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ABSTRACT This paper presents novel kernel adaptive filters with feedback, namely, kernel recursive
maximum correntropy with multiple feedback (KRMC-MF) and its simplified version, a linear recurrent ker-
nel online learning algorithm based on maximum correntropy criterion (LRKOL-MCC). In LRKOL-MCC
and KRMC-MF, single output and multiple outputs based on single delay are utilized to construct their
feedback structure, respectively. Compared with the minimum mean square error criterion, the maximum
correntropy criterion (MCC) adopted by LRKOL-MCC and KRMC-MF captures higher order statistics of
errors. The proposed filters are, therefore, robust against outliers. Therefore, the past information can be
reused to improve filtering performance in terms of the steady-state mean square error. The convergence
characteristics of the filter parameters in LRKOL-MCC and KRMC-MF are also derived. Simulations on
chaotic time-series prediction and nonlinear regression illustrate the desirable accuracy and robustness of
the proposed filters.

INDEX TERMS Kernel adaptive filters, maximum correntropy, minimum mean square error, feedback
structure, convergence.

I. INTRODUCTION
Over the past decade, kernel methods have been applied
to solving nonlinear issues in signal processing, remote
sensing, and machine learning [1]. In the kernel method,
the input space is translated into a high or even infinite dimen-
sion reproducing kernel Hilbert space (RKHS) for modeling
the nonlinear relation existing in the input and the out-
put spaces [2]–[4] using some nonlinear mapping functions.
To avoid the direct calculation of these functions, the nonlin-
ear issue is changed into the inner product in RKHS. Further,
by virtue of the reproducing property of RKHS, the inner
product in RKHS is evaluated only by a Mercer kernel
that is a continuous, symmetric and positive definite func-
tion [5], [6]. Based on the kernel method, kernel adaptive
filters (KAFs) can therefore solve the nonlinear adaptive fil-
tering problem by taking the linear form in RKHS. The clas-
sical KAFs include the kernel least mean square (KLMS) [7],
kernel affine projection algorithm (KAPA) [8], and kernel

recursive least squares (KRLS) [9]. Generally, feedback net-
works (FNs) can be introduced to improve performance
in the fields of signal processing or neural networks [10].
Hence, the feedback structures are also applied to kernel
adaptive filters, generating the linear recurrent kernel online
learning (LRKOL) algorithm [11], kernel least mean square
with single feedback (SF-KLMS) algorithm [12], regularized
kernel least mean square algorithm with multiple-delay feed-
back (RKLMS-MDF) algorithm [13], and kernel recursive
least squares with multiple feedback (KRLS-MF) [14]. The
linearly increasing network sizes in these KAFs limit their
online applications [15]. Therefore, sparsification methods
such as the novelty criterion [16], surprise criterion [17], and
quantization method [18], [19] are required to reduce the
network size of KAFs.

The aforementioned KAFs based on the minimum mean
square error (MMSE) criterion usually achieve better filter-
ing performance for the case of Gaussian noises. Actually,
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MMSE merely contains the second order statistics of errors,
and is therefore sensitive to non-Gaussian noises or large
outliers. To overcome this issue, information theoretic learn-
ing (ITL) has been introduced as the cost function for the non-
Gaussian cases. Compared with MMSE, ITL can incorporate
the complete distribution of errors into the learning process,
resulting in an improvement on filtering precision and robust-
ness against outliers. A variety of ITL criterions [20]–[22],
e.g., minimum error entropy (MEE) [23], [24] and maximum
correntropy criterion (MCC) [25]–[36], have already been
combined into adaptive learning systems. As a similarity
measure of two random variables, MCC with a lower compu-
tational cost has been applied to KRLS, generating the cor-
responding kernel recursive maximum correntropy (KRMC)
algorithm. The KRMC algorithm inheriting the advantages
of both KRLS and MCC, can achieve excellent performance
for solving nonlinear problems from the aspects of filtering
accuracy and stability in impulsive noise environments [37].

In this paper, by virtue of high accuracy and robustness
against outliers of KRMC, a novel feedback structure based
on multiple single-delay outputs is introduced into KRMC,
generating novel kernel recursive maximum correntropy with
multiple feedback (KRMC-MF). To further reduce the com-
putational complexity, a simplified feedback structure based
on only one single-delay output is also presented to construct
a linear recurrent kernel online learning algorithm based on
maximum correntropy criterion (LRKOL-MCC), which was
also not reported before.

The rest of this paper is organized as follows. Section II
briefly reviews the definition of correntropy. KRLS and
KRMC are introduced in Section III. In Sections IV and V,
a new KRMC-MF and its simplified version LRKOL-MCC
are derived. Seciton VI presents the convergence analysis of
the proposed filters. In Section VII, simulations on chaotic
time series prediction and nonlinear regression illustrate the
filtering accuracy and robustness of the proposed filters.
Section VIII concludes this paper.

II. CORRENTROPY
The similarity between two variables can be measured by
correntropy [38], [39]. Given two random variables X and Y
with fXY (x, y) denoting the joint probability density function
and x, y being realizations of X ,Y , correntropy is defined as
follows:

C (X ,Y ) =
∫∫

κ (x, y)fXY (x, y) dxdy. (1)

Hence,C (X ,Y ) can also be regarded as the expectation of the
kernel function κ (·, ·). Generally, the Gaussian kernel with
the universal approximation is widely utilized and takes the
form of [40]–[42]

κh1 (x, y) = exp

(
−(x − y)2

2h21

)
, (2)

where h1 denotes the kernel width of correntropy. This
implies that the Gaussian kernel is a shift-invariant kernel
function, i.e., κh1 (x, y) = κh1 (x − y).

Define R = X − Y . Equation (1) is therefore rewritten as

C (R) =
∫
κh1 (r)fR (r) dr (3)

where r = x−y is the realization of the variable R associated
with probability density function fR (r).
However, in practice, we may not know the exact joint

probability density function fR(r), which precludes direct
calculation of C (R) by (3). Hence, the correntropy C(R)
is generally estimated using a finite number of independent
identical distribution data {xj, yj}Mj=1, i.e.,

Ĉ (R) =
1
M

M∑
j=1

κh1
(
rj
)

(4)

with rj = xj − yj.
According to (2), the optimization for minimizing rj in (4)

can be changed into maximizing the kernel function κh1
(
rj
)
,

resulting in the following cost function under the maximum
correntropy criterion (MCC).

max Ĉ (R) =
1
M

M∑
j=1

κh1
(
rj
)
. (5)

Note that the coefficient 1/M as a scale factor only controls
the magnitude of the correntropy Ĉ(R) and has no influence
on the solution to (5). Therefore, the cost function underMCC
is simplified by eliminating the coefficient 1/M , i.e.,

max C̄ (R) =
M∑
j=1

κh1
(
rj
)
. (6)

III. REVIEWS OF THE KERNEL RECURSIVE
LEAST SQUARES AND KERNEL RECURSIVE
MAXIMUM CORRENTROPY
A. KERNEL RECURSIVE LEAST SQUARES ALGORITHM
In the original Euclidean space, given the training input-
output data at discrete time i denoted by {u(j), dj(i)}ij=1, where
u(j) ∈ Rn×1 and dj(i) ∈ R are the jth input vector and
the desired output respectively, a continuous mapping f :
Rn×1

→ R hidden in the training set is required to be
learned. The nonlinear mapping transforming the input data
from the Euclidean space into RKHS is denoted by ϕ(·).
Let 9(i) = [ϕ(u(1)), ϕ(u(2)), . . . , ϕ(u(j)), . . . , ϕ(u(i))] and
d(i) = [d1(i), d2(i), . . . , dj(i), . . . , di(i)]T . According to the
kernel method, the estimate of the latent function fi at discrete
time i can be modeled by the following inner product:

f̂i(·) = ω(i)Tϕ(·), (7)

where ω(i) is the weight vector in RKHS. Based on all the
training data at discrete time i, ω(i) can be denoted by a linear
combination of the feature input ϕ(u(j)) and the coefficient αj,
i.e.,

ω(i) =
i∑

j=1

αjϕ (u (j)). (8)
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Substituting (8) into (7) yields

f̂i(·) =
i∑

j=1

αjϕ (u (j))Tϕ(·). (9)

However, it is hard to find the mapping function ϕ(·) for
different input data. Therefore, to avoid the direct calculation
of this mapping function, the kernel trick [17] is used to
transform the calculation of inner product based on ϕ(·) in (9)
into the evaluation of kernel function κ(·, ·), i.e.,

ϕ (u (j))T ϕ(·) = κ(u (j), ·). (10)

Substituting (10) into (9) yields

f̂i(·) =
i∑

j=1

αjκ(u (j), ·). (11)

Since there exists only the calculation of kernel functions
in (11), the estimate f̂i(·) in (11) is more efficient than that
in (9). Therefore, (11) is used in kernel adaptive filters
generally.

According to (8) and (11), different approaches for updat-
ing the weight ω(i) generates different kernel adaptive filters.
In KRLS, ω(i) is estimated by minimizing the following
regularized loss function:

min
ω

i∑
j=1

(
dj(i)− d̂j(i)

)2
+ λ1‖ω(i)‖2, (12)

where λ1 is the regularization factor for avoiding overfit-
ting [17] and d̂j(i) = ω(i)Tϕ(u(j)) denotes the jth estimated
output at discrete time i.

The solution to (12) yields

ω(i) = [9(i)9(i)T + λ1I]−19(i)d(i). (13)

The matrix inversion lemma is described by [17]

(A+ BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1.

(14)

LetA = λ1I,B = 9(i),C = I, andD = 9(i)T . Thus, we can
rewrite the weigh update of KRLS in (13) as

ω(i) = 9(i)[K(i)+ λ1I]−1d(i)

= 9(i)αs(i), (15)

where αs(i) = [λ1I + K(i)]−1d(i). The positive define
matrix K(i) in (15) takes the form of K(i) = 9(i)T9(i), the
m1th row andm2th column element of which can be evaluated
by

Km1,m2 (i) = κh2 (u (m1),u (m2))

= exp

(
−‖u (m1)− u (m2)‖

2

2h22

)
, (16)

where h2 is the kernel width.

B. KERNEL RECURSIVE MAXIMUM CORRENTROPY
Kernel recursive maximum correntropy (KRMC) incorporat-
ing the maximum correntropy criterion into KRLS, has been
proven to be robust against outliers. Therefore, the regular-
ized MCC in KRMC is described by

max
ω

i∑
j=1

κh1

(
dj(i)− d̂j(i)

)
−

1
2
λ2‖ω(i)‖2, (17)

where λ2 denotes the regularization factor of KRMC and the
jth estimated output d̂j(i) is given by d̂j(i) = ω(i)Tϕ(u(j)).
The solution to (17) can be derived as

ω(i) =
(
9(i)3̄(i)9(i)T + λ2 h21I

)−1
9(i)3̄(i)d(i), (18)

where 3̄(i) = diag[exp((d1(i)− d̂1(i))2/−2h21), exp((d2(i)
− d̂2(i))2/−2h21), · · · , exp((di(i)− d̂i(i))

2/−2h21)].
Using the matrix inversion lemma shown in (14) by letting

A = λ2 h21I,B = 9(i),C = 3̄(i), and D = 9(i)T ,
we rewrite (18) as

ω(i) = 9(i)α(i), (19)

where α(i) =
(
K(i)+ λ2 h213̄(i)

−1
)−1

d(i) with the entry of

positive define matrix K(i) = 9(i)T9(i) calculated by (16).
Therefore, α(i) is used to represent ω(i) with the help of (19)
hereafter.

FIGURE 1. Block diagram of KRMC-MF at discrete time i .

IV. KERNEL RECURSIVE MAXIMUM CORRENTROPY
WITH MULTIPLE FEEDBACK
A. KRMC-MF
Figure 1 shows the block diagram of KRMC-MF. In Fig. 1,
we incorporate a recurrent scalar d̂j−1(i− 1) into the evalua-
tion of d̂j(i), i.e.,

d̂j(i) = ϕ(u(j))T9(i)α(i)+ b(i)Tα(i)d̂j−1(i− 1),

j = 1, 2, · · · i (20)

where the column vector parameters α(i) and b(i) repre-
sent the feedforward coefficient (FFC) and the feedback
coefficient (FBC), respectively; the first term in the right
side of (20) is the feedforward part; the second term in
the right side of (20) includes the past information which
can be regarded as the feedback term. At discrete time i,
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d̂(i) is formed by stacking
{
d̂j (i)

}i
j=1

into column vector

d̂(i) = [d̂1(i), · · · , d̂j(i), · · · , d̂i(i)]
T
, and 9(i) is formed by

stacking {ϕ(u(j))}ij=1. Thus, according to (20), the collection

of estimated outputs d̂(i) has the following linear form:

d̂(i) = (K(i)+ d̂(i− 1)b(i)T )α(i), (21)

where column vector d̂(i − 1) is the multiple single-delay
feedbacks.

According to the correntropy (4), we give the loss function
of KRMC-MF as follows:

J =
i∑

j=1

κh1 (ej(i)) (22)

with ej(i) = dj(i) − d̂j(i) denoting the jth estimated error at
discrete time i. Each d̂j (i) evaluated by (20) includes the
feedback with single delay. Since the loss function (22) is the
sum of Gaussian kernels, multiple single-delay feedbacks are
included in KRMC-MF.

For the convenience of derivation, we first give the eval-
uation about the collection of errors at discrete time i,
i.e., e(i) = [e1(i), e2(i), · · · , ei(i)]T . Here, we define the
desired outputs by d(i) = (K(i) + d̂(i− 1)bT∗ )α∗ + v(i),
where α∗ and b∗ are the optimal FFC and FBC, respectively;
v(i) = [v(1), v(2), · · · , v(i)]T is the collection of disturbance
noises. According to (21), we have

e(i) = d(i)− d̂(i)

= d(i)− (K(i)+ d̂(i− 1)b(i)T )α(i)

= (K(i)+ d̂(i− 1)bT∗ )α∗ − (K(i)

+ d̂(i− 1)b(i)T )α(i)+ v(i)

= −(K(i)+ d̂(i− 1)b(i)T )α(i)+ (K(i)

+ d̂(i− 1)b(i)T )α∗ − (K(i)+ d̂(i− 1)b(i)T )α∗
+ (K(i)+ d̂(i− 1)bT∗ )α∗ + v (i)

= −(K(i)+ d̂(i− 1)b(i)T )α̂(i)− d̂(i− 1)b̂(i)Tα∗
+ v (i)

= θα(i)− (K(i)+ d̂(i− 1)b(i)T )α̂(i)

≤ θ̄
m
α − (K(i)+ d̂(i− 1)b(i)T )α̂(i), (23)

where α̂(i) = α(i) − α∗; θα(i) = v(i) − d̂(i− 1)b̂(i)Tα∗;
the equivalent disturbance θ̄

m
α is the column vector with each

entry being not smaller than that of θα(i).

B. WEIGHT UPDATE
Based on the steepest ascent method [17], the FFC is

updated iteratively by

α(i+ 1) = α(i)+ smα (i)
∂J
∂α(i)

, (24)

where smα (i) ∈
{
0, 1

/
ρmα (i)

}
denotes the step size with a

positive scalar ρmα (i). Taking the derivative of (22) regard-
ing α(i), we have

∂J
∂α(i)

=

i∑
j=1
κh1 (dj(i)− d̂j(i))

ej(i)
h21

∂ d̂j(i)
∂α(i) . (25)

Further, according to (20), the differential ∂ d̂j(i) /∂α(i) can be
expressed as

∂ d̂j(i)
∂α(i)

≈ 9(i)Tϕ(u(j))+ b(i)d̂j−1(i− 1)

+ rmα (i)b(i)
Tα(i)

∂ d̂j−1(i− 1)
∂α(i− 1)

, (26)

where rmα (i) is the parameter for adjusting the recurrent
gradient information [43] and we use the approximation
∂ d̂j−1 (i− 1)

/
∂α (i) ≈ ∂ d̂j−1 (i− 1)

/
∂α (i− 1).

Defineϒm
α (i) = ∂ d̂(i)/∂α(i). According to (21), we rewrite

(26) by

ϒm
α (i) ≈ K(i)+ b(i)d̂(i− 1)T + rmα (i)b(i)

Tα(i)ϒm
α (i− 1).

(27)

Combining (26) and (27), we rewrite (25) by ∂J
/
∂α (i) =

ϒm
α (i)3 (i) e (i) with 3(i) = 3̄(i)/h

2
1, where 3̄(i) is defined

after (18). Hence, the recursion of α(i) in (24) can be
updated by

α(i+ 1) = α(i)+ smα (i)ϒ
m
α (i)3(i)e(i). (28)

Similar to (28), the recursive form of the FBC b(i) is
given by

b(i+ 1) = b(i)+ smb (i)ϒ
m
b (i)3(i)e(i), (29)

where smb (i) ∈
{
0, 1

/
ρmb (i)

}
is the step size with ρmb (i)

being positive; ∂ d̂ (i− 1)
/
∂b (i) ≈ ∂ d̂ (i− 1)

/
∂b (i− 1)

and ϒm
b (i) = ∂ d̂ (i)

/
∂b (i). Hence, ϒm

b (i) is approximated
by

ϒm
b (i) ≈ α(i)d̂(i− 1)T + rmb (i)b(i)

Tα(i)ϒm
b (i− 1). (30)

According to (29), we rewrite e(i) by

e(i) = d(i)− d̂(i)

= −(K(i)+ d̂(i− 1)b(i)T )α(i)

+ (K(i)+ d̂(i− 1)bT∗ )α∗ + v (i)

= −(K(i)+ d̂(i− 1)b(i)T )α(i)

+ (K(i)+ d̂(i− 1)bT∗ )α(i)− (K(i)

+ d̂(i− 1)bT∗ )α(i)+ (K(i)+ d̂(i− 1)bT∗ )α∗ + v (i)

= −d̂(i− 1)b̂(i)Tα(i)− (K(i)+ d̂(i− 1)bT∗ )α̂(i)+ v (i)

= θb(i)− (K(i)+ d̂(i− 1)bT∗ )α̂(i)

≤ θ̄
m
b − (K(i)+ d̂(i− 1)bT∗ )α̂(i), (31)

where b̂(i) = b(i) − b∗; θb(i) = v(i) − d̂(i− 1)b̂(i)Tα(i);
the equivalent disturbance θ̄

m
b is the column vector with each

element being not smaller than that of θb(i).
For compactness of the notation,� = {α, b} is introduced.

The parameter settings are discussed as follows.
To guarantee the convergence of KRMC-MF, we establish

the following updating rules regarding sm�(i) and r
m
� (i):

1. sm�(i) = zm�(i)
/
ρm� (i) in (28) and (29) is evaluated by

zm�(i) =

1, if ε̄m� (i) < 2
(
e (i)− θ̄

m
�

)T
3 (i) e (i)

0, else,
(32)
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where ε̄m�(i) = εm�(i) + εm�(i− 1) with εm�(i) =∥∥ϒm
�(i)3(i)e(i)

∥∥2 /ρm�(i).
The normalization factor ρm�(i) in (28) and (29) is designed

to prevent the vanished cone problem [11] which is updated
by

ρm�(i) = max(ρm�(i− 1), ϑm�ρ
m
�(i− 1)

+max(%̄m�, ||ϒ
m
�(i)3(i)e(i)||

2)), (33)

where ϑm� ∈ (0, 1) denotes the impact degree of the previous
factor on the current one and %̄m� is a regulatory factor that
ensures the initial learning rate being relatively small [12].
2. rm� (i) in (26) and (30) is defined by

rm� (i)=

sgn
(
ζ̄m� (i)

)
, if |µm(i)|<

1
ηm+|b(i)Tα(i)|

0, else,
(34)

where sgn(·) denotes the sign function; ζ̄m� (i) =

b(i)Tα(i)µm(i)zm� (i− 1) and

µm(i) = Lm(i− 1)T (Lm(i− 1)Lm(i− 1)T )−1Lm(i) (35)

with Lm(i− 1) = 3(i − 1)e(i − 1); ηm is a small positive
constant to make the denominator nonzero. The proposed
KRMC-MF is therefore summarized in Algorithm 1.
Remark 1: The choice of step size sm� (i) = zm� (i)

/
ρ
m
�
(i)

in (28) and (29) is crucial for filtering convergence perfor-
mance. The normalization factor ρm�(i) is used for solving
the vanishing radius problem [11], [44] and zm� (i) can be
regarded as the switch controlling the updates of FFC and
FBC. rm�(i) in (26) and (30) has the function of regulation
factor λ2 in (17). Furthermore, the update form of weight in
KRMC-MF is similar to that in the momentum least mean
square (MLMS) algorithm [43], which has been proven in
Appendix. Therefore, the feedback manner in KRMC-MF
can reuse the past information efficiently, and thus improve
the filtering performance.

V. LINEAR RECURRENT KERNEL ONLINE LEARNING
ALGORITHM BASED ON MAXIMUM
CORRENTROPY CRITERION
A. LRKOL-MCC
In KRMC-MF, the summation of correntropy based on all
errors in (22) is used as the loss function. Therefore, to further
reduce the computational complexity of KRMC-MF, a linear
recurrent kernel online learning algorithm based on maxi-
mum correntropy criterion (LRKOL-MCC) uses the simpli-
fied correntropy based on only the current error as the loss
function, i.e.,

J = κh1 (ei(i)), (36)

where ei(i) = di(i) − d̂i(i). For simplicity, (36) can be
rewritten by

J = κh1 (e(i)), (37)

where e(i) = d(i)− d̂(i) and d̂(i) = (Ki(i)T + d̂(i− 1)b(i)T )
α(i) with Ki(i) being the last column of K(i). In comparison

Algorithm 1 Kernel Recursive Maximum Correntropy With
Multiple Feedback (KRMC-MF) Algorithm

Initiation:
Start with parameters initiation: θmα , θ

m
b , %̄

m
α , %̄

m
b , ϑ

m
α ,

ϑmb , η
m.

while {u(i), d(i)}(i > 1) available do

1) Update smα (i) , s
m
b (i) using (32) and (33), rmα (i) and r

m
b (i)

using (34).

2) The update forms of ϒm
α (i− 1) and ϒm

b (i− 1) are shown
as follows.

ϒm
α (i) ≈ K(i)+ b(i)d̂(i− 1)T + rmα (i)b(i)

Tα(i)2α
i−1,

ϒm
b (i) ≈ α(i)d̂(i− 1)T + rmb (i)b(i)

Tα(i)2b
i−1,

with d̂(i− 1) = [d̂0(i− 1); d̂(i− 1)] and d̂0(i− 1) = 0
in (22);2α

i−1 and2
b
i−1 are given by

2α
i−1 =

[
0 ϒm

α (i− 1)
0 0T

]
, 2b

i−1 =

[
0 ϒm

b (i− 1)
0 0T

]
,

with 0 being the ((i− 1)× 1) null vector.

3) The FFC α(i) and FBC b(i) can be approximated itera-
tively by the recursions

α(i+ 1) =
[
α(i)
0

]
+ smα (i)ϒ

m
α (i)3(i)e(i),

b(i+ 1) =
[
b(i)
0

]
+ smb (i)ϒ

m
b (i)3(i)e(i).

end while

with (22) and (37), LRKOL-MCC has lower computational
complexity than KRMC-MF.

B. WEIGHT UPDATE
Similar to (28) and (29) in KRMC-MF, the update form of
FFC in LRKOL-MCC is given by

α(i+ 1) = α(i)+ ssα(i)ϒ
s
α(i)3i,i(i)e(i), (38)

where ssα (i) ∈
{
0, 1

/
ρsα (i)

}
is the step size with a posi-

tive scalar ρsα (i); 3i,i(i) = exp((d(i)− ωTϕ(u(i)))2/−2h21)
denotes the ith column and ith row element of diagonal
matrix 3(i) in (28).
Vector ϒs

α(i) = ∂ d̂(i) /∂α(i) in (38) has a similar update
form to that in (27), i.e.,

ϒs
α(i) ≈ Ki(i)+ b(i)d̂(i− 1)+ rsα(i)b(i)

Tα(i)ϒs
α(i− 1),

(39)

where rsα(i) is the parameter for adjusting the recurrent gradi-
ent information of LRKOL-MCC.
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For FBC b(i), we obtain from (29)

b(i+ 1) = b(i)+ ssb(i)ϒ
s
b(i)3i,i(i)e(i), (40)

where the step size ssb (i) ∈
{
0, 1

/
ρsb (i)

}
with ρsb (i) being

positive and ϒs
b(i) = ∂ d̂(i) /∂b(i) takes the form of

ϒs
b(i) ≈ α(i) d̂(i− 1)+ rsb(i)b(i)

Tα(i)ϒs
b(i− 1). (41)

The parameter settings are discussed as follows.
The ss�(i) and r

s
� (i) obey the following updating rules.

1. ss�(i) = zs�(i)
/
ρs� (i) in (38) and (40) is given by

zs�(i) =

{
1, if ε̄s� (i) < 2

(
e (i)− θ̄ s�

)T
3i,i(i)e(i)

0, else,
(42)

where ε̄s�(i) = εs�(i) + εs�(i− 1) with εs�(i) =∥∥ϒs
�(i)3i,i(i)e(i)

∥∥2 /ρs�(i). The scalar θ̄ s� is a positive num-
ber larger than θ s� with θ sα = v(i) − d̂(i− 1)b̂(i)Tα∗ and
θ sb(i) = v(i) − d̂(i− 1)b̂(i)Tα(i). Here, the normalization
factor ρs�(i) in (38) and (40) can be updated by

ρs�(i) = max(ρs�(i− 1), ϑ s�ρ
s
�(i− 1)

+max(%̄s�, ||ϒ
s
�(i)3i,i(i)e(i)||2)), (43)

with ϑ s� ∈ (0, 1) and %̄s� being positive.
2. rs� (i) in (39) and (41) is given by

rs� (i) =

sgn
(
ζ̄ s�(i)

)
, if |µs(i)| <

1
ηs + |b(i)Tα(i)|

0, else,
(44)

where ζ̄ s�(i) = b(i)Tα(i)µs(i)zs� (i− 1); µs(i) =

Ls(i)/Ls(i− 1) with Ls(i− 1) = 3̄i,i(i− 1)e(i− 1); and ηs is
a relatively small positive constant to make the denominator
nonzero. The proposed KRMC-MF is therefore summarized
in Algorithm 2.
Remark 2: Compared with Algorithm 1 and Algorithm 2,

the difference between KRMC-MF and LRKOL-MCC is
the update form of ϒm

�(i) and ϒ
s
�(i). Since multiple single-

delay feedbacks are incorporated into KRMC-MF, ϒm
�(i) is

updated recursively in the form of matrix. However, ϒs
�(i)

in LRKOL-MCC is recursively updated in the form of
vector due to only one single-delay feedback. Therefore,
LRKOL-MCC requires lower computational burden than
KRMC-MF.

C. COMPUTATIONAL COMPLEXITY
The comparison of computational costs at discrete time i
between the MMSE-based algorithms, i.e., LRKOL,
KRLS, and KRLS-MF, and the MCC-based algorithms,
i.e., LRKOL-MCC, KRMC, and KRMC-MF is shown in
TABLE 1. In comparison with the MMSE-based algorithms,
the MCC-based algorithms incur more computational burden
owing to the calculation of the additional entropy functions,
i.e., the scalar 3i,i(i) in LRKOL-MCC, and the matrices
B(i) [37] and 3(i) with diagonal entries calculated by (2)
in KRMC and KRMC-MF. In addition, compared with the
KAFs with no feedback, i.e., KRLS and KRMC, other

Algorithm 2 Linear Recurrent Kernel Online Learning
Algorithm Based on Maximum Correntropy Criterion
(LRKOL-MCC)

Initiation:
Start with parameters initiation: θ̄ sα , θ̄

s
b, %̄

s
α , %̄

s
b, ϑ

s
α , ϑ

s
b, η

s.

while {u(i), d(i)}(i > 1) available do

1)Update ssα(i) , s
s
b(i) by (42) and (43), r

s
α(i) and r

s
b(i) by (44).

2) The recursions of ϒs
α(i− 1) and ϒs

b(i− 1) are shown as
follows.

ϒs
α(i) ≈ K(i)+ b(i)d̂(i− 1)+ rsα(i)b(i)

Tα(i)

×

[
ϒs
α(i− 1)
0

]
,

ϒs
b(i) ≈ α(i)d̂(i− 1)+ rsb(i)b(i)

Tα(i)
[
ϒs
b(i− 1)
0

]
.

3) The FFC α(i) and FBC b(i) can be updated recursively.

α(i+ 1) =
[
α(i)
0

]
+ ssα(i)ϒ

s
α(i)3i,i(i)e(i),

b(i+ 1) =
[
b(i)
0

]
+ ssb(i)ϒ

s
b(i)3i,i(i)e(i).

end while

TABLE 1. Computational costs of KAFs at discrete time i .

KAFs have the additional computational burden induced
by the recurrent terms. Therefore, we see from TABLE 1
that the proposed LRKOL-MCC andKRMC-MF have almost
the same computational costs as LRKOL and KRLS-MF,
respectively, which will also be presented in the following
simulations.

VI. CONVERGENCE ANALYSIS
This section presents the convergence analysis of
KRMC-MF based on the designed learning parameters
in (32), (33), and (34).
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Theorem 1: Define 1α(i) =
∥∥α̂(i+ 1)

∥∥2 − ∥∥α̂(i)∥∥2 and

1b(i) =
∥∥∥b̂(i+ 1)

∥∥∥2 − ∥∥∥b̂(i)∥∥∥2. For KRMC-MF, the update
recursions in (28) and (29) guarantee the convergence of FFC
and FBC in terms of lim

i→∞
|1α(i)| = 0 and lim

i→∞
|1b(i)| = 0,

respectively.
Proof: The optimal FFC α∗ subtracted from both sides

of (28) gives

α̂(i+ 1) = α̂(i)+ smα (i)ϒ
m
α (i)3(i)e(i). (45)

Squaring the Euclidean norms on both sides of (45), we obtain

||α̂(i+ 1)||2 = ||α̂(i)||2 +1α(i), (46)

where

1α(i) = 2smα (i) α̂(i)
Tϒm

α (i)3 (i) e (i)

+ (smα (i))
2 ∥∥ϒm

α (i)3 (i) e (i)
∥∥2 . (47)

Substituting (27) into (47), we have

1α(i) ≈ 2smα (i) α̂(i)
T (K(i)+ b(i)d̂(i− 1)T

+ rmα (i)b(i)
Tα(i)ϒm

α (i− 1))3 (i) e (i)

+ (smα (i))
2 ∥∥ϒm

α (i)3 (i) e (i)
∥∥2

= smα (i) (2α̂(i)
T (K(i)+ b(i)d̂(i− 1)T

+ rmα (i)b(i)
Tα(i)ϒm

α (i− 1))3 (i) e (i)

+ smα (i)
∥∥ϒm

α (i)3 (i) e (i)
∥∥2)

= smα
(
01
α(i)+ 0

2
α(i)+ 0

3
α(i)

)
, (48)

where 01
α(i), 0

2
α(i), and 0

3
α(i) are shown as follows:

01
α(i) = smα (i)

∥∥ϒm
α (i)3(i)e(i)

∥∥2
02
α(i) = 2rmα (i)α̂(i)

T (b(i)Tα(i))ϒm
α (i− 1)3(i)e(i)

03
α(i) = 2α̂(i)T (K(i)+ b(i)d̂(i− 1)T )3(i)e(i).

(49)

According to (45), we expand 02
α as

02
α(i) = 2rmα (i)b(i)

Tα(i)(α̂(i− 1)+ smα (i− 1)

×ϒm
α (i− 1)3(i− 1)e(i− 1))Tϒm

α (i− 1)3(i)e(i)

= 2rmα (i)b(i)
Tα(i)(α̂(i− 1)Tϒm

α (i−1)3(i−1)e(i− 1)

+ smα (i− 1)εmα (i− 1)ρmα (i− 1))µm(i), (50)

where εmα (i) =
∥∥ϒm

α (i)3(i)e(i)
∥∥2 /ρmα (i) and µm(i) =

Lm(i− 1)T (Lm(i− 1)Lm(i− 1)T )−1Lm(i) with Lm(i− 1)
= 3(i− 1)e(i− 1).
Since smα (i) = zmα (i)

/
ρmα (i) holds in (24) and (42), we have

(smα (i− 1))2 = zmα (i− 1)/
(
ρmα (i− 1)

)2
= smα (i− 1)/ρmα (i− 1) . (51)

On the condition of smα (i− 1) 6= 0, the following equality
holds

smα (i− 1) = 1/ρmα (i− 1) . (52)

Therefore, we simplify (50) as

02
α(i)
= 2rmα (i)b(i)

Tα(i)µm(i)ρmα (i− 1)

×[smα (i− 1)α̂(i− 1)Tϒm
α (i− 1)3(i− 1)e(i− 1)

+ (smα (i− 1))2εmα (i− 1)ρmα (i− 1)]

= `(i)ρmα (i− 1) [2smα (i− 1)α̂(i− 1)Tϒm
α (i− 1)3(i− 1)

×e(i− 1)+ 2(smα (i− 1))2εmα (i− 1)ρmα (i− 1)]. (53)

According to (52), we have smα (i− 1) ρmα (i− 1) = 1.
Therefore, (53) can be simplified by

02
α(i) = `(i)ρ

m
α (i− 1) [2smα (i− 1)εmα (i− 1)

+ 2smα (i− 1)α̂(i− 1)Tϒm
α (i− 1)3(i− 1)e(i− 1)]

= `(i)[ρmα (i− 1)1α(i− 1)

+ smα (i− 1)εmα (i− 1)ρmα (i− 1)], (54)

where the scalar `(i) takes the form of

`(i) =

|b(i)Tα(i)µm(i)|, if |µm(i)| <
1

ηm + |b(i)Tα(i)|
0, else.

(55)

Since smα (i) = zmα (i)
/
ρmα (i) holds in (24) and (42), smα (i) = 0

can be obtained only when zmα (i) = 0, generating rmα (i) = 0
which is given in (34). Therefore, 02

α(i) = 0 can be derived
using (49). Similarly, considering 1α(i− 1) as a function of
smα (i − 1) shown in (48), we have 1α(i − 1) = 0 on the
condition of smα (i − 1) = 0, which results in 02

α(i) = 0
in (54). Therefore, (54) holds regardless of whether smα (i− 1)
equals 0.

In addition, based on (23), 03
α(i) can be derived as

03
α(i) = 2(θα(i)− e(i))T3(i)e(i). (56)

Substituting (49), (54), and (56) into (48), we rewrite (48) as

1α(i) ≈ smα (i)(s
m
α (i)

∥∥ϒm
α (i)3(i)e(i)

∥∥2
+ `(i)(ρmα (i− 1)1α(i− 1)

+ smα (i− 1)εmα (i− 1)ρmα (i− 1))
+ 2(θα(i)− e(i))T3(i)e(i))

= smα (i)(s
m
α (i)ε

m
α (i)ρ

m
α (i)+ `(i)s

m
α (i− 1)εmα (i− 1)

×ρmα (i− 1)+ 2(θα(i)− e(i))T3(i)e(i))
+ `(i)smα (i)(ρ

m
α (i− 1)1α(i− 1)). (57)

Therefore, (57) can be rewritten as

1α(i) ≈ χ (i)+ ` (i) smα (i) ρ
m
α (i− 1)1α(i− 1), (58)

where

χ (i) = smα (i)(s
m
α (i)ε

m
α (i)ρ

m
α (i)+ 2(θα(i)− e(i))T3(i)e(i)

+ `(i)smα (i− 1)εmα (i− 1)ρmα (i− 1))
(c1)
< smα (i)(ε

m
α (i)+ 2(θ̄

m
α − e(i))

T3(i)e(i)
+ εmα (i− 1))

= smα (i)(ε̄
m
α (i)− 2(e(i)− θ̄

m
α )

T3(i)e(i))
(c2)
≤ 0. (59)
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Here (c1) follows from the inequality 0 ≤ `(i) < 1 and 0 ≤
smα (i) ≤ 1/ρmα (i); (c2) is obtained by combining (32).
Since (58) and 1α(1) ≤ 0, 1α(i) ≤ 0 in (58) can be

derived, which gives
∥∥α̂ (i+ 1)

∥∥2 ≤ ∥∥α̂ (i)∥∥2.
Thus, lim

i→∞

∥∥α̂ (i)∥∥2 = 0 and lim
i→∞

1α(i) = 0 can be

obtained, which completes the convergence proof FFC in
Theorem 1. Similarly, the convergence of FBC can also be

proved using lim
i→∞

∥∥∥b̂ (i)∥∥∥2 = 0 and lim
i→∞

1b(i) = 0.

The proposed KRMC-MF is proved to be convergent based
on the designed learning parameters (32), (33), and (34).
Since α∗ is unavailable in practice, we define W α

1 (i) =
‖α (i+ 1)‖2 − ‖α (i)‖2 and W α

2 (i) = α (i+ 1)− α (i) to
rewrite 1α(i) as

|1α(i)| =
∣∣∣∥∥α̂(i+ 1)

∥∥2 − ∥∥α̂(i)∥∥2∣∣∣
=

∣∣∣‖α (i+1)‖2−‖α (i)‖2−2(α (i+ 1)− α (i))Tα∗
∣∣∣

≤
∣∣W α

1 (i)
∣∣+ 2

∣∣∣(α (i+ 1)− α (i))Tα∗
∣∣∣

≤
∣∣W α

1 (i)
∣∣+ 2|W α

2 (i)|g1 (60)

with g1 = ‖α∗‖. Similarly, we have

|1b(i)| ≤
∣∣∣W b

1 (i)
∣∣∣+ 2|W b

2 (i)|g2, (61)

where W b
1 (i) = ‖b (i+ 1)‖2 − ‖b (i)‖2, W b

2 (i) =

b (i+ 1)− b (i), and g2 = ‖b∗‖
To observe the convergence of KRMC-MF, we define the

convergence curves of τα(i) with τα (i) =
∣∣W α

1 (i)
∣∣+2|W α

2 (i)|
and τb (i) =

∣∣W b
1 (i)

∣∣ + 2|W b
2 (i)|, which can avoid the

direct calculation of α∗. The convergence curves of τα(i)
and τb (i) converge to zero, leading to lim

i→∞
|1α(i)| = 0

and lim
i→∞
|1b(i)| = 0. Therefore, in following simulations,

τα(i) and τb (i) are used to prove the convergence of the
proposed filters.

Since LRKOL-MCC can be regarded as a simplified ver-
sion of KRMC-MF, we have the following corollary.
Corollary 1: Based on the same conditions as those in

Theorem 1, the convergence characteristic of LRKOL-MCC
is given by lim

i→∞
|1α(i)| = 0 and lim

i→∞
|1b(i)| = 0.

VII. SIMULATION RESULTS
In this section, the Gaussian and non-Gaussian noise envi-
ronments are considered to validate the filtering performance
of the proposed LRKOL-MCC and KRMC-MF in the con-
text of nonlinear time-series prediction and nonlinear regres-
sion. In the following simulations, LRKOL [11], KRLS [9],
KRMC [37], and KRLS-MF [14] are chosen for compar-
ison, where LRKOL has a filter feedback structure based
on MMSE; KRLS and KRLS-MF are KAFs based on least
squares without and with feedback, respectively; KRMC is
the extension of KRLS based on MCC. In the non-Gaussian
case, the alpha stable distribution is chosen as the disturbance

noise with the following characteristic function [45], [46]:

f (t) = exp
{
jδt − γ |t|σ [1+ jβsgn (t) S (t, σ )]

}
, (62)

where the parameter set V = (σ, β, γ, δ) includes the charac-
teristic factor σ ∈ (0, 2], β ∈ (−1, 1) measuring asymmetry,
the dispersion parameter γ > 0, and the location parameter
δ ∈ (−∞,∞);

S (t, σ ) =


tan

σπ

2
, σ 6= 1

2
π
log |t|, σ = 1.

(63)

In the following simulations, a segment of 1000 samples
is used as the training data and another 200 samples as the
testing data. To remove the stochastic nature of simulations,
all simulation results are averaged 100 independent Mon-
ter Carlo runs. The notations pm = [ϑmα , ϑ

m
b , %̄

m
α , %̄

m
b , η

m],
ps = [ϑ sα, ϑ

s
b, %̄

s
α, %̄

s
b, η

s], qm = [θ̄
m
α , θ̄

m
b ], and qs =

[θ̄ sα, θ̄
s
b] are adopted for clarity. Furthermore, we also intro-

duce the collection of regularization factors λ = [λ1, λ2] with
λ1 and λ2 in (12) and (17), respectively. In the following, all
these parameters are set by trials to obtain the best filtering
performance.

In order to evaluate the filtering accuracy, the mean square
error (MSE) is defined by

MSE =
1
N

∑N

j=1
(d(j)− d̂(j))2, (64)

where d̂(j) is the estimate of the desired output d(j) and N is
the data length.

A. MACKEY-GLASS TIME-SERIES PREDICTION
The Mackey-Glass (MG) chaotic time series, which presents
periodic and chaotic dynamics, is generated by the following
nonlinear time delay differential equation [17]:

dx(t)
dt
= −0.1x(t)+

0.2x(t − τ )
1+ x(t − τ )10

, (65)

where τ = 30. The time series is first discretized using a
sampling period of 6 seconds. The input u(i) = [x(i−7), x(i−
6), . . . , x(i− 2), x(i− 1)] is chosen to predict the current x(i)
that is the desired output d(i).

1) GAUSSIAN ENVIRONMENT
In the Gaussian environment, the data set is corrupted by the
Gaussian noise with zero mean and variance 0.013. For the
compared filters based onMCC, i.e., LRKOL-MCC, KRMC,
and KRMC-MF, we have h1 = 0.17 in (2) for LRKOL-MCC
and h1 = 0.8 for KRMC and KRMC-MF. The kernel size h2
in (16) is chosen as 0.85. The collection λ = [0.001, 0.001]
is chosen in simulations. For LRKOL, LRKOL-MCC,
KRLS-MF, and KRMC-MF, pm = ps = [0.65, 0.93, 0.1,
150, 0.01] is configured. In this simulation, qm = [0.0096,
0.0096] gives that θ̄

α

m or θ̄
b
m is a column vector with

each entry being 0.0096 in KRMC-MF but a scalar
being equal to 0.0096 in LRKOL [11] and LRKOL-MCC,
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FIGURE 2. Learning curves of KAFs in MG time series prediction under
the Gaussian noises.

i.e., qs = [0.0096, 0.0096]. The learning curves of several
KAFs in the Gaussian environment are shown in Fig. 2.
It can be seen from Fig. 2 that KRLS based on MMSE has a
lower steady-state MSE than KRMC based on MCC [37].
However, the proposed LRKOL-MCC and KRMC-MF
achieve almost the same estimation accuracy as LRKOL and
KRLS-MF, respectively. Among the compared filters,
the proposed KRMC-MF generates the highest filtering
accuracy.

FIGURE 3. A sequence of the alpha-stable noise with V = (1.4,0,0.02,0)
in MG time series prediction.

2) NON-GAUSSIAN ENVIRONMENT
In this simulation, the alpha stable noise v(i) is shown
in Fig. 3, with parameters set as V = (1.4, 0, 0.02, 0). The
parameters h1 and h2 are configured as 1.2 and 0.23, respec-
tively. The regularization factor λ = [0.95, 0.001] is used in
the non-Gaussian environment. For LRKOL, LRKOL-MCC,
KRLS-MF, and KRMC-MF, the parameters are configured
as pm = ps = [0.99, 0.93, 0.5, 150, 0.0001], qm = [0.02,
0.02] and qs = [0.02, 0.02]. The learning curves of KAFs
in the non-Gaussian environment are shown in Fig. 4. It is
seen clearly from this figure that LRKOL-MCC outperforms
LRKOL, and KRMC-MF achieves the best filtering perfor-
mance in terms of steady-state MSE and robustness.

FIGURE 4. Learning curves of KAFs in MG time series prediction under
the alpha-stable noises.

B. NONLINEAR REGRESSION
We consider a nonlinear dynamical data set, which is derived
from the following nonlinear difference equation [11]:

x(i) = x(i− 1)(0.8− 0.5 exp(−x2(i− 1)))− (0.3

+ 0.9 exp(−x2(i− 1)))x(i− 2)+ 0.1sin(x(i− 1)π ),

(66)

where x(i) is the output at discrete time i. The data are
generated with the initiation conditions: x(−1) = 0.1
and x(−2) = 0.1. The latest two previous outputs
u(i) = [x(i− 1), x(i− 2)] are used as the input to estimate
the current output x(i).

1) GAUSSIAN ENVIRONMENT
In the Gaussian environment, the data are corrupted by the
Gaussian noises with zero mean and variance 0.013. The
kernel parameter h1 is set as 0.35 for LRKOL-MCC, and
h1 = 0.75 for KRMC and KRMC-MF. The parameters h2
and λ are configured as h2 = 0.23 and λ = [0.001, 0.001].
For LRKOL, LRKOL-MCC, KRLS-MF, and KRMC-MF,
we choose pm = ps = [0.88, 0.999, 0.1, 150, 0.01], qm =
[0.015, 0.015], and qs = [0.015, 0.015]. The compari-
son of KAFs under Gaussian noises is depicted in Fig. 5.
To perform the comparison of computational complexity,
Table 2 presents the mean consumed time of different filters
in nonlinear regression under Gaussian noises. Combining
Table 2 and Fig. 5, we see that proposed KRMC-MF with
similar computational complexity achieves higher filtering
accuracy than KRMC. Similarly, compared with LRKOL,
LRKOL-MCC can also obtain better filtering accuracy with-
out increasing significant computational burden. In addition,
KRMC-MF achieves almost the same filtering performance
as KRLS-MF under Gaussian noises in terms of the steady-
state MSE and computational cost.

Since the dimensions of FFC and FBC in (28) and (29)
(or (38) and (40)) increase with each new sample, the newly
added dimension is not included in the computations of
1α(i) or 1b(i). To validate the convergence of KRMC-MF
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TABLE 2. Comparison of mean consumed time in nonlinear regression under gaussian noises.

FIGURE 5. Learning curves of KAFs in nonlinear regression under the
Gaussian noises.

FIGURE 6. Convergence curves of τα(i ) and τb(i ) in KRMC-MF under the
Gaussian noises.

given in Theorem 1, the convergence curves of τα(i) and
τb(i) in the Gaussian noises are shown in Fig. 6. It can
be shown in Fig. 6 that τα(i) converges to zero, leading
to lim

i→∞
|1α(i)| = 0 and lim

i→∞
‖1b(i)‖2 = 0. According

to (61), lim
i→∞
|1α(i)| = 0 is derived, which complies with

Theorem 1. The similar conclusions can be obtained for
FBC, i.e., lim

i→∞
|1b(i)| = 0. Similarly, the convergence of

LRKOL-MCC can also be demonstrated by τα(i) and τb(i),
which is shown in Fig. 7. From this figure, we also obtain
lim
i→∞
|1α(i)| = 0 and lim

i→∞
|1b(i)| = 0 in LRKOL-MCC.

2) NON-GAUSSIAN ENVIRONMENT
In the non-Gaussian environment, the alpha stable noise
v(i) is configured as V = (1.32, 0, 0.008, 0). To study
the effect of the kernel parameters h1 and h2 on filter-
ing accuracy in KRMC-MF, the steady-state MSEs versus

FIGURE 7. Convergence curves of τα(i ) and τb(i ) in LRKOL-MCC under the
Gaussian noises.

FIGURE 8. Steady-state MSE versus h1 and h2 in nonlinear regression
under the alpha-stable noises.

FIGURE 9. Learning curves of KAFs in nonlinear regression under the
alpha-stable noises.

the kernel size h1 ∈ [1.1, 1.8, 3.5, 4.5, 5.5] and h2 ∈
[0.05, 0.1, 0.35, 0.7, 0.9] are shown in Fig. 8. We see from
this figure that the steady-state MSE reaches a bottom at
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h1 = 1.8 and h2 = 0.35. Therefore, we set h1 = 1.8
and h2 = 0.35 in KRLS, KRMC, and KRMC-MF. As for
LRKOL and LRKOL-MCC, the same methods for parame-
ters selection as that in Fig. 8 are used, and we set h1 = 3 and
h2 = 0.35 thereby. For LRKOL, LRKOL-MCC, KRLS-MF,
and KRMC-MF, pm = ps = [0.985, 0.93, 0.8, 150, 0.0001],
qm = [0.2, 0.2] and qs = [0.2, 0.2] are configured.
Fig. 9 shows the learning curves of KAFs in the alpha stable
noise. From Fig. 9, we see that the proposed LRKOL-MCC
and KRMC-MF achieve higher filtering accuracy than other
KAFs, and KRMC-MF obtains the lowest steady-state
MSE, which validates the efficiency of LRKOL-MCC and
KRMC-MF.

VIII. CONCLUSION
This paper introduces novel kernel adaptive filters with
feedback based on the maximum correntropy criterion,
i.e., KRMC-MF and its simplification LRKOL-MCC.
In KRMC-MF, a novel feedback structure with multiple
single-delay outputs is incorporated into KRMC to improve
the filtering accuracy at the expense of increasing computa-
tional burden. Compared with KRLS-MF adopting the least
squared errors as the cost function, KRMC-MF based on
the maximum correntropy criterion is robust against outliers.
As a simplified version of KRMC-MF, LRKOL-MCC only
takes the current error as the feedback structure to achieve an
acceptable filtering accuracy, resulting in reduction of com-
putational cost. LRKOL-MCC improves the filtering accu-
racy and robustness of LRKOL. In addition, the convergence
of LRKOL-MCC and KRMC-MF is established theoretically
for guaranteeing their stabilities, which is also validated by
simulations. Simulations on time-series prediction and non-
linear regression show the superior filtering performance of
the proposed LRKOL-MCC and KRMC-MF under the non-
Gaussian noises. Generally, MCC is designed to combat the
non-Gaussian noise, which may be not applicable for the
Gaussian noise. Therefore, it is also interesting to note that
the filtering performance of LRKOL-MCC and KRMC-MF
can approach that of LRKOL and KRLS-MF under the Gaus-
sian noises, respectively.

APPENDIX
The update of MLMS is denoted by [43]

w(i+ 1) = w(i)+ η
∂J (i)
∂w(i)

+ τ (w(i)− w(i− 1)), (67)

where w(i + 1) is the estimated weight in MLMS; η is the
learning rate; (w(i) − w(i − 1)) is the momentum term and
|τ | < 1 is the corresponding coefficient. The convergence
rate is accelerated by τ > 0 and the filtering accuracy is
improved by τ < 0.
Theorem 2: The weigh updates in KRMC-MF and

LRKOL-MCC have the similar form to that in (67).
Proof: In KRMC-MF, according to (28), we have

α(i) = α(i− 1)+ smα (i− 1)ϒm
α (i− 1)3(i− 1)e(i− 1).

(68)

From (68), we obtain

ϒm
α (i− 1) =

α(i)− α(i− 1)
smα (i− 1)

Lm(i− 1)T

×(Lm(i− 1)Lm(i− 1)T )−1, (69)

where Lm(i− 1) is defined in (35). Substituting (69) into (27)
gives

ϒm
α (i) = K(i)+ b(i)d̂(i− 1)T + rmα (i)b(i)

Tα(i)ϒm
α (i− 1)

= K(i)+ b(i)d̂(i− 1)T

+
rmα (i)b(i)

Tα(i)[α(i)− α(i− 1)]
smα (i− 1)

Lm(i− 1)T

×(Lm(i− 1)Lm(i− 1)T )−1, (70)

Substituting (70) into (28) yields

α(i+ 1) = α(i)+ smα (i)ϒ
m
α (i)3(i)e(i)

= α(i)+ smα (i)[K(i)+ b(i)d̂(i− 1)T ]3(i)e(i)

+ [α(i)− α(i− 1)]×
smα (i)r

m
α (i)b(i)

Tα(i)
smα (i− 1)

×Lm(i− 1)T (Lm(i− 1)Lm(i− 1)T )−13(i)e(i)

= α(i)+ smα (i)[K(i)+ b(i)d̂(i− 1)T ]3(i)e(i)

+ [α(i)− α(i− 1)]×
smα (i)r

m
α (i)b(i)

Tα(i)µm(i)
smα (i− 1)

= α(i)+ smα (i)[K(i)+ b(i)d̂(i− 1)T ]3(i)e(i)

+ [α(i)− α(i− 1)]ϒ̄α(i), (71)

where (α(i) − α(i − 1)) can be regarded as a momentum
term, ϒ̄α(i) =

smα (i)r
m
α (i)b(i)

T α(i)µm(i)
smα (i−1)

is the corresponding
momentum coefficient, and µm(i) is defined in (35). When
KRMC-MF converges, we obtain

lim
i→∞

smα (i)
smα (i− 1)

≈ 1. (72)

Based on (34) and (72), it holds

ϒ̄α(i) =
smα (i)r

m
α (i)b(i)

Tα(i)µm(i)
smα (i− 1)

≤

∣∣∣∣ smα (i)
smα (i− 1)

∣∣∣∣
≈ 1 (73)

Therefore, the update in (28) is similar to that in (67).
This proof can be extended to the update in (29). Similarly,
we obtain the similar proofs regarding the weight update in
LRKOL-MCC.
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