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Mem-mEN: Predicting Multi-Functional Types of
Membrane Proteins by Interpretable Elastic Nets

Shibiao Wan, Man-Wai Mak, Senior Member, IEEE and Sun-Yuan Kung, Fellow, IEEE

Abstract—Membrane proteins play important roles in various biological processes within organisms. Predicting the functional types
of membrane proteins is indispensable to the characterization of membrane proteins. Recent studies have extended to predicting
single- and multi-type membrane proteins. However, existing predictors perform poorly and more importantly, they are often lack of
interpretability. To address these problems, this paper proposes an efficient predictor, namely Mem-mEN, which can produce sparse
and interpretable solutions for predicting membrane proteins with single- and multi-label functional types. Given a query membrane
protein, its associated gene ontology (GO) information is retrieved by searching a compact GO-term database with its homologous
accession number, which is subsequently classified by a multi-label elastic net (EN) classifier. Experimental results show that Mem-
mEN significantly outperforms existing state-of-the-art membrane-protein predictors. Moreover, by using Mem-mEN, 338 out of more
than 7,900 GO terms are found to play more essential roles in determining the functional types. Based on these 338 essential GO
terms, Mem-mEN can not only predict the functional type of a membrane protein, but also explain why it belongs to that type. For
reader’s convenience, the Mem-mEN server is available online at http://bioinfo.eie.polyu.edu.hk/MemmENServer/.

Index Terms—membrane protein type prediction; multi-label classification; interpretable predictor; elastic net; gene ontology.
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1 INTRODUCTION

M EMBRANE proteins, which interact with the mem-
branes of a cell or an organelle, play essential

roles in a variety of vital biological processes [1]. Because
membrane proteins mediate many interactions between
cells and extracellular surroundings as well as between
the cytosol and membrane-bound organelles, almost half
of all drug targets contain a membrane domain [2].
Although membrane proteins are located at the mem-
brane and often have the same basic phospholipid bi-
layer structure [3], they perform various and diversified
functions. This diversity is manifested by the remarkably
different functional types of membrane proteins.

Traditionally, depending upon the interactions be-
tween membrane proteins and the membrane, some stu-
dies [3] broadly classified membrane proteins into two
categories, namely integral (or intrinsic) membrane pro-
teins and peripheral (or extrinsic) membrane proteins.
Other studies [4] grouped membrane proteins into three
distinct classes: integral, peripheral and lipid-anchored.
Integral membrane proteins are permanently bound to
the biological membrane. Peripheral membrane proteins
are temporarily attached to a membrane or integral
membrane proteins. Lipid-anchored membrane proteins
are covalently linked to a lipid molecule and serve to
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anchor them to either the cytoplasmic or extracellular
surface of a biological membrane.

With the avalanche of protein sequences generated in
the post-genomic era, these three groups of membrane
proteins are further divided into eight types [5]: (1)
single-pass type I; (2) single-pass type II; (3) single-
pass type III; (4) single-pass type IV; (5) multi-pass;
(6) lipid-anchor; (7) GPI-anchor and (8) peripheral. The
hierarchical relationships between these eight types and
the former three groups are shown in Fig. 1. As can be
seen, the former five types belong to integral membrane
proteins, Types 6 and 7 belong to lipid-anchored proteins
and the last type belongs to peripheral proteins. GPI-
anchored proteins is a kind of special lipid-anchored
proteins.1 Due to the fact that GPI-anchored proteins
ubiquitously exist in many species and have been in-
tensively studied for their unique functions [6], Type 7
(GPI-anchored proteins) is singled out from Type 6. The
definitions of these eight functional types are detailed in
Table 1. As can be seen, the integral membrane proteins
are more complicated, containing four different types of
single-pass membrane proteins and one type of multi-
pass membrane proteins.

The functional types of membrane proteins can be di-
rectly used to infer the biological functions of membrane
proteins. For example, phospholipases [7], belonging
to Type 8, are a group of water-soluble enzymes that
are temporarily associated with the polar head groups
of membrane phospholipids. Their major functions are
lipid signaling. This is achieved by hydrolizing various
bonds linking phospholipases with the lipid layer with
which they are temporarily associated. Due to the nature

1. http://www.uniprot.org/locations/SL-9902
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of their fluidity, membrane proteins can freely move
within the lipid bilayer to the place where their functions
are required. Knowing the type of a membrane protein
can help reveal the mechanisms of this kind of biological
activities. Moreover, although about 20%∼35% of genes
encode membrane proteins, the structurally annotated
membrane proteins only account for less than 1% of
the proteins with known structures [8]. Knowing the
functional types of membrane proteins can accelerate
the process of annotating their structures. Therefore, it
is highly required to develop computational methods
for fast and accurate prediction of membrane protein
functional types.

Recent decades have witnessed remarkable progress
in predicting functional types of membrane proteins [5],
[8]–[14]. Some other studies [15], [16] are focusing on
predicting membrane proteins in particular subcellular
locations, such as lysosome [15] or Golgi [16]. However,
these predictors are limited to the prediction of mem-
brane proteins with single-label functional types. They
are based on the assumption that a membrane protein
rarely belongs to more than one functional type. Actual-
ly, there exist many membrane proteins that simultane-
ously belong to multiple functional types. For example,
the envelope glycoprotein p57 [17], [18] is reported to
belong to single-pass type I (Type 1) when locating in
the host endoplasmic reticulum membrane, and simulta-
neously it belongs to peripheral (Type 8) when locating
in the host cell membrane. To the best of our knowl-
edge, only two predictors, namely iMem-Seq [19] and
Mem-PseAA [20],2 are able to predict multi-label mem-
brane proteins. iMem-Seq extracts the information from
position-specific score matrices and physical-chemical
property matrices, whereas Mem-PseAA extracts feature
information from pseudo-amino acid compositions. It
has been shown [19] that the former performs better
than the latter. However, both of these predictors still
perform poorly. More importantly, while these predictors
can determine the functional type(s) of a query protein,
they fail to provide biological reasons on why the query
protein belongs to the predicted type(s).

To tackle these problems, this paper proposes an ef-
ficient multi-label predictor, namely Mem-mEN, which
leverages a multi-label elastic net (EN) classifier for
predicting membrane proteins with single- and multi-
label functional types. Unlike the previous studies [19],
[20] in which features are exclusively extracted from the
amino acid sequences, Mem-mEN extracts features by
exploiting the gene ontology (GO) information retrieved
from a GO-term database. By using a multi-label EN
classifier, 338 out of 7,900+ GO terms were selected
as features. With the selected GO terms, the original
high-dimensional feature vectors are converted into low-
dimensional vectors, which were subsequently classified
by another multi-label elastic net classifier.

2. For ease of reference, we named Mem-PseAA for the predictor
proposed in [20].
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Fig. 1. Hierarchical relationships between different types
of membrane proteins. The blue boxes are the eight types
of membrane proteins studied in this paper.

Experimental results on two recent benchmark
datasets demonstrate the superiority of Mem-mEN over
existing state-of-the-art predictors. More importantly,
based on the 338 selected GO terms, not only can Mem-
mEN decide the functional type(s) of a query membrane
protein, but it also provides reasons on why the protein
belongs to the predicted type(s). This work also found
that in addition to cellular-component GO terms, GO
terms from the other two categories also play important
roles in the predictions.

2 FEATURE EXTRACTION

Before introducing the proposed predictor, for readers’
convenience, the definitions of all symbols used in this
paper are summarized in Table 2.

2.1 GO Terms as Features

In the past decade, GO-based methods have been suc-
cessively applied to protein subcellular localization pre-
diction [21]–[26]. Extensive analyses and comparisons
among different GO-based predictors have been report-
ed in a recent book [26]. One of the challenges that
GO-based approaches are facing is how to deal with
query proteins whose GO information is not available
in the gene ontology annotation (GOA) database.3 This
situation is especially prevalent in novel proteins. Tradi-
tionally, if the accession number (AC) of a query protein
does not associate with any GO terms in the GOA
database, BLAST search [27] is used to find the AC of the
top homolog of the query protein. Then, the homologous
AC is searched against the GOA database to find a set
of GO terms and a GO vector (see Section 2.2 below)
can be constructed. This strategy effectively transfers the
homologous GO information to the query protein. This
strategy, however will still lead to null GO vectors when
the top homologous protein has not been annotated in
the GOA database, i.e., its AC does not associate with
any GO terms. To address this problem, some predictors
[28], [29] use the AC of lower-rank homologs as a

3. http://www.ebi.ac.uk/GOA
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TABLE 1
Definitions of different membrane protein types.

Supertype Type
Number

Membrane Type Definition

Integral

1 Single-pass type I Spanning the membrane once, with its N-terminus on the extracellular side.
2 Single-pass type II Spanning the membrane once, with its N-terminus on the cytoplasmic side.
3 Single-pass type III Similar to Single-pass Type I except no signal sequence.
4 Single-pass type IV Similar to Single-pass Type II except transmembrane domain located close to the C-terminus.
5 Multi-pass Spanning the membrane more than once.

Lipid-anchor 6 Lipid-anchor Bound to the lipid bilayer through a post-translational modification (PTM).
7 GPI-anchor Bound to the lipid bilayer by a GPI-anchor.

Peripheral 8 Peripheral Temporarily bound to the lipid layer or integral membrane proteins.

replacement until a non-null GO vector can be found.
Some others give up using GO information and apply
back-up methods that rely on other features such as
pseudo-amino-acid composition [30] and sorting signals
[31]. Nevertheless, the backup methods usually lead to
poor prediction accuracy for these special proteins.

Another issue of GO-based methods is to minimize
prediction time. In this case, it is necessary to store the
mapping between the ACs and their GO terms as a hash
map or hash table in memory. Given the large number
of ACs in the GOA database, the hash map will easily
occupy tens of gigabytes of memory. Given the rapid
increase in the number of entries in the GOA database,
the memory consumption will be further increased in the
future. To overcome this storage complexity and to avoid
null-GO vectors, we have previously proposed to filter
the Swiss-Prot and GOA database to form two compact
yet efficient databases called ProSeq and ProSeq-GO [32].
The former is a subset of Swiss-Prot whereas the latter
is a subset of the GOA database. Null-GO vectors can
be avoided because the filtering process guarantees that
ProSeq will only keep the sequences whose ACs have
at least one GO term in ProSeq-GO. As a result, all of
the homologous ACs will be associated with at least
one GO terms and the GO vectors will have at least
one non-null entry. The ProSeq-GO also reduces memory
consumption from tens of gigabytes to several hundred
megabytes because the number of ACs in ProSeq-GO is
substantially smaller than that in the GOA database.

In this work, we use ProSeq and ProSeq-GO databases
to construct the GO vectors, which will be elaborated in
Section 2.2 below.

2.2 Construction of GO Frequency Vectors

Two steps are needed for constructing GO frequency
vectors: (1) retrieval of GO terms; and (2) construction
of GO vectors.

For retrieving GO terms, given a query protein, its
amino acid sequence is presented to BLAST [27] to find
its homologs in the ProSeq database. The homologous
ACs are then used as keys to search against the ProSeq-
GO database. We used the default parameter setting for
BLAST in our experiments.

TABLE 2
Definitions of symbols used in this paper.

Symbol Definition
N Number of training proteins
T Number of distinct GO terms
M Number of classes (membrane types)
i Protein index (i = 1, . . . , N )
j GO-term index (j = 1, . . . , T )
m Class index (m = 1, . . . ,M )
Qi The i-th training protein

qi, xi The i-th GO vector
fi,j The j-th element of qi

yi Label of xi for binary classification
β Weight vector
βj The j-th element of β
γ Ridge regression penalty
λ LASSO penalty
Yi Label set of xi for multi-label classification
yi,m The i-th transformed label for the m-th class
βm Weight vector for the m-th class
β̂m The optimized weight vector for the m-th class
βj,m The j-th element of βm

γm Ridge regression penalty for the m-th class
λm LASSO penalty for the m-th class
S Number of selected GO terms
xt The t-th test vector
xs
t The t-th test vector after feature selection

αm Same as βm except after feature selection
α̂m Same as β̂m except after feature selection
αj,m Same as βj,m except after feature selection

M∗(Qt) Predicted functional type(s) of the t-th protein

For constructing GO vectors, given a dataset, the GO
terms of all of its proteins are retrieved by the procedures
described above. Because term-frequency (TF) based GO
vectors [28], [29] were found to perform better than the
conventional 1-0 vectors, we adopted the TF method to
construct GO vectors. Let T denotes a set of distinct
GO terms corresponding to a dataset of interest. T is
constructed in two steps: (1) identifying all of the GO
terms in the dataset and (2) removing the repetitive
GO terms. Suppose T distinct GO terms are found, i.e.,
|T|= T ; these GO terms form a GO Euclidean space
with T dimensions. For each protein sequence in the
dataset, a GO vector is constructed by matching its GO
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terms against T, using the number of occurrences of
individual GO terms in T as the coordinates. Specifically,
the frequency GO vector qi of the i-th protein Qi is
defined as:

qi = [fi,1, . . . , fi,j , . . . , fi,T ]
T, (1)

where fi,j is the number of occurrences of the j-th
GO term (term-frequency) in the i-th protein sequence.
Detailed information about GO vectors can be found in
[28], [29].

3 MULTI-LABEL ELASTIC NET CLASSIFIER

The elastic net (EN) [33] is a linear sparse regression
model. It can produce “parsimonious” solutions that
enable us to find a set of features that are the most re-
levant to the problem (target variables) being addressed.
Learning in EN is achieved by imposing (L1 + L2)-
regularized constraints on the weights associated with
the features. A similar L1-regularized linear regression
model is LASSO [34] (Least Absolute Shrinkage and
Selection Operator). The L1 constraint in LASSO forces
the weights of some features to exactly zero [35], and
hence LASSO can automatically select relevant features.
However, LASSO tends to force many weights to zeros
in order to produce a sparse solution, causing some
important information to be missed. EN can overcome
this disadvantage. The convex combination of L1 and L2

penalties in EN can yield sparse representations similar
to LASSO, while encouraging correlated features to be
selected or deselected together [33]. Actually, LASSO can
be regarded as a special case of EN. EN has been ex-
tensively used in various bioinformatics domains, such
as single nucleotide polymorphism (SNP) selection [36],
genetic trait prediction [37], ICU mortality risk detection
[38], etc.

3.1 Objective Function of Elastic Net

Although EN is a kind of sparse regression models, it
is applicable to both feature selection and classification.
Suppose for a two-class single-label problem, we are
given a set of training data {xi, yi}Ni=1, where xi ∈ RT

and yi ∈ {−1, 1}. In our case, xi = qi, where qi is defined
in Eq. 1.

Specifically, an ordinary least squares (OLS) model is
written as:

l(β) =

N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

yi − ε0 − T∑
j=1

βjxi,j

2

,

(2)
where β = [β1, . . . , βj , . . . , βT ]

T is the weight vector to
be optimized, ε0 is a bias,4 and xi,j is the j-th element
of xi.

4. For ease of presentation, we omitted the bias in equations there-
after.

EN is to impose an (L1 + L2)-style regularization on
Eq. 2. Thus, the object function of EN is:

l(β) =

N∑
i=1

(
yi − βTxi

)2
+ λ

T∑
j=1

|βj |+γ
T∑

j=1

βj
2, (3)

where γ > 0 and λ > 0 are the penalty parameters con-
trolling the ridge regression penalty and LASSO penalty,
respectively.

In Eq. 3, when λ = 0, Eq. 3 becomes simple ridge
regression, namely an L2-regularized linear model; when
γ = 0, Eq. 3 becomes a LASSO model, namely an
L1-regularized linear model. LASSO is a convex opti-
mization problem, which can be efficiently solved by
the famous least angle regression (LARS) [39] method.
By a simple transformation, Eq. 3 can be converted to
an equivalent LASSO-style problem on augmented data
[33]. Because of this property, Eq. 3 can be solved by
the same way as LASSO by absorbing the L2-norm
term into the objective function. Detailed description-
s of the solutions can be found in [33]. In terms of
choosing the penalty parameters (λ, γ), we used a two-
dimensional grid-search method similar to [33], except
that we used five-fold cross-validation instead of ten-
fold cross-validation for computational simplicity. Only
the results with the optimized (λ, γ) are reported in this
paper. Details of parameter optimization and runtime
analysis can be found in the supplementary materials in
the Mem-mEN web-server.

3.2 Multi-label EN for Feature Selection
In an M -class multi-label problem, the training data set
is written as {xi,Yi}Ni=1, where xi ∈ RT and Yi ⊂
{1, 2, . . . ,M} is a set which may contain one or more
labels.

For the multi-label EN, M independent binary one-
vs-rest ENs are trained, one for each class. The labels
{Yi}Ni=1 are converted to transformed labels [29] yi,m ∈
{−1, 1}, where i = 1, . . . , N , and m = 1, . . . ,M . Then,
the optimal weight vector for the m-th class is given by:

(4)

β̂m = arg min
βm


N∑
i=1

(
yi,m − βT

mxi

)2

+ λm

T∑
j=1

|βj,m|+γm
T∑

j=1

βj,m
2

 ,

where m = 1, . . . ,M , {yi,m}Ni=1 ∈ {−1, 1}, λm and γm
are the L1 penalized parameter and the L2 penalized
parameter for the m-th class, respectively. Since L1 regu-
larization tends to force some weights {βj,m}Tj=1 for the
m-th class to exactly zero, EN can be used for feature
selection.

Specifically, the GO vectors obtained from Eq. 1 are
used for training multi-label one-vs-rest EN classifiers.
For an M -class problem (here M is the number of sub-
cellular locations), M independent binary EN classifiers



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. XX, JUNE 2015 5

are trained, one for each class. After training, the union
of those GO terms whose weights are not zero in any
one of the M classes constitute the selected features. EN
can significantly remove those irrelevant features (or GO
terms). Suppose S out of the T weights are nonzero.
They are defined as {βs,m}s={1,...,S},m={1,...,M} and their
corresponding GO terms are called essential GO terms. In
fact, in our experiments, through our proposed multi-
label EN classifiers, 338 out of 7954 GO terms were
selected. This means that only around 4.25% of the GO
terms are essential GO terms and the weights for about
95.75% of the 7954 GO terms are exactly zero.

3.3 Multi-label EN for Classification
Besides feature selection, EN can also be used for clas-
sification. Specifically, given the t-th query protein Qt,
the feature vector xt ∈ RT defined in Eq. 1 is obtained.
Then, the elements of xt with non-zero weights βj,m in
Eq. 4 for EN are selected to form a low-dimensional
feature vector represented by xs

t ∈ RS , where S < T
is the number of essential GO terms. Similar to the EN
described in Section 3.2, for an M -class problem, M
independent binary EN classifiers are trained, one for
each class. Then, the score of the m-th EN is:

sm(Qt) = α̂T
mxs

t , (5)

where α̂m is given by

(6)

α̂m = arg min
αm


N∑
i=1

(
yi,m −αT

mxs
i

)2

+ λm

S∑
j=1

|αj,m|+γm
S∑

j=1

αj,m
2

 ,

where αm = [α1,m, . . . , αj,m, . . . , αS,m]T is the weight
vector to be optimized and xs

i ∈ RS is the feature vector
for the i-th training protein. Note that α̂m’s are obtained
based on the training dataset only.

To predict membrane proteins with both single-
and multi-label functional types, a decision scheme
for multi-label EN classifiers should be used. Unlike
the single-label problem where each protein has one
predicted label only, a multi-label protein should have
more than one predicted labels. This paper uses the
decision scheme described in mGOASVM [29]. In this
scheme, the predicted functional type(s) of the i-th
query protein are given by:

M∗(Qt)

=


⋃M

m=1 {m : sm(Qt) > 0}, where ∃ sm(Qt) > 0 ;

arg maxM
m=1 sm(Qt), otherwise.

(7)

For ease of presentation, we refer to the proposed
predictors as Mem-mEN.

4 DATASETS AND PERFORMANCE METRICS

Two benchmark datasets [19], [20] were used to evaluate
the performance of Mem-mEN. The breakdown of these
two datasets are shown in Fig. 2. Datasets I [19] and II
[20] were extracted from Swiss-Prot released in March
2013 and June 2012, respectively. In Dataset I, there are
5502 virtual proteins [19] corresponding to 5307 actual
proteins, of which 5117 belong to one type, 185 to two
types and 5 to three types. In Dataset II, there are 14,016
virtual proteins corresponding to 13,659 actual proteins,
of which 13,313 belong to one type, 335 to two types
and 11 to three types. The concept of virtual proteins is
as follows: If a protein belongs to two functional types,
then it will be counted as two virtual proteins; if a
protein belongs to three types, then it will be counted as
three virtual proteins; and so forth. As can be seen from
Fig. 2, the majority (70%/74%) of membrane proteins in
both datasets belong to multi-pass type and peripheral
type, while proteins in other 6 types totally account
for no more than 30% in both datasets. This means
that both datasets are very imbalanced. The sequence
identity of Dataset I was cut off at 25%, and that of
Dataset II was cut off at 80%. Because Dataset I is much
more stringent and recent than Dataset II, unless stated
otherwise results and analyses reported below are based
on Dataset I.

Performance metrics for multi-label classification are
more sophisticated than those for single-label classifi-
cation. This paper uses some popular multi-label eva-
luation metrics [19], [20], [40], [41], including Hamming
loss, Ranking loss, One-error, Coverage, Average precisions,
Accuracy, Precision, Recall and Absolute true. For the first
four metrics, the smaller the better, and for the remaining
metrics, the larger the better. Among these performance
metrics, Absolute true (equivalent to overall actual accuracy
in [42]) is the most objective and stringent [42]. The defi-
nitions of these metrics can be found in supplementary
materials on the Mem-mEN server.

5 RESULTS AND ANALYSIS

5.1 Statistical Analyses of Essential GO Terms
Fig. 3 shows the statistical analyses of type-specific
essential GO terms, including (a) type-specific statistics
of essential GO terms and (b) categorical breakdown of
essential GO terms in each functional type. In Fig. 3(a),
we can see that about 111∼185 essential GO terms were
selected from 7954 GO terms by Mem-mEN for each
functional type, which determine the type(s) of a query
protein. This suggests that the number of essential GO
terms for each type is not significantly different. Besides,
the union of the unique essential GO terms of these eight
types comprises 338 GO terms, which suggests that some
of the essential GO terms coexist in several functional
types. Fig. 3(b) shows the categorical breakdown of
essential GO terms in each functional type. As can be
seen from Fig. 3(b), the percentage of GO terms for the
three categories vary significantly for different types. For
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Fig. 2. Breakdown of the virtual proteins [19] in the benchmark datasets. (a) Dataset I [19]; (b) dataset II [20]. In (a),
there are 5,502 virtual proteins corresponding to 5,307 actual proteins, of which 5117 belong to one type, 185 to two
types and 5 to three types. In (b), there are 14,016 virtual proteins corresponding to 13,659 actual proteins, of which
13,313 belong to one type, 335 to two types and 11 to three types.

example, in Type 1 (single-pass type I), the numbers
of essential GO terms in the cellular-component (CC),
molecular-function (MF) and biological-process (BP) are
about the same; whereas in Type 8 (peripheral), the
number of CC GO terms is more than twice than that
of BP GO terms. This indicates that CC GO terms may
contribute more to the prediction for some functional
types (e.g., peripheral), while for other types (e.g., single-
pass type I), GO terms from the other two categories may
contribute more to the prediction. Besides, as shown in
Fig. 3(b), when the functional types are ignored (the ring
with the label “All”), the numbers of unique essential
GO terms in the three categories are 114 (CC), 95 (MF)
and 129 (BP). Contrary to individual types, the number
of BP GO terms is larger than that of CC GO terms,
suggesting that there are more overlapping GO terms in
the CC category than in the BP category.

5.2 Significance of Type-Specific GO Terms

Fig. 4 shows the boxplots of categorical significance of
essential GO terms for different membrane types. For
simplicity, {βs,m}s={1,...,S},m={1,...,M} in Eq. 6 is abbre-
viated as β in the figures. In Fig. 4(a), we can see that
for Type 1 (single-pass type I), the weights of CC GO
terms have narrower range than those of GO terms in
other two categories. Besides, the median and maximum
weights of the former are smaller than the respective
weights of the latter. These results suggest that the CC
GO terms play less significant roles in the prediction
than MF and BP GO terms. Similar conclusions can
be drawn for Fig. 4(b), where CC GO terms possess
weights with a narrower range and smaller median
and maximum weights than the other two categories.
However, the scenario is the opposite in Fig. 4(h), where
the weights of CC GO terms have a wider range and
their maximum is also larger than that of the other two
categories. This suggests that CC GO terms are more

important for predicting Type 8’s proteins than MF and
BP GO terms.

Fig. 5 shows the overall significance of essential GO
terms for different membrane types. As can be seen, the
weights for SP1, MP and PE have a larger range than
the other five types. Besides, the median and maximum
weight of PE is larger than those in the other seven types.
This suggests that Mem-mEN can predict peripheral
proteins with a higher confidence than the other types.

5.3 Significance of Ranking Essential GO Terms

Figs. 6(a)–(h) show the significance (weights) of the
GO terms corresponding to Type 1 to Type 8. In each
sub-figure, the GO terms are ranked according to their
significance in the three categories (CC, MF and BP).
As can be seen from Fig. 6(a), the GO terms with large
weights are from the MF and BP categories, suggesting
that GO terms from MF and BP categories outweigh
CC GO terms for predicting Type 1 membrane proteins.
However, the opposite phenomena occur for Type 6 and
Type 7, where GO terms with top weights are from the
CC category, suggesting that the CC GO terms play a
dominant role in the prediction of lipid-anchor and GPI-
anchor membrane proteins. Similar analysis can also be
applied to other types.

To have in-depth understanding on which GO term
has the largest contribution for each functional type, we
show the representative GO term for each membrane
type in Table 3. The representative GO term for each
type is the GO term whose weight is the largest for
the corresponding type. For example, the weight of
GO:0004896 (MF, cytokine receptor activity) is the largest
(0.4984) among all of the essential GO terms for Type 1.
Interestingly, we found that not all of the representative
GO terms belong to the CC category. For example, the
representative GO terms for Types 1 and 3 are from the
MF and BP categories. This suggests that GO terms from
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(b) 2: Single-pass type II
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(d) 4: Single-pass type IV
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(g) 7: GPI-anchor
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(h) 8: Peripheral

Fig. 4. Categorical significance of essential GO terms for different membrane types, including (a) single-pass type I,
(b) single-pass type II, (c) single-pass type III, (d) single-pass type IV, (e) multi-pass, (f) lipid-anchor, (g) GPI-anchor
and (h) peripheral. CC: cellular component; MF: molecular function; BP: biological function.

the MF and BP categories are also contributive to the
predictions.

We can see from Table 3 that the annotations of the rep-
resentative GO terms for some types are directly related
to the corresponding functional types. For example, the
representative GO term for Type 8 is GO:0019898, whose
annotation (CC, extrinsic component of membrane) di-
rectly associates with the peripheral type. However,
for some other types, even if their representative GO
terms are from the CC category, there is no relation-
ship between the annotations and the membrane types.
For example, the representative GO term for Type 2 is
GO:0030076 (CC, light-harvesting complex), which has
no direct linkage with any kind of membrane types.
These results indicate that some CC GO terms, which do
not associate with any membrane types, are helpful in
determining the functional types of membrane proteins.

Besides, because GPI-anchor type is a special kind of
lipid-anchor type, it is reasonable that the representative
GO terms for these two types are the same (GO:0031225).
Nevertheless, it by no means indicates that all of the es-
sential GO terms and the corresponding weights are the
same for these two types. This is clearly demonstrated
in Fig. 6(f) and Fig. 6(h), where some of the essential
GO terms as well as their weights for Types 6 and 7 are
different.

5.4 Circular Network for Essential GO Terms and
Membrane Types

To have a comprehensive understanding of the relation-
ships between essential GO terms selected by Mem-mEN
and the eight membrane types, Fig. 7 shows a circular
network connecting the essential GO terms and the
membrane types. Small green dots on the right represent
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Fig. 6. Ranking GO terms according to their categorical significance for different membrane types, including (a) single-
pass type I, (b) single-pass type II, (c) single-pass type III, (d) single-pass type IV, (e) multi-pass, (f) lipid-anchor,
(g) GPI-anchor and (h) peripheral. The blue, red and green colors represent the categories of cellular component,
molecular function and biological process.

TABLE 3
Representative essential GO terms for different membrane types. CC: cellular component; MF: molecular function;

BP: biological function.

Type Number Membrane Type Representative GO Term Category Weight Name in GO∗

1 Single-pass type I GO:0004896 MF 0.4984 Cytokine receptor activity
2 Single-pass type II GO:0030076 CC 0.5218 Light-harvesting complex
3 Single-pass type III GO:0038095 BP 0.5514 Fc-epsilon receptor signaling pathway
4 Single-pass type IV GO:0005640 CC 0.7777 Nuclear outer membrane
5 Multi-pass GO:0016021 CC 0.4908 Integral component of membrane
6 Lipid-anchor GO:0031225 CC 0.7547 Anchored component of membrane
7 GPI-anchor GO:0031225 CC 0.8825 Anchored component of membrane
8 Peripheral GO:0019898 CC 0.4984 Extrinsic component of membrane

∗: http://geneontology.org/.
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Fig. 7. A network showing the relationship between the essential GO terms and each membrane type. Small green
dots on the right represent the GO terms and the large dots in different colors on the left represent the 8 membrane
protein types. A line connecting an essential GO term and a membrane type denotes that the GO term contributes
to the prediction of the membrane protein type. On the contrary, if there is no line connecting an essential GO term
with a particular membrane protein type, then this GO term does not provide any information about whether a protein
belongs to the particular functional type or not. SP1: single-pass type I; SP2: single-pass type II; SP3: single-pass
type III; SP4: single-pass type IV; MP: multi-pass; LA: lipid-anchor; GPI: GPI-anchor; PE: peripheral.

the GO terms and the large dots in different colors on
the left represent the 8 membrane protein types. A line
connecting an essential GO term and a membrane type
denotes that the GO term contributes to the prediction of
the membrane protein type. On the contrary, if there is
no line connecting an essential GO term with a particular
membrane protein type, then this GO term does not
provide any information about the particular functional
type.

Starting from the top-left green dots to the bottom-left

green dots in clockwise direction, the degree of overlap-
ping among the lines gradually increases, denoting that
the number of membrane types to which an essential GO
term contributes also gradually increases. For example,
the first top-left GO term, GO:0008233, only contributes
to the prediction of SP1 (single-pass type I), indicating
whether a protein belongs to SP1 or not. On the contrary,
the last bottom-left GO term, GO:0015031, is indicative
of all of the eight functional types. In other words, these
essential GO terms are indicators of whether a query
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(b) Breakdown of the essential GO terms

Fig. 3. Type-specific information of essential GO terms,
including (a) type-specific statistics of essential GO terms
and (b) categorical breakdown of essential GO terms
in each functional type. SP1: single-pass type I; SP2:
single-pass type II; SP3: single-pass type III; SP4: single-
pass type IV; MP: multi-pass; LA: lipid-anchor; GPI: GPI-
anchor; PE: peripheral. CC: cellular component; MF:
molecular function; BP: biological function.

protein belongs to one or multiple membrane types or
not.

5.5 Comparing Mem-mEN with State-of-the-art Pre-
dictors

Table 4 and Table 5 compare Mem-mEN with two state-
of-the-art multi-label predictors on Datasets I and II,
respectively. To the best of our knowledge, there are
only two predictors, namely iMem-Seq [19] and Mem-
PseAA [20], which can predict membrane proteins with
both single- and multi-label functional types. iMem-Seq
uses position-specific score matrices to construct fea-
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Fig. 5. Overall type-specific significance of essential GO
terms. SP1: single-pass type I; SP2: single-pass type
II; SP3: single-pass type III; SP4: single-pass type IV;
MP: multi-pass; LA: lipid-anchor; GPI: GPI-anchor; PE:
peripheral.

TABLE 4
Comparing Mem-mEN with a state-of-the-art predictor

based on leave-one-out cross-validation tests on Dataset
I. ↓ means the lower the better; ↑ denotes the higher the

better.

Evaluation Criteria Predictors
iMem-Seq [19] Mem-mEN

Hamming loss ↓ 0.0635 0.0493
Ranking loss ↓ 0.0902 0.0521
One-error ↓ 0.2572 0.1892
Coverage ↓ 0.6735 0.4046
Average precision ↑ 0.8335 0.8881
Accuracy ↑ 0.6804 0.8056
Precision ↑ 0.6825 0.8085
Recall ↑ 0.6813 0.8135
Absolute-true ↑ 0.6774 0.7948

ture vectors, while Mem-PseAA uses pseudo-amino acid
composition features. Both predictors use multi-label
kNN classifier to deal with the multi-label classification
problem. Our proposed Mem-mEN extracts homologous
GO frequency information from ProSeq and ProSeq-GO
databases and then uses multi-label elastic net classifiers
for both feature selection and classification.

The results in Table 4 were based on leave-one-out
cross-validation tests on Dataset I, where the sequence
identity was cut off at 25%. As shown in Table 4, Mem-
mEN performs much better than iMem-Seq in terms
of all performance metrics. In particular, for the most
stringent and object criteria absolute-true, Mem-mEN out-
performs iMem-Seq by more than 11% (absolute).

Similar conclusions can be drawn for Dataset II in
Table 5. The results in Table 5 were based on the average
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TABLE 5
Comparing Mem-mEN with state-of-the-art predictors based on five 5-fold cross-validation tests on Dataset II. ↓

means the lower the better; ↑ denotes the higher the better.

Evaluation Criteria Predictors
Mem-PseAA [20] iMem-Seq [19] Mem-mEN

Hamming loss ↓ 0.0495±0.0019 0.0317±0.0013 0.0303±0.0008
Ranking loss ↓ 0.0600±0.0025 0.0425±0.0008 0.0339±0.0006
One-error ↓ 0.1964±0.0033 0.1192±0.0011 0.1154±0.0013
Coverage ↓ 0.4470±0.0215 0.3266±0.0031 0.2636±0.0029
Average precision ↑ 0.8780±0.0025 0.9211±0.0007 0.9225±0.0009

of five 5-fold cross-validation tests on Dataset II, where
the sequence identity was cut off at 80%.5 As can be
seen, the average precision of Mem-mEN is higher than
that of Mem-PseAA and iMem-Seq, and the former also
performs better than the latter in terms of the first four
metrics. In Table 5, the superiority of Mem-mEN over
iMem-Seq is less apparent than that in Table 4. This is
possibly because the sequence identity in Dataset II is
much higher than that in Dataset I (80% vs. 25%), which
increases the bias on the prediction performance. In this
case, the performance comparison in Table 4 is more
trustworthy than that in Table 5.

6 PREDICTING AND INTERPRETING MEM-
BRANE PROTEINS

Fig. 8 demonstrates how researchers can use Mem-mEN
to predict and interpret the functional types of query
membrane proteins. Fig. 8(a) shows the scores produced
by Eq. 7 in descending order using the query protein
P26952 as input, where (C), (F) and (P) stand for cel-
lular component, molecular function and biological pro-
cess categories, respectively. Also, the columns “Weight”
and “Term-Freq” represent non-zero elements of α̂m in
Eq. 6 and xs

t in Eq. 5, and the column “Feature Score”
represents the product of Weight and Term-Freq. The
higher the feature score, the more contribution is the
corresponding GO term to the prediction result. Since
only one of the 8 scores is positive, the number of
functional types is predicted to be 1 and this protein
is predicted to belong to SP1 (Type 1). The scores and
weights for the essential GO terms in SP1 and SP2 are
also shown in the right panel of Fig. 8(a).6 As can be
seen, 5 essential GO terms contribute to the score of
SP1, while 4 GO terms contribute to the score of SP2.
The maximum and minimum scores correspond to SP1
and SP2, respectively, which suggests that P26952 is
likely to be an SP1 protein but unlikely to be an SP2
protein. Besides, for SP1, the top two essential GO terms

5. Because [20] and [19] do not report the Precision, Recall and
Absolute-True on Dataset II, for consistency, we do not report these
results.

6. The scores and weights for the essential GO terms for all of the 8
functional types can be seen by inputing the query protein sequence
to our Mem-mEN web-server.

(GO:0004896 and GO:0019221) belong to molecular func-
tion (F) and biological process (P), respectively, while the
remaining 3 belong to the cellular-component category.
More interestingly, the scores of the top two GO terms
from non-CC categories are positive whereas those of
the remaining CC GO terms are negative. This suggests
that GO terms from the categories of molecular function
and biological process play key roles in determining the
functional types of the query membrane protein.

The essential GO terms that lead to large positive fea-
ture scores enable us to interpret the prediction decision.
For example, as indicated in Table 3, GO:0004896 is a
representative essential GO term for Type 1 proteins,
and its definition in the GO database is “Combining
with a cytokine and transmitting the signal from one
side of the membrane to the other to initiate a change in
cell activity”. This information boosts our confidence in
the prediction decisions of Mem-mEN and enables us to
explain why P26952 is an SP1 protein.

Fig. 8(b) shows the case for a multi-label membrane
protein (P06015). Evidently, there are two positive scores,
both determined by 3 essential GO terms. Thus, P06015
is predicted to co-locate in GPI (Type 7) and LA (Type
6). This demonstrates that Mem-mEN can predict mem-
brane proteins with multi-functional types. Again, the
GO terms (GO:0031225) that leads to the largest feature
score is a representative essential GO term in Table 3
and its definition in the GO database is “The component
of a membrane consisting of the gene products that are
tethered to the membrane only by a covalently attached
anchor, such as a lipid group that is embedded in the
membrane.” Evidently, this definition together with the
weights found by the EN-based feature selector clearly
indicate that the prediction decision is correct.

7 DISCUSSION
7.1 Why Two-Stage EN Training?
One may wonder the advantages of two-stage EN train-
ing (one for feature selection in Section 3.2, and one for
classification in Section 3.3). To clarify this, we have com-
pared the proposed two-stage training against a single-
stage one based on Dataset I. The results are shown in
Table 6. As can be seen, the predictor based on two-
stage training performs slightly better than the one based
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Type Score 

SP1 0.3872 

MP -0.0843 

PE -0.6912 

SP3 -0.7728 

SP4  -0.7945 

GPI -0.8108 

LA -0.8269 

SP2 -0.8603 

Essential GO 

Term 

Feature 

score 

weight Term-

Freq 

GO:0004896 (F) 0.4984 0.4984 1 

GO:0019221 (P) 0.4895 0.4895 1 

GO:0016021 (C) -0.0247 -0.0247 1 

GO:0005886 (C) -0.0758 -0.0379 2 

GO:0016020 (C) -0.5002 -0.2501 2 

. 

. 

. 

. 

. 

. 

P26952 

Essential GO 

Term 

Feature 

score 

weight Term-

Freq 

GO:0012505 (C) -0.0176 -0.0176 1 

GO:0016021(C) -0.0671 -0.0671 1 

GO:0005886 (C) -0.1014 -0.0507 2 

GO:0016020(C) -0.6742 -0.3371 2 

(a) Predicting Protein P26952

Essential GO 

Term 

Feature 

score 

weight Term-

Freq 

GO:0031225 (C) 0.8825 0.8825 1 

GO:0005886 (C) -0.1056 -0.0528 2 

GO:0016020 (C) -0.3367  -0.3367 1 

. 

. 

. 

. 

. 

. 

P06015 

Essential GO 

Term 

Feature 

score 

weight Term-

Freq 

GO:0031225 (C) 0.7547  0.7547 1 

GO:0005886 (C) -0.0588  -0.0294 2 

GO:0016020 (C) -0.2748 -0.2748 1 

Type Score 

GPI 0.4402 

LA 0.4211 

MP -0.5010 

PE -0.5279 

SP1  -0.6208 

SP4 -0.6449 

SP3 -0.6466 

SP2 -0.6483 

(b) Predicting Protein P06015

Fig. 8. Examples showing how Mem-mEN predicts and interprets functional types of (a) a single-label membrane
protein (P26952) and (b) a multi-label membrane protein (P06015). Type: functional type; Score: the score determined
by Eq. 7; Feature Score: the score that each essential GO term contributes to the final prediction; Term-freq: the
frequency of occurrences of an essential GO term; C: cellular component; F: molecular function; P: biological process;
SP1: single-pass type I; SP2: single-pass type II; SP3: single-pass type III; SP4: single-pass type IV; MP: multi-pass;
LA: lipid-anchor; GPI: GPI-anchor; PE: peripheral.

on single-stage training in terms of all performance
metrics. This means that while the features selected in
the first stage of training are optimal (in terms of Abso-
lute True) for the feature-selection EN, the GO vectors
formed by using these features as the bases require
another set of weights to achieve the best classification
performance. This observation is reasonable because the
feature-selection EN and the classification EN work on
two different feature spaces.

More importantly, the two-stage approach facilitates
us to construct flexible application-oriented predictors.
For example, in some applications, it is better to classify
the selected features by nonlinear classifiers such as neu-
ral networks. In other situations, wrapper approaches
such as RFE-SVM [43] may be more appropriate for
selecting the features. By dividing feature selection and
pattern classification into two separated stages, it is
possible to use any feature selection methods and pattern
classifiers for these two stages. The advantages of the
two-stage approaches have also been demonstrated in
our recent work on subcellular localization prediction
[25].

7.2 EN vs LASSO
Note that LASSO is a special case of elastic net (EN).
Specifically, when γ = 0 in Eq. 3, EN becomes LASSO.
As detailed in Section S1 (“Parameter Optimization
Implementation”) of the supplementary materials in the
Mem-mEN web-server7, γ = 0 is included in the grid
search for optimizing the ridge regression penalty (γ)

7. http://bioinfo.eie.polyu.edu.hk/MemmENServer/suppl.html

TABLE 6
Comparing two-stage training against one-stage training

based on Dataset I. ↓ means the lower the better; ↑
denotes the higher the better.

Evaluation Criteria Predictors
One-Stage Two-Stage

Hamming loss ↓ 0.0518 0.0493
Ranking loss ↓ 0.0542 0.0521
One-error ↓ 0.2005 0.1892
Coverage ↓ 0.4196 0.4046
Average precision ↑ 0.8811 0.8881
Accuracy ↑ 0.7954 0.8056
Precision ↑ 0.7987 0.8085
Recall ↑ 0.8035 0.8135
Absolute-true ↑ 0.7839 0.7948

and L1 penalty (λ) parameters of EN during the feature
selection stage. The grid search suggests that λ = 10 and
γ = 0.001 achieve the best performance on the EN-based
feature selector, which means that LASSO (γ = 0) is
inferior to EN in terms of feature selection. Therefore, we
adopted EN with (λ = 10, γ = 10−3) instead of LASSO
(λ > 0, γ = 0) to construct the feature selector.

Given a set of features selected by an elastic net, we
may use different types of classifiers for the classification
stage. While we propose using an EN-based classifier for
this purpose, it is of interest to compare its performance
with a LASSO-based classifier. The experimental results
are shown in Table 7, which shows that EN performs
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TABLE 7
Comparing EN with LASSO as classifiers after using EN

feature selection on Dataset I. ↓ means the lower the
better; ↑ denotes the higher the better.

Evaluation Criteria Classifiers
LASSO EN

Hamming loss ↓ 0.0525 0.0493
Ranking loss ↓ 0.0552 0.0521
One-error ↓ 0.2043 0.1892
Coverage ↓ 0.4262 0.4046
Average precision ↑ 0.8796 0.8881
Accuracy ↑ 0.7923 0.8056
Precision ↑ 0.7956 0.8085
Recall ↑ 0.7992 0.8135
Absolute-true ↑ 0.7822 0.7948

better than LASSO in all performance metrics. Moreover,
among the 338 essential GO terms, LASSO finds 203
non-zero weights only; that is, only 203 out of 338 GO
terms are useful for LASSO classification. On the other
hand, EN finds 328 non-zero weights; in other words, 328
out of 338 GO terms are used in EN classification. This
is probably because GO terms from the same category
are not independent with each other; instead they are
correlated with some hierarchical relationships, such as
‘is a’ and ‘part of’. Compared to LASSO, EN will select
correlated features together, thus causing more essential
GO terms to be selected. In fact, the results are consistent
with the claims in [33].

8 CONCLUSION
This paper proposes an efficient and interpretable pre-
dictor, namely Mem-mEN, for predicting membrane
proteins with single- and multi-label functional types.
By using a one-vs-rest EN classifier, 338 out of 7,900+
GO terms were found to play more important roles in
determining to which type(s) the query protein belongs.
Based on these selected essential GO terms, users of
Mem-mEN can not only predict to which type(s) a query
protein belongs, but also why it belongs to that type.

Experimental results show that Mem-mEN performs
significantly better than state-of-the-art multi-label
membrane-protein predictors. Besides, this paper also
found that GO terms from all of the three categories
contribute to prediction of membrane protein functional
types. And, GO terms from different categories con-
tribute diversely to different functional types. Further-
more, the significance of contributions of an essential
GO term depends on the functional type, with major
contribution on one functional type while with minor
contribution on some other types.
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