrow ( \=w,\=x)

projTW (w)\times \BbbR nNgph S| W (w,x)

\subseteq limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| W -  -  -  -  - \rightarrow ( \=w,\=x)

\bigcup 
y\in \BbbR d

projTW (w)\times \BbbR n\scrM (w,x, y)

and accordingly the inclusion (3.5) holds.
Now, assume that the strong constraint qualification (3.6) holds. By the nature

of projection and the outer limit, we can also see that (3.6) indicates (3.4). For

t belonging to the right-hand side of (3.5), there exist sequences (wk, xk)
gph S| W -  -  -  -  - \rightarrow 

( \=w, \=x), yk \in \BbbR d, and (vk, - rk) \in \scrM (wk, xk, yk), such that tk \in projTW (wk)
(vk) \rightarrow t

and rk \rightarrow r. Taking a subsequence if necessary, we have either yk \rightarrow y \in \BbbR d or
\lambda kyk \rightarrow y \in \BbbR d with \lambda k \searrow 0. For the first case, we directly have that t belongs
to the right-hand side of (3.7). For the second case, without loss of generality we
assume \| y\| = 1. With the conic structure we have \lambda k(vk, - rk)\in \scrM (wk, xk, \lambda kyk) and
accordingly \lambda ktk \in \lambda kprojTW (wk)

(vk)\rightarrow 0, \lambda krk \rightarrow 0, which contradicts the constraint
qualification (3.6) with \| y\| = 1. Thus the second case is not possible. Given that

(w,x)
gph S| W -  -  -  -  - \rightarrow ( \=w, \=x) is equivalent to (w,x, - G(w,x))

gph M | W\times \BbbR n -  -  -  -  -  -  -  - \rightarrow ( \=w, \=x, - G( \=w, \=x))
we have that t also belongs to the set on the right-hand side of (3.7). Note that in
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2029

general the right-hand side of (3.7) is included by that of (3.5) and therefore, with
constraint qualification (3.6) being satisfied, these two sets are identical.

If furthermore M | W\times \BbbR n is graphically regular at ( \=w, \=x, - G( \=w, \=x)), again by [23,
Theorem 2.1], we have (3.9) as an equation at the reference point ( \=w, \=x) and therefore

projTW ( \=w)D
\ast S| W ( \=w | \=x)(r)

=

\biggl\{ 
t\in \BbbR m

\bigm| \bigm| \bigm| \bigm| \exists y \in \BbbR d with (t, - r)\in projTW ( \=w)\times \BbbR n\scrM ( \=w, \=x, y)
\bigr) \biggr\} 

\subseteq D\ast 
WS( \=w | \=x)(r).

(3.10)

Besides, when W is a smooth manifold at \=w, by Lemma 3.3 and (3.9),

D\ast 
WS ( \=w | \=x) (r) = projTW ( \=w)D

\ast S| W ( \=w | \=x) (r)

\subseteq 
\biggl\{ 
t\in \BbbR m

\bigm| \bigm| \bigm| \bigm| \exists y \in \BbbR d with (t, - r)\in projTW ( \=w)\times \BbbR n\scrM ( \=w, \=x, y)

\biggr\} 
.

(3.11)

Combining the conditions that M | W\times \BbbR n is graphically regular at ( \=w, \=x, - G( \=w, \=x))
and that W is a smooth manifold at \=w, (3.10) and (3.11) turn into (3.8).

Next we use a simple example to illustrate how the strong constraint qualification
(3.6) can be applied in calculating the projectional coderivative (3.8).

Example 3.5. For S(w) := \{ x\in \BbbR n | Ax+w \in K\} , whereK \subseteq \BbbR m is a closed set, let
G(w,x) = - Ax - w and M(w,x) =K. For W \subseteq dom S we can write gph M | W\times \BbbR n =
W \times \BbbR n \times K and accordingly

D\ast M | W\times \BbbR n ((w,x) | u) (y) =

\Biggl\{ 
NW (w)\times \{ 0\} if y \in  - NK(u),

\emptyset if y /\in  - NK(u),

\nabla G(w,x)\ast y= ( - y, - A\ast y).

Let n=m= 2, K = \BbbR \times \{ 0\} \cup \{ 0\} \times \BbbR , A= ( 0 0
0 1 ). Then dom S =K + rangeA= \BbbR 2.

Consider the particular pair ( \=w, \=x) \in gph S| W , where \=w = (0,1)\top , \=x = (0,0)\top , and a
smooth manifold W = \BbbR \times \{ 1\} \subseteq dom S. Then the constraint qualification (3.6), by
Lemma 3.3, becomes

(0,0)\in projTW ( \=w)\times \BbbR n\scrM ( \=w, \=x, y)

=
\Bigl\{ 
(projTW ( \=w)(v - y), - A\ast y) | v \in NW ( \=w), y \in  - NK(A\=x+ \=w)

\Bigr\} 
=\Rightarrow y= 0.

As  - G( \=w, \=x) = A\=x + \=w = (0,1)\top , K is regular at  - G( \=w, \=x) and NK( - G( \=w, \=x)) =
NK((0,1)\top ) = \BbbR \times \{ 0\} . Thus M | W\times \BbbR n is graphically regular at ( \=w, \=x, - G( \=w, \=x)).
Besides, in view of the facts that TW ( \=w) =\BbbR \times \{ 0\} and y \in  - NK(A\=x+ \=w) =\BbbR \times \{ 0\} 
and by the polar relation between NW ( \=w) and TW ( \=w),

0 = projTW ( \=w)(v - y) = projTW ( \=w)( - y) = - y=\Rightarrow y= 0.

Thus the constraint qualification (3.6) is satisfied. Applying (3.8), we obtain

D\ast 
WS( \=w, \=x)(r) = \{ y | y \in NK(A \=w+ \=x) with A\ast y= r\} =

\Biggl\{ 
\BbbR \times \{ 0\} if r= (0,0)\top ,

\emptyset if r \not = (0,0)\top .

Thus, D\ast 
WS( \=w, \=x)((0,0)\top ) =\BbbR \times \{ 0\} \not = \{ (0,0)\top \} . AsW is also a convex set, S does not

enjoy the Lipschitz-like property relative to W at \=w for \=x according to the generalized
Mordukhovich criterion (Theorem 2.6).
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2030 WENFANG YAO AND XIAOQI YANG

By observing the right-hand side of the expression (3.7), we can see that (t, - r)
actually belongs to something that is very close to the projectional coderivative of
the multifunction G(w,x) +M(w,x) relative to the set W \times \BbbR n at ( \=w, \=x) for 0. Next
we present a simpler model by taking G(w,x) = 0 so that the relation of projectional
coderivatives between S and M can be revealed more clearly.

Corollary 3.6. For an implicit mapping S :\BbbR m \rightrightarrows \BbbR n as

S(w) = \{ x | 0\in M(w,x)\} ,

where M :\BbbR m \times \BbbR n \rightrightarrows \BbbR d has closed graph, let a closed set W \subseteq \BbbR m be given and let
\=x\in S| W ( \=w). If the basic constraint qualification holds,

(0,0)\in D\ast M | W\times \BbbR n (( \=w, \=x) | 0) (y) =\Rightarrow y= 0,(3.12)

then

D\ast 
WS ( \=w | \=x) (r)

\subseteq limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| W -  -  -  -  - \rightarrow ( \=w,\=x)
r\prime \rightarrow r

\bigcup 
y\in \BbbR d

\biggl\{ 
projTW (w)(v)

\bigm| \bigm| \bigm| \bigm| (v, - r\prime )\in D\ast M | W\times \BbbR n ((w,x) | 0) (y)
\biggr\} 
.

(3.13)

If the strong constraint qualification holds,

(0,0)\in D\ast 
W\times \BbbR nM (( \=w, \=x) | 0) (y) =\Rightarrow y= 0,(3.14)

then we have

D\ast 
WS( \=w | \=x)(r)\subseteq 

\bigl\{ 
t | \exists y s.t. (t, - r)\in D\ast 

W\times \BbbR nM(( \=w, \=x) | 0)(y)
\bigr\} 
.(3.15)

When in addition M | W\times \BbbR n is graphically regular at ( \=w, \=x,0) and W is a smooth man-
ifold at \=w, the inclusions (3.13) and (3.15) are identical and become equations.

Proof. This corollary comes from direct application of Theorem 3.4 by taking

G(w,x) = 0. As (w,x)
gph S| W -  -  -  -  - \rightarrow ( \=w, \=x) is equivalent to (w,x,0)

gph M | W\times \BbbR n -  -  -  -  -  -  -  - \rightarrow ( \=w, \=x,0),
therefore

limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| W -  -  -  -  - \rightarrow ( \=w,\=x)
y\prime \rightarrow y

projTW (w)\times \BbbR nD\ast M | W\times \BbbR n ((w,x)| 0) (y\prime )\subseteq D\ast 
W\times \BbbR nM (( \=w, \=x)| 0) (y).

Then we can rewrite the inclusions in Theorem 3.4 as (3.13) and (3.15),
respectively.

In Theorem 3.4, two different constraint qualifications are mentioned. We can see
that the basic one (3.4) is ensuring the upper estimate in two ways: (i) restricting
S to W ; (ii) expressing the normal cone of gph S via those of gph G and gph M .
The strong one, as shown in (3.14), aims at presenting the projectional coderivative
of S via that of M when G vanishes. In the next theorem, we give a setting where
the basic constraint qualification (3.4) is automatically satisfied when we consider the
largest possible W as dom S.
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2031

Theorem 3.7. For S defined in (1.1), if M(w,x) = M(x) and \nabla wG(w,x) has
full rank around ( \=w, \=x)\in gph S, then

D\ast 
domSS ( \=w | \=x) (r) = limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S -  -  -  - \rightarrow ( \=w,\=x)
r\prime \rightarrow r

\bigcup 
y\in \BbbR d

\biggl\{ 
projTdomS(w)(\nabla wG(w,x)\ast y)

\bigm| \bigm| \bigm| \bigm|  - r\prime \in \nabla xG(w,x)\ast y+D\ast M (x |  - G(w,x)) (y)

\biggr\} 
.(3.16)

Proof. When the set W := dom S, S| W = S. By condition (b) in [23,
Theorem 2.1], we have for any (w,x)\in gph S,

Ngph S(w,x) =
\bigcup 

y\in \BbbR d

(\nabla G(w,x)\ast y+ \{ 0\} \times D\ast M (x |  - G(w,x)) (y)) .

Therefore we have

limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| W -  -  -  -  - \rightarrow ( \=w,\=x)

projTW (w)\times \BbbR nNgph S| W (w,x)

= limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S -  -  -  - \rightarrow ( \=w,\=x)

projT\mathrm{d}\mathrm{o}\mathrm{m} S(w)\times \BbbR nNgph S(w,x)

= limsup

(w,x)
\mathrm{g}\mathrm{p}\mathrm{h} S -  -  -  - \rightarrow ( \=w,\=x)

\bigcup 
y\in \BbbR d

projT\mathrm{d}\mathrm{o}\mathrm{m} S(w)\times \BbbR n (\nabla G(w,x)\ast y+ \{ 0\} \times D\ast M(x |  - G(w,x))(y))

and thus the equality (3.16).

4. Affine variational inequalities. In this section, we consider the following
AVI:

0\in q+Mx+NC(x),

where C \subset \BbbR n is a polyhedral set and M is an n\times n matrix. Here we consider that q
is a parameter. The solution mapping of AVI is written as

S(q) = \{ x | 0\in q+Mx+NC(x)\} .(4.1)

Note that for AVI, gph S is always a union of finitely many polyhedral sets as it
is a linear transformation of gph NC (see [31, Example 12.31] and [8]). For a closed
subset Q\subseteq dom S, the graph of the multifunction S restricted on Q is

gph S| Q = gph S \cap (Q\times \BbbR n) = \{ (q,x)\in Q\times \BbbR n | 0\in q+Mx+NC(x)\} .(4.2)

We first obtain a upper estimate of the projectional coderivative of S, when Q is a
union of polyhedral sets. In this way, we can skip the limsup appearing in, e.g., (3.5),
and express the upper estimate of D\ast 

QS in the form of a union within the range of a
ball centered at (\=q, \=x).

Proposition 4.1. For the solution mapping S (4.1) of AVI, consider a union
of polyhedral sets Q \subseteq dom S. Let (\=q, \=x) \in gph S| Q. If the following basic constraint
qualification holds,

u\ast \in NQ(\=q), (M
\ast u\ast , u\ast )\in Ngph NC

(\=x, - M \=x - \=q) =\Rightarrow u\ast = 0,(4.3)
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2032 WENFANG YAO AND XIAOQI YANG

then

D\ast 
QS(\=q | \=x)(y\ast )\subseteq 

\bigcup 
(q,x)\in gph S| Q\cap \BbbB \varepsilon (\=q,\=x)

\biggl\{ 
projTQ(q)( - u\ast +w\ast )

\bigm| \bigm| \bigm| w\ast \in NQ(q)

\exists u\ast s.t. (M\ast u\ast  - y\ast , u\ast )\in Ngph NC
(x, - Mx - q)

\biggr\} (4.4)

for sufficiently small \varepsilon > 0. If one of the following conditions is satisfied,
(a) gph NC and Q are regular around (\=x, - M \=x - \=q) and \=q, respectively,
(b) Q=dom S (in this case the constraint qualification (4.3) can be avoided),

then the inclusion (4.4) becomes an equality.

Proof. For any q,x\in \BbbR n, let

\Gamma | Q\times \BbbR n(q,x) :=NC(x) if q \in Q; \emptyset if q /\in Q.

For any q \in Q,x\in \BbbR n, and v \in NC(x), we have

D\ast \Gamma | Q\times \BbbR n ((q,x) | v) =NQ(q)\times D\ast NC(x | v).

Then the mapping S (4.1) is rewritten as

S| Q(q) = \{ x | 0\in q+Mx+\Gamma | Q\times \BbbR n(q,x)\} .(4.5)

Note that the constraint qualification (3.4) becomes

(0,0) = (u\ast ,M\ast u\ast ) + (w\ast , v\ast ) with w\ast \in NQ(\=q), v
\ast \in D\ast NC(\=x |  - M \=x - \=q)(u\ast )

=\Rightarrow u\ast = 0,

which is equivalent to

 - u\ast \in NQ(\=q),  - M\ast u\ast \in D\ast NC(\=x |  - M \=x - \=q)(u\ast ) =\Rightarrow u\ast = 0.

By tuning the direction of u\ast , we arrive at (4.3).
And the upper estimate (3.5) can be put as

D\ast 
QS (\=q | \=x) (y\ast )\subseteq limsup

(q,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| Q -  -  -  -  - \rightarrow (\=q,\=x)
y\prime \ast \rightarrow y\ast 

\bigcup 
u\ast \in \BbbR n

\biggl\{ 
projTQ(q)(t

\ast )
\bigm| \bigm| \bigm| (t\ast , - y\prime 

\ast 
)\in (u\ast ,M\ast u\ast )

+ NQ(q)\times D\ast NC(x |  - Mx - q)(u\ast )

\biggr\} 
= limsup

(q,x)
\mathrm{g}\mathrm{p}\mathrm{h} S| Q -  -  -  -  - \rightarrow (\=q,\=x)
y\prime \ast \rightarrow y\ast 

\bigcup 
u\ast \in \BbbR n

\biggl\{ 
projTQ(q)(u

\ast +w\ast )
\bigm| \bigm| \bigm| y\prime 

\ast 
= - M\ast u\ast  - v\ast ,

w\ast \in NQ(q), v
\ast \in D\ast NC(x |  - Mx - q)(u\ast )

\biggr\} 
=

\bigcup 
(q,x)\in gph S| Q\cap \BbbB \varepsilon (\=q,\=x)

\bigcup 
u\ast \in \BbbR n

\biggl\{ 
projTQ(q)(u

\ast +w\ast )
\bigm| \bigm| \bigm| y\ast = - M\ast u\ast  - v\ast ,

w\ast \in NQ(q), v
\ast \in D\ast NC(x |  - Mx - q)(u\ast )

\biggr\} 
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2033

for sufficiently small \varepsilon > 0. Here the second equality comes from the polyhedrality
of both gph S| Q and Q as only finitely many possible statuses are considered. By
adjusting the expression of y\ast and direction of u\ast , we finally arrive at (4.4). Under
condition (a), we have Ngph S| Q(q,x) =NQ(q)\times \{ 0\} +Ngph S(q,x) for (q,x) near (\=q, \=x)
by [31, Theorem 6.14]. Accordingly the inclusion in (4.4) becomes an equality. Under
condition (b), the equality in (4.4) is derived as an application of Theorem 3.7.

Given the upper estimate (4.4), we can give a sufficient condition for the Lipschitz-
like property of S relative to Q when Q is further convex, that is, Q is a polyhedral set.
Moreover, based on the critical face condition introduced in [8], the sufficient condition
can be simplified concerning the given point only. As such we derive a ``generalized
critical face condition."" To do this, let us review two notations introduced in [8]. For
a polyhedral set C \subset \BbbR n and (x, v)\in gph NC , the critical cone K(x, v) is defined by

K(x, v) = TC(x)\cap [v]\bot .

Let \scrF (K) be the collection of all the closed faces of polyhedral cone K in the form of
F =K \cap [v\ast ]\bot with v\ast \in K\ast . It is clear that such an F is also a polyhedral cone.

The following lemma plays an important role in the development of a critical face
condition in [8], which will be useful here as well.

Lemma 4.2 (see [8, Reduction Lemma]). For any (x, v) \in gph NC , there is a
neighborhood U of (0,0) in \BbbR n \times \BbbR n such that, for (x\prime , v\prime )\in U , one has

v+ v\prime \in NC(x+ x\prime )\Leftarrow \Rightarrow v\prime \in NK(x,v)(x
\prime ).

In particular, Tgph NC
(x, v) = gph NK(x,v).

With the Reduction Lemma, the local geometry of gph NC around (\=x, \=v) can
be observed via that of gph NK(\=x,\=v) and allows us to express Ngph NC

(x, v) via the
faces of the critical cone K(x, v). From the proof of [8, Theorem 2], for any pair
(x, v)\in gph NC , we have

Ngph NC
(x, v) =

\bigl\{ 
(F1  - F2)

\ast \times (F1  - F2) | F2 \subset F1 \in \scrF (K(x, v))
\bigr\} 
.(4.6)

In [11], the directional limiting normal cone of gph NC is expressed with critical
faces. In light of this expression, we have the following result.

Lemma 4.3. For a given pair (x, v) \in gph NC and (x\prime , v\prime ) \in Tgph NC
(x, v) suffi-

ciently near to (0,0), we have

Ngph NC
(x+ x\prime , v+ v\prime ) =

\bigl\{ 
(F1  - F2)

\ast \times (F1  - F2) | x\prime \in F2 \subset F1 \subset [v\prime ]\bot ,

F1, F2 \in \scrF (K(x, v))
\bigr\} 
.

(4.7)

Proof. As (x\prime , v\prime )\in Tgph NC
(x, v) is sufficiently near to (0,0), we have

Ngph NC
(x+ x\prime , v+ v\prime ) = limsup

(x\prime \prime ,v\prime \prime ) - \rightarrow (x\prime ,v\prime )

\widehat Ngph NC
((x, v) + (x\prime \prime , v\prime \prime ))

= limsup
t\searrow 0

(\~x,\~v)\rightarrow (x\prime ,v\prime )

\widehat Ngph NC
((x, v) + t(\~x, \~v))

= Ngph NC
((x, v); (x\prime , v\prime )) .

The last equality comes from the definition of directional limiting normal cone (3.1).
Then (4.7) is obtained by [11, Theorem 2.12].

In the following theorem, we present the ``generalized critical face condition"" as
an inclusion, which reduces to the one in [8] when \=q \in int Q.
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2034 WENFANG YAO AND XIAOQI YANG

Theorem 4.4. For (\=q, \=x) \in gph S| Q and Q being a polyhedral set, suppose the
following constraint qualification holds:

NQ(\=q)\cap (F1  - F2)\cap (M(F1  - F2))
\ast = \{ 0\} ,(4.8)

where F1, F2 \in \scrF (K(\=x, \=v)) are closed faces with F2 \subset F1 and \=v= - M \=x - \=q. If, for any
such F1, F2, the following inclusion is satisfied,

(F1  - F2)\cap (M(F1  - F2))
\ast \subseteq  - NQ(\=q),(4.9)

then S has Lipschitz-like property relative to Q at \=q for \=x. Furthermore, we have the
following:

(i) If gph NC is regular around (\=x, \=v), then the sufficient condition (4.9) becomes
also necessary.

(ii) If the set Q = dom S (in this case, dom S is polyhedral), then the condition
(4.9) is sufficient and necessary regardless of the satisfaction of (4.8).

Proof. Noting that gph S| Q is a union of finitely many polyhedral sets, for any
(q,x) \in gph S| Q sufficiently close to (\=q, \=x), (q\prime , x\prime ) := (q  - \=q,x - \=x) \in Tgph S| Q(\=q, \=x) is
sufficiently close to (0,0). By (4.2) and [31, Exercise 6.7, Theorem 6.42], we have

Tgph S| Q(\=q, \=x)\subseteq (TQ(\=q)\times \BbbR n)\cap Tgph S(\=q, \=x)

= \{ (\~q, \~x) | \~q \in TQ(\=q), (\~x, - M \~x - \~q)\in Tgph NC
(\=x, \=v)\} .

(4.10)

Therefore q\prime \in TQ(\=q) and (x\prime , - Mx\prime  - q\prime ) \in Tgph NC
(\=x, \=v). By polyhedrality of Q, it

holds that

NQ(\=q+ q\prime ) =NQ(\=q)\cap [q\prime ]\bot .(4.11)

As (\=q, \=x) \in gph S| Q, we have (\=x, - M \=x - \=q) \in gph NC . Thus by (4.6), we can derive
the constraint qualification (4.3) as

u\ast \in NQ(\=q), (M\ast u\ast , u\ast )\in (F1  - F2)
\ast \times (F1  - F2) =\Rightarrow u\ast = 0(4.12)

for some F1, F2 \in \scrF (K(\=x, \=v)) with F2 \subset F1.
By using the upper estimate in Proposition 4.1 and the generalized Mordukhovich

criterion in Theorem 2.6, it would be sufficient to examine the Lipschitz-like property
of S relative to Q at (\=q, \=x) by checking

(M\ast u\ast , u\ast )\in Ngph NC
(x, - Mx - q), w\ast \in NQ(q) =\Rightarrow projTQ(q)( - u\ast +w\ast ) = 0,

(4.13)

where (q,x) \in gph S| Q is sufficiently close to (\=q, \=x). By [31, Exercise 12.22] and the
polar relation between TQ(q) and NQ(q), the following equivalence holds:

projTQ(q)( - u\ast +w\ast ) = 0\Leftarrow \Rightarrow  - u\ast +w\ast \in NQ(q) for any w\ast \in NQ(q).

Noting q = \=q + q\prime , it follows from (4.11) and the convexity and conic structure of
NQ(q) that the above equivalence reduces to

projTQ(q)( - u\ast +w\ast ) = 0 for any w\ast \in NQ(q)\Leftarrow \Rightarrow  - u\ast \in NQ(q) =NQ(\=q)\cap [q\prime ]\bot .

(4.14)
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2035

As (q\prime , x\prime ) \in Tgph S| Q(\=q, \=x), by (4.10), we have (x\prime , - Mx\prime  - q\prime ) \in Tgph NC
(x, v). Note

that \=v= - M \=x - \=q. Let v\prime = - Mx\prime  - q\prime . By Lemma 4.3, we have

Ngph NC
(x, - Mx - q) =

\bigl\{ 
(F1  - F2)

\ast \times (F1  - F2) | x\prime \in F2 \subset F1 \subset [v\prime ]\bot ,

F1, F2 \in \scrF (K(\=x, \=v))
\bigr\} 
,

(4.15)

where (q,x)\in gph S| Q is sufficiently close to (\=q, \=x). Then by (4.13), (4.14), and (4.15),
a sufficient condition can be derived as

\forall (M\ast u\ast , u\ast )\in (F1  - F2)
\ast \times (F1  - F2) =\Rightarrow u\ast \in  - NQ(\=q)\cap [q\prime ]\bot (4.16)

for all closed faces F1, F2 \in \scrF (K(\=x, \=v)) with x\prime \in F2 \subset F1 \subset [ - Mx\prime  - q\prime ]\bot .
It remains to show that the sufficient condition (4.16) can be equivalently replaced

by the following condition:

\forall (M\ast u\ast , u\ast )\in (F1  - F2)
\ast \times (F1  - F2) =\Rightarrow u\ast \in  - NQ(\=q)(4.17)

for all closed faces F1, F2 \in \scrF (K(\=x, \=v)) with F2 \subset F1. It is obvious that (4.16)
implies (4.17) by taking x\prime = q\prime = 0. Now we prove that (4.17) implies (4.16). For
F1, F2 \in \scrF (K(\=x, \=v)) with x\prime \in F2 \subset F1 \subset [ - Mx\prime  - q\prime ]\bot , we have

tx\prime \in F2 \subset F1 \forall t\geq 0

by the conic structure of F2 and F1. Thus we have

[x\prime ]\subset F1  - F2 \subset [ - Mx\prime  - q\prime ]\bot .

Note that ([ - Mx\prime  - q\prime ]\bot )\ast = [ - Mx\prime  - q\prime ] and [x\prime ]\ast = [x\prime ]\bot . Besides, F1  - F2 is still a
convex polyhedral cone and by the polar relation, we also have

[ - Mx\prime  - q\prime ]\subset (F1  - F2)
\ast \subset [x\prime ]\bot .

Therefore the following inclusions hold:

(M\ast u\ast , u\ast )\in (F1  - F2)
\ast \times (F1  - F2)\subset [x\prime ]\bot \times [ - Mx\prime  - q\prime ]\bot .

From M\ast u\ast \in (F1  - F2)
\ast \subset [x\prime ]\bot , we have \langle u\ast ,Mx\prime \rangle = \langle M\ast u\ast , x\prime \rangle = 0. From u\ast \in 

F1  - F2 \subset [ - Mx\prime  - q\prime ]\bot , we have \langle u\ast , - q\prime \rangle = \langle u\ast , - Mx\prime  - q\prime \rangle = 0. Thus, u\ast \in [q\prime ]\bot 

holds. Therefore (4.16) holds when (4.17) is satisfied.
For any possible combinations of F1, F2 \in \scrF (K(\=x, \=v)) with F2 \subset F1, F1 and F2 are

closed and convex cones and so is F1 - F2. By [30, Corollary 16.3.2], M\ast u\ast \in (F1 - F2)
\ast 

is equivalent to u\ast \in (M(F1  - F2))
\ast . Then (4.8) and (4.9) can be derived from (4.12)

and (4.17), respectively.
When gph NC is regular at (\=x, \=v), S is regular at (\=q, \=x). Besides, Q is a polyhedral

set. By the first equality in (4.2), [31, Theorem 6.42], and the regularity of gph NC

at (\=x, \=v), we have

NQ(\=q) +D\ast S(\=q | \=x)(y\ast )\subseteq \widehat D\ast S| Q(\=q | \=x)(y\ast ).(4.18)

By [25, Theorem 2.1], when S has the Lipschitz-like property relative to Q at \=q for \=x,
given (4.18), there exists \kappa \in \BbbR + such that

max
t\in TQ(\=q)\cap \BbbS 

\langle u\ast +w\ast , t\rangle \leq \kappa \| y\ast \| \forall u\ast \in D\ast S(\=q | \=x)(y\ast ), \forall w\ast \in NQ(\=q).
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2036 WENFANG YAO AND XIAOQI YANG

Further, by polar relative between TQ(\=q) and NQ(\=q), the above inequality becomes

\| projTQ(\=q)(u
\ast )\| =max

\biggl\{ 
max

t\in TQ(\=q)\cap \BbbS 
\langle u\ast , t\rangle ,0

\biggr\} 
\leq \kappa \| y\ast \| \forall u\ast \in D\ast S(\=q | \=x)(y\ast ),

which is equivalent to

D\ast S(\=q | \=x)(0)\subseteq NQ(\=q).

By calculation in [8]

D\ast S(\=q | \=x)(0) = \{  - u\ast | (M\ast u\ast , u\ast )\in Ngph NC
(\=x, \=v)\} .

Then again by (4.15) we arrive at the necessity of the condition (4.9). Therefore (i)
holds.

Besides, by Proposition 4.1(b), the upper estimate in (4.4) becomes exact when
Q = dom S. In this case, the sufficient condition becomes necessary without the
satisfaction of the constraint qualification (4.8). Thus (ii) holds.

5. A discussion on the necessity of the generalized critical face con-
dition. For some AVI with specific structures, it is possible to further simplify the
generalized critical face condition (4.9). In this section, we first revisit Theorem 4.4(i)
and (ii) and further simplify the generalized critical face condition (4.9). We then dis-
cuss a LCP with a Q0 matrix as an example of Proposition 5.3.

5.1. Regularity of Ngph NC
. First we give some equivalent characterizations

for the regularity of the set gph NC .

Lemma 5.1. For the polyhedral set C and the pair (x, v)\in gph NC , the following
statements are equivalent:

(i) gph NC is regular at (x, v).
(ii) The critical cone K(x, v) = TC(x)\cap [v]\bot is a subspace.
(iii) v \in rint NC(x).

Proof. For v \in NC(x), from the calculation in [8]\widehat Ngph NC
(x, v) =K(x, v)\ast \times K(x, v).

By comparing the expression of Ngph NC
(x, v) in (4.6) we obtain the equivalence be-

tween (i) and (ii) as any closed face of a subspace remains a subspace. Given that C
is a polyhedral set, TC(x) and NC(x) are two polyhedral cones polar to each other.
For v \in NC(x), we have

K(x, v) = TC(x)\cap [v]\bot =NNC(x)(v).

By [22, Proposition 2.2], NNC(x)(v) being a subspace is equivalent to v \in rint NC(x).
Thus the equivalence between (ii) and (iii) is derived.

When the critical cone K(\=x, \=v) is also a subspace, we show in the next corollary
that the left-hand side of the condition (4.9) is also a subspace. And instead of
checking the condition on each possible combination of F1 - F2, we can directly check
the condition with the set K(\=x, \=v).

Proposition 5.2. For (\=q, \=x) \in gph S| Q, where S is defined as in (4.1) and Q
is a polyhedral set, when \=v =  - M \=x - \=q \in rint NC(\=x), K(\=x, \=v) is a subspace and the
necessary condition (4.9) becomes

K(\=x, \=v)\cap (MK(\=x, \=v))\bot \subseteq NQ(\=q).(5.1)
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RELATIVE LIPSCHITZ-LIKE PROPERTY OF MULTIFUNCTIONS 2037

Proof. From Lemma 5.1 we know that when \=v \in rint NC(\=x), it is equivalent that
gph NC is regular at (\=x, \=v) and therefore

K(\=x, \=v) = \{ F1  - F2 | F2 \subseteq F1, F1, F2 \in \scrF (K(\=x, \=v))\} 

is a subspace, and so is MK(\=x, \=v). Then the condition (4.9) can be put as (5.1).

5.2. \bfitC being a polyhedral cone. Next we consider the second case where C
in (4.1) is a polyhedral cone. In this case we can acquire the expression of dom S
when it is also convex. Then the condition for the Lipschitz-like property of S relative
to its domain becomes sufficient and necessary. In particular, when C =\BbbR n

+, we show
that the condition can be exploited with the structure explicitly.

Proposition 5.3. For (\=q, \=x) \in gph S, where S is defined as in (4.1), suppose C
is a polyhedral cone and dom S is convex. In this case, S is Lipschitz-like relative to
dom S at \=q for \=x if and only if

(F1  - F2)\cap (M(F1  - F2))
\ast \subseteq C \cap (MC)\ast \cap [\=q]\bot ,(5.2)

where F1, F2 \in \scrF (K(\=x, \=v)) are closed faces with F2 \subset F1 and \=v= - M \=x - \=q.

Proof. When C is a polyhedral cone, by [14, Proposition 2], dom S is convex (and
therefore a polyhedral cone as well) if and only if dom S = - C\ast  - MC. Then we have

 - Ndom S(\=q) = - (dom S)\ast \cap [\=q]\bot =C \cap (MC)\ast \cap [\=q]\bot .

Therefore the sufficient and necessary condition (4.9) can be put as (5.2).

To end this section, we show as an example that necessary and sufficient condition
(5.2) can be further exploited for an LCP with a Q0 matrix.

Consider the following LCP:

x\geq 0, Mx+ q\geq 0, x\top (Mx+ q) = 0,(5.3)

where q,x \in \BbbR n and M is an n \times n matrix. This is also a type of AVI with the
polyhedral set C in (4.1) being \BbbR n

+. We denote the solution mapping of (5.3) with q
being the parameter as S.

To avoid abuse of notation, we specify the unique index combination decided by
(\=q, \=x)\in gph S as

I1 :=\{ i\in I| \=xi = 0, (M \=x+ \=q)i > 0\} ,
I2 :=\{ i\in I| \=xi > 0, (M \=x+ \=q)i = 0\} ,(5.4)

I3 :=\{ i\in I| \=xi = 0, (M \=x+ \=q)i = 0\} ,

where I := \{ 1, . . . , n\} . To better illustrate the structure of Ngph S(\=q, \=x), we introduce
a set defined by index combinations:

W (I1, I2, I3) :=

\left\{   (u\ast , v\ast )\in \BbbR n \times \BbbR n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
(u\ast 

i , v
\ast 
i )\in \{ 0\} \times \BbbR if i\in I1

(u\ast 
i , v

\ast 
i )\in \BbbR \times \{ 0\} if i\in I2

(u\ast 
i , v

\ast 
i )\in \Omega if i\in I3

\right\}   ,(5.5)

where \Omega := (\{ 0\} \times \BbbR )\cup (\BbbR \times \{ 0\} )\cup \BbbR 2
 - . Note that for (\=q, \=x)\in gph S,

(u\ast , v\ast )\in W (I1, I2, I3)\Leftarrow \Rightarrow (v\ast , - u\ast )\in Ngph N\BbbR n
+
(\=x, - M \=x - \=q).(5.6)
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2038 WENFANG YAO AND XIAOQI YANG

By calculation in [16] we have

Ngph S(\=q, \=x) = \{ (u\ast , M\ast u\ast + v\ast ) | (u\ast , v\ast )\in W (I1, I2, I3)\} .(5.7)

As the assumption of the generalized Mordukhovich criterion requires the relative set
to be closed and convex, it is natural to ask under what condition dom S is closed and
convex. The following proposition provides the rationality behind such an assumption.

Lemma 5.4 (see [7, Proposition 3.2.1]). For an LCP(q,M) defined as in (5.3),
the following statements are equivalent:

(i) M is a Q0 matrix.
(ii) dom S is a polyhedral cone in \BbbR n.
(iii) dom S = conv pos (E, - M) =\BbbR n

+  - M\BbbR n
+.

Here a Q0 matrix means the type of matrices with LCP (5.3) being solvable when-
ever feasible.

Following Theorem 4.4, in the next theorem we prove that under some specific
setting we can use only the information at the given point to obtain a sufficient
and necessary condition for the relative Lipschitz-like property. Before presenting
the condition, we introduce another set defined by an index combination similar to
W (I1, I2, I3):

W \prime (I1, I2, I3) :=

\left\{   (u\ast , v\ast )\in \BbbR n \times \BbbR n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
(u\ast 

i , v
\ast 
i )\in \{ 0\} \times \BbbR  - if i\in I1

(u\ast 
i , v

\ast 
i )\in \BbbR  - \times \{ 0\} if i\in I2

(u\ast 
i , v

\ast 
i )\in \BbbR 2

 - if i\in I3

\right\}   .(5.8)

Note that this set is generated by replacing all \BbbR with \BbbR  - in W (I1, I2, I3).

Proposition 5.5. For LCP (5.3) with M being a Q0 matrix, let (\=q, \=x) \in gph S.
The solution mapping S has the Lipschitz-like property relative to its domain at \=q for
\=x if and only if

\forall ( - u\ast ,M\ast u\ast )\in W (I1, I2, I3) =\Rightarrow ( - u\ast ,M\ast u\ast )\in W \prime (I1, I2, I3).(5.9)

Proof. Given Lemma 5.4 and M being a Q0 matrix, dom S is a polyhedral cone.
By Proposition 5.3, the sufficient and necessary condition for the Lipschitz-like prop-
erty of S relative to its domain at \=q for \=x writes

(F1  - F2)\cap (M(F1  - F2))
\ast \subseteq \BbbR n

+ \cap (M\BbbR n
+)

\ast \cap [\=q]\bot ,(5.10)

where F1, F2 \in \scrF (K(\=x, \=v)) are closed faces with F2 \subset F1 and \=v= - M \=x - \=q. From the
representations of Ngph S(\=q, \=x) in (4.6), (5.7) and the definition of W (I1, I2, I3) (5.5)
we can see that

(M\ast u\ast , u\ast )\in 
\bigcup 

F2\subseteq F1

F1,F2\in \scrF (K(\=x,\=v))

\biggl( 
(F1  - F2)

\ast \times (F1  - F2)

\biggr) 

\Leftarrow \Rightarrow ( - u\ast ,M\ast u\ast )\in W (I1, I2, I3).

For u\ast \in \BbbR n
+ \cap (M\BbbR n

+)
\ast \cap [\=q]\bot , we know that

\langle u\ast , \=q\rangle = \langle u\ast , - \=v\rangle  - \langle u\ast ,M \=x\rangle = \langle u\ast , - \=v\rangle  - \langle M\ast u\ast , \=x\rangle = 0.

Given that u\ast \in \BbbR n
+,  - \=v \in \BbbR n+, M\ast u\ast \in \BbbR n

 - , and \=x\in \BbbR n
+, we have

\langle u\ast , - \=v\rangle = \langle M\ast u\ast , \=x\rangle = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Therefore, along with the index category in (5.4), we have that

u\ast \in \BbbR n
+ \cap (M\BbbR n

+)
\ast \cap [\=q]\bot \Leftarrow \Rightarrow ( - u\ast ,M\ast u\ast )\in W \prime (I1, I2, I3).

The sufficient and necessary condition (5.9) is proved.

Remark 5.6. When \=q \in int dom S, Ndom S(\=q) = \{ 0\} and the criterion (5.9)
reduces to

( - u\ast ,M\ast u\ast )\in W (I1, I2, I3) =\Rightarrow u\ast = 0,

which is equivalent to the sufficient and necessary condition for the Lipschitz-like
property of S in [8, Theorem 4].

6. Conclusions. In this paper, we presented several upper estimates of projec-
tional coderivative of the solution mapping for parametric systems. We compared two
sufficient conditions that were given by a projectional coderivative and a directional
limiting coderivative, respectively. We developed a sufficient condition of the relative
Lipschitz-like property of the solution mapping for AVIs as a generalized critical face
condition. For AVIs with specific structures, we showed that this sufficient condi-
tion can also be necessary. We considered a linear complementarity problem with a
Q0 matrix as an example and simplified the condition concerning the reference point
information only.
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