

Abstract— A learning process is easily trapped into a local

minimum when training multi-layer feed-forward neural

networks. An algorithm called Wrong Output Modification

(WOM) was proposed to help a learning process escape from

local minima, but WOM still cannot totally solve the local

minimum problem. Moreover, there is no performance analysis

to show that the learning has a higher probability of converging

to a global solution by using this algorithm. Additionally, the

generalization performance of this algorithm was not

investigated when the early stopping method of training is

applied. Based on these limitations of WOM, we propose a new

algorithm to ensure the learning can escape from local minima,

and its performance is analyzed. We also test the generalization

performance of this new algorithm when the early stopping

method of training is applied.

I. INTRODUCTION

 The Backpropagation (BP) algorithm [1] is the most

popular training algorithm and it is extensively applied in

training multi-layered feed-forward neural networks. BP is

popular because it is simple and its computational complexity

is low. However, its convergence rate (the rate to converge to

a global solution) is slow and it is easily trapped into local

minima, especially for non-linearly separable problems such

as the exclusive OR (XOR) learning problem [2, 3]. When the

learning is trapped into a local minimum, it cannot escape

afterwards to reach a global minimum (solution). This is

known as the local minimum problem.

Many learning algorithms based on BP have been proposed

to improve the performance of BP in terms of the convergence

rate (i.e., speed up the learning process); however, they

seldom directly address the local minimum problem [8 – 17].

Recently, [29] proposed a systematic approach called

Wrong Output Modification (WOM) to help the learning

escape from a local minimum if the learning is trapped by the

local minimum. [30] enhances this algorithm by modifying the

procedure to escape from a local minimum more effectively

and introduces a fast checking procedure to quickly identify

whether the learning is moving back to previous local minima.

Through the performance investigation in [30], the enhanced

version of WOM can effectively escape from local minima.

However, the learning may still be trapped occasionally into a

local minimum from which it cannot escape using WOM.

Moreover, there is no performance analysis to show that

Chi-Chung Cheung and Sean Shensheng Xu are with Department of

Electronic and Information Engineering, The Hong Kong Polytechnic

University, Hong Kong, China (e-mail: encccl@polyu.edu.hk).

Sin-Chun Ng is with the School of Science and Technology, The Open

University of Hong Kong, Hong Kong, China.

WOM can increase the probability of converging to a global

solution. Finally the early stopping method of training is a

very popular method to overcome the overfitting problem but

the performance of WOM with this method was not

investigated.

Based on the above limitations, we propose a new

algorithm called WOM with Re-attempts (WOM-R). When

the learning cannot escape from a local minimum using

WOM, a new set of initial weights is generated and the

learning follows the new set of initial weights to converge to a

global solution. The performance investigation shows it is a

very effective way to escape from such a local minimum.

According to the performance investigation, the learning uses

re-attempt once at most, and it is good enough to escape from

all local minima for different learning algorithms in different

learning problems. We also studied the performance analysis

of WOM and WOM-R, which showed that a learning

algorithm with WOM-R can finally converge to a global

solution. Finally, our proposed algorithm WOM-R was

applied in the early stopping method of training and our

performance investigation showed that it can enhance the

generalization performance of some learning algorithms in

some learning problems.

This paper is organized as follows. Section II briefly

describes the WOM algorithm and presents its performance

analysis. Section III shows the proposed algorithm called

WOM-R with its performance analysis. Section IV compares

the performance of our proposed algorithm with WOM and

other popular learning algorithms in terms of the convergence

rate and the global convergence capability, and the

generalization performance of WOM-R is investigated when

the early stopping method of training is used. Section V draws

the conclusion.

II. WOM

The WOM algorithm (Wrong Output Modification) [30] is

shown in Fig. 1. The procedure Initialization is to set up

parameters and select a learning algorithm (e.g., BP) to

process the learning. The learning starts after initialization. If

it is trapped by a local minimum, the procedure

Status-Checking is executed to check the current status and

the procedure Esacpe is executed to escape from this local

minimum. The procedure Fast-Checking is processed to avoid

the learning going back to previous local minima (not only the

previous local minimum but all local minima that were visited

before), if any. They will be repeatedly executed until the

learning converges to a global solution. Note that the learning

A Systematic Algorithm to Escape from Local Minima in Training

Feed-Forward Neural Networks

Chi-Chung Cheung, Sean Shensheng Xu, and Sin-Chun Ng

This is the Pre-Published Version.
The following publication Chi-Chung Cheung, Sean Shensheng Xu and Sin-Chun Ng, "A systematic algorithm to escape from local minima in training feed-
forward neural networks," 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 2016, pp. 396-402 is available at
https://doi.org/10.1109/IJCNN.2016.7727226.

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

mailto:encccl@polyu.edu.hk

is said to converge to a global solution if the system error is

less than or equal to an error threshold. To checks whether the

learning is trapped by a local minimum, WOM monitors the

change of the system error and the system error. The learning

is declared to be trapped by a local minimum if the change of

the system error is very close to zero but the system error is

larger than the error threshold.

Process the procedure Initialization

Randomly generate a set of initial weights.

Start the learning.

Repeat

 // Forward operation

 Compute the outputs by using the neuron weights.

If the learning is trapped by a local minimum, then

 // Check the current status

 Process the procedure Status-Checking

 // Require to escape from such local minimum

 If (Escape = true), then

 // Escape from the local minimum

 Process the procedure Escape.

 Endif

 Endif

 // Require to check wehther it goes back to previous

 // local minimum

 If (Checking = true), then

 Process the procedure Fast-Checking.

 Compute the neuron weights by using the outputs.

 Endif

Until the learning converges to a global solution

Fig. 1. WOM algorithm.

The procedure Status-Checking is shown in Fig. 2. It is used

to determine the parameters  and α.  is a threshold to

determine which outputs are declared as wrong outputs. At the

beginning,  is small to avoid high instability. When the

learning cannot escape from a local minimum, it will decrease

to declare more outputs as wrong outputs. The minimum value

of  is 0.5. α is to determine how close that a wrong output is

moved to its corresponding desired output. At the beginning,

it is small to avoid high instability. When the learning cannot

escape from a local minimum, it will descrease so that a wrong

output can move closer to its corresponding desired output.

The minimum value of α is a very small real value.

The procedure Escape shown in Fig. 3 is used to modify

wrong output values when the learning is trapped by a local

minimum. It is expected that, after modification, the new

output value can push the learning to esacpe from the local

minimum and converge to a global solution.

The procedure Fast-Checking is shown in Fig. 4. When the

learning executes the procedure Escape to escape from a local

minimum, it needs to monitor the system error and change of

system error to identify whether it is going back to a previous

local minimum. It usually takes many iterations to identify this

and the convergence rate may become too slow. This

procedure can speed up the checking by monitoring the

change of neuron weights. If most neuron weights are

approaching a local minimum, the probability that the learning

will be trapped by this local minimum is very high. Through

the performance investigation,  is sufficiently large if it is set

to 0.8L for all learning algorithms in all learning problems.

Note that WOM can be implemented in any learning

algorithms because the operations of WOM are independent

of the operations of a learning algorithm.

Procedure Status-Checking

Begin

 If it is a new local minimum, then

 Use default parameter setting.

 Escape = true.

 Checking = true;

Else

 If the local minimum was visited before, then

 α  α – k. // Move closer to desired outputs

 Escape = true.

 Checking = true.

 Else

 If α is too small but it still cannot esacpe, then

    – . // Involve more outputs

 Escape = true.

 Checking = true.

 Endif

 Endif

Endif

End

Fig. 2. Procedure Status-Checking.

Procedure Escape

Begin

 For each output values,

  = Wrong output value – Desired output value

 If ( > )

 Output = α if desired output value is 0

 Output = 1 – α if desired output value is 1

Endfor

End

Fig. 3. Procedure Escape.

Procedure Fast-Checking

Begin

 After each  iterations,

 For k = 1, 2, …, K, // number of local minima

 Count  0;

 For l = 1, 2, …, L, // number of neural weights

 If this weight approaches to kth local minimum

 Count = Count + 1;

 Endif

 Endfor

 If (Count  ), process the procedure Escape.

 Endif

 Endfor

End

Fig. 4. Procedure Fast-Checking.

The performance study of WOM is shown here. For

simplicity, we investigated the probability of converging to a

global solution when the learning escapes from a local

minimum. The notations and definitions of symbols used in

the performance study are listed below:

• i : i th neuron weight

•)(ki : i th neuron weight at k th iteration

•)}min()max(:{ iiiiiR  = : the valid range

of i th neuron weight, where max(x) and min(x) are

the maximum and minimum acceptable values of x

respectively. If x is out of this range, the learning is

declared to diverge.

• RL =),,,(21   : a vector of all neuron

weights in a neural network and R is the set of all

valid vectors (},:{ iRR ii = ).

• Rkkkk L =))(,),(),(()(21   : a vector of all

neuron weights in a neural network at k th iteration

•)}min()max(:{)(
,,

)(
,,

)(
,,

S
mjii

S
mjii

S
mjiR  = : the

range of i th neuron weight in the m th region of the j th

solution (a set of neuron weights is declared to be a

solution if its MSE (Mean Square Error) can reduce

to be less than or equal to the error threshold within

the maximum number of iterations (epochs) allowed)

where)max(
)(
,,

S
mji and)min(

)(
,,

S
mji are the

maximum and minimum values of the range

• },:{)(
,,

)(
, iRR S

mjii
S
mj =  : the set of vectors of

neuron weights in m th region of the j th solution

• 
m

S
mj

S
j RR

)(
,

)(
= : the set of vectors of neuron weights in

the j th solution.

• 
j

S
j

S
RR

)()(
= : the set of vectors of neuron weights

which can converge to a solution.

• x is the norm of x such that

)min()max(iiiR  −= (1)

Thus we have

=
i

iRR , (2)

)min()max(
)(
,,

)(
,,

)(
,,

S
mji

S
mji

S
mjiR  −= , (3)

=
i

S
mji

S
mj RR

)(
,,

)(
, , (4)

=
m

S
mj

S
j RR

)(
,

)(
 (5)

and =
j

S
j

S
RR

)()(
. (6)

Let)(Sp be the probability of converging to a global

solution within the maximum number of iterations allowed

where

R

R
p

S

S

)(

)(= . (7)

When the learning is trapped by a local minimum at the K th

iteration (before converging to a solution), we have
)(

)(
S

RRk − for k = 1, 2, …, K. (8)

When WOM is applied,)()1(KK  + . Some)(* k

exist such that
)(

)(*
S

RRk − for k = 1, 2, …, K but

)(
)1(*

S
RK + . Thus,

),(
)(*

WOMS
Rk  for all k where

),(WOMS
R is

)(S
R when WOM is applied in learning.

Moreover,),(
,,
WOMS
mjiR ,

),(
,

WOMS
mjR and

),(WOMS
jR are)(

,,
S

mjiR ,

)(
,
S
mjR and

)(S
jR respectively when WOM is applied in learning.

Therefore, there exist some m* and j* such that

)(
**,,

),(
**,,

S
mji

WOMS
mji RR  . (9)

Thus we have

)(
**,

),(
**,

S
mj

WOMS
mj RR  )(

*
),(

*
S
j

WOMS
j RR 

)(),(SWOMS
RR 

)(),(SWOMS pp 

 (10)

where p(S,WOM) is the probability of converging to a global

solution when WOM is applied. Through the above

performance study, this probability is greater than the

probability of convergeing to a global solution in the learning

without WOM.

III. WOM-R

The description and the performance study of WOM in

Section II shows that the probability of a learning algorithm

converging to a global solution increases when WOM is

applied. However, it still cannot guarantee that the learning

can converge to a global solution. In our performance

investigation, the learning occasionally cannot escape from a

local minimum when all wrong outputs are modified and

moved sufficiently close to their corresponding target outputs.

One possible reason is that the global solution is too far away

from the local minimum, so it is not good enough to just

modify wrong outputs but it is necessary to change the value

of each neuron weight. This reason will be justified later in

Section IV.

In this case, a new procedure is required to make the change.

The procedure is called WOM with Re-attempts (WOM-R)

and the algorithm is described in Fig. 5.

Procedure Status-Checking-With-Re-attempts

Begin

 If it is a new local minimum, then

 Use default parameter setting.

 Escape = true.

 Checking = true.

Else

 If the local minimum was visited before, then

 α  α – k. // Move closer to desired outputs

 Escape = true.

 Checking = true.

 Else

 If α is too small but it still cannot esacpe, then

    – . // Involve more outputs

 Escape = true.

 Checking = true;

 Else // Whatever the learning cannot escape

 Randomly re-generate a new set of initial

 weights but the regions in which the learning

 is trapped by the local minima which were

 visited before are excluded.

 (The step in WOM algorithm “Compute the

 neuron weights by using the outputs.” can be

 skipped once when it happens.)

 Escape = false.

 Checking = false.

 Endif

 Endif

Endif

End

Fig. 5. Procedure Status-Checking-With-Re-attempts.

The procedure Status-Checking in WOM is replaced by the

procedure Status-Checking-With-Re-attempts. In this new

procedure, when all wrong outputs are modified and they are

very close to their corresponding target outputs but the

learning is still trapped by a local minimum, it is declared that

modifying wrong outputs only is not good enough to escape

from the local minimum. Instead, all neuron weights are

modified. One possible way is to randomly re-generate all

weights. However, that may lead to the learning moving to

such a local minimum again since the attractive region of the

local minimum may be very large. To eliminate this possibility

effectively, all neuron weights are randomly re-generated but

the regions in which the learning is trapped by local minima

that were visited before are excluded. Later, in Section IV, our

performance investigation will show that at most this

re-generation needs to be executed once only, and then the

learning can converge to a global solution. It shows that

WOM-R is an efficient way to escape from a local minimum

when the original WOM cannot escape from it.

The performance study of WOM-R is shown here. The

notations and definitions of symbols used in the performance

study are listed below:

•),(nki : i th neuron weight at k th iteration after nth

retries

•
)(nk : the number of iterations that the learning is

trapped by a local minimum after nth retries

• }:{)()(MINMAXnR ii
L

i =  : the range of i th

neuron weight such that the learning is trapped by a

local minimum after nth retries

where)),0(),,(max()(nnkMAX i
n

i = and

)),0(),,(min()(nnkMIN i
n

i = .

•)()()1()(nRnRnR L
iii −=+ : the valid range of i th

neuron weight after nth retries

• }),(:{)(inRnR ii = 

Thus we have)()()()1(
)(

nRnRnRnR i
L

iii −=+

and)()1(nRnR + . Therefore,

)(
)(

)1(
)1(

),(

),(

),(

),(

np
nR

R

nR

R
np

WOMS

WOMS

WOMS

WOMS

=

+
=+

 (11)

and

1)1(1

))(1(1

),(

),(),(

→−−

−−= 
−

nWOMS
n

WOMSRWOMS

p

npp
 (12)

when n → . Note that)(),(np WOMS
is the probability of

converging to a global solution after n retires and
),(),()0(WOMSWOMS pp = . The performance analysis shows

the probability is close to 1 when n is large although, in our

performance investigation, it is good enough to re-generate a

new set of initial weights at most once.

IV. NUMERICAL RESULTS

This section reports a number of experiments that were

conducted using different benchmark learning problems to

investigate the performance of different popular learning

algorithms with and without WOM-R. All data sets of learning

problems can be found in the UCI Machine Learning

Repository [25]. Brief descriptions of these learning problems

are shown in Tables I and II where  and  are the learning

rate (step size) and the momentum of BP for those learning

problems respectively. Table II shows the number of data

patterns used for training, validation and testing when the

early stopping method of training is applied.

TABLE III

PERFORMANCE COMPARISONS

Learning

Algorithms
Iris Wine

Breast

Cancer

BP
559,337

(14%)

null

(0%)

130,513

(47%)

BP + WOM-R
129,891

(100%)

null

(0%)

12,477

(100%)

MGF
39,159

(100%)

null

(0%)

7,829

(99%)

MGF + WOM-R
44,210

(100%)

null

(0%)

8,619

(100%)

QP
null

(0%)

846

(38%)

2,366

(4%)

QP + WOM-R
132,699

(100%)

7,378

(100%)

3,221

(100%)

RP
4,046

(100%)

1.453

(60%)

2,151

(2%)

RP + WOM-R
24,274

(100%)

1,966

(100%)

1,742

(100%)

Note that N, K, and M represent the number of input,

hidden, and output nodes respectively. The network

architectures are obtained from other research papers or by

trial-by-error. The input and the target patterns for these

learning problems consist of 0s and 1s only. All learning

algorithms in this paper were terminated when the mean

square error E reached the error threshold 0.001 within

1,000,000 epochs.

Four popular learning algorithms (Backpropagation (BP)

[1], MGFPROP (MGF) [13], Quickprop (QP) [4] and RPROP

(RP) [5]) were applied to the above learning problems to

investigate the performance of WOM-R in terms of the

convergence rate (the number of epochs) and the global

convergence capability (the probability of converging to a

global solution within 100 runs). A set of initial weights is

randomly generated between -0.3 and 0.3. Finally, all

simulations are implemented in C and executed in identical

personal computers with the same hardware and software

environments.

 Table III shows the performance of different learning

algorithms with and without WOM-R in different learning

problems. The values shown outside and inside the brackets

are the convergence rate (i.e., the average number of

iterations to converge to a global solution) and the global

convergence capability (i.e., the percentage of runs in which

the learning converges to a global solution) respectively. For

example, Backpropagation (BP) without WOM-R in the Iris

problem spends 559,337 iterations on average to converge to

a global solution and it can converge to a global solution in 14

out of 100 runs. Note that there are no data for Quickprop in

the Iris problem because the probability of converging to a

global solution is too small so that the learning cannot meet its

terminating condition in all 100 runs. Moreover, there are no

data for both BP and MGFPROP in the Wine problem

because their learning rates are extremely small when the

learning is close to converging to a global solution and thus

they never meet the terminating condition in all 100 runs.

Table III, except for the above special cases, shows that all

learning algorithms can converge to a global solution in all

runs when WOM-R is applied. In [30], Quickprop and

RPROP can converge to a global solution in all runs without

re-generating a new set of initial weights because it was found

that they can finally converge to a global solution if it keeps

trying to escape from local minima. However, other learning

algorithms like BP and MGFPROP cannot converge to a

global solution without re-generating a new set of initial

weights, which was the motivation why a new procedure was

required to escape from a local minimum when the original

WOM cannot do it.

Table IV shows the the difference between local minima

and global solutions. D(j) is the normalized mean difference

between the j th local minimum and the global solution that the

learning finally converges to. The definition of D(j) is


=

−
=

L

i i

ii

GM

GMLMj

L
jD

1)(

)(),(1
)(




 (13)

Note that L is the total number of neurons. Moreover,

TABLE II

PROBLEM DESCRIPTIONS II

Learning Problem Training Validation Testing

Iris 100 10 40

Wine 118 20 40

Breast Cancer 99 200 400

TABLE I

PROBLEM DESCRIPTIONS I

Learning

Problem
Description

Network

Architecture

(N, K ,M)

Parameter

Setting

(, )

Iris

The data set contains 3

classes of 50 instances each,

where each class refers to a

type of iris plant.

(4, 15, 3) (0.02, 0.05)

Wine

These data are the results of a

chemical analysis of wines

grown in the same region in

Italy but derived from 3

different cultivars. The

analysis determined the

quantities of 13 constituents

found in each of the three

types of wines.

(13, 10, 3) (10-8, 0.1)

Breast

Cancer

These breast cancer

databases were obtained

from the University of

Wisconsin Hospitals,

Madison, from Dr. William

H. Wolberg. The databases

reflect this chronological

grouping of the data.

(9, 20, 1) (0.005,0.03)

TABLE V

GENERALIZATION PERFORMANCE

Learning

Problem
QP

QP +

WOM-R
RP

RP +

WOM-R

Iris 0.04795 0.04778 0.04718 0.04613

Wine 0.1414 0.1173 0.1075 0.1003

Breast

Cancer
0.04333 0.04334 0.04227 0.04222

TABLE IV

DIFFERENCE BETWEEN LOCAL MINIMA AND GLOBAL SOLUTIONS

Case
Learning

algorithm

Learning

Problem
D(j)

1 Quickprop Wine

D(1) = 0.21

2 RPROP
Breast

Cancer

D(1) = 0.97

D(2) = 0.43

3 Quickprop Wine

D(1) = 89.38

D(2) = 261.31*

D(3) = 0.02

4 RPROP Wine

D(1) = 7.95

D(2) = 8.77

D(3) = 9.34

D(4) = 8.81*

5 Quickprop Iris

D(1) = 26.31

D(2) = 26.26*

D(3) = 1.91

D(4) = 0.47

D(5) = 0.084

),(LMji is the i th neuron weight when the learning is

trapped by j th local minimum, and)(GMi is the i th neuron

weight when the learning finally converges to a global

minimum (solution). The number inside the bracket is the

sequence to identify local minima. A number with * represents

that the procedure to re-generate a new set of initial weights is

executed when the learning is trapped by such local minimum.

For example, in case 3, the first local minimum is found and

the normalized mean difference between this local minimum

and the final global solution is 89.38. After escaping from the

first local minimum, the learning is trapped into the second

local minimum and this time the procedure to re-generate a

new set of initial weight is executed. After that, the learning is

trapped into the third local minimum. Finally, the learning

escapes from the third local minimum and converges to a

global solution. In case 1 and 2, the original WOM can escape

from all local minima because the differences are very small

(less than 1). In cases 3, 4 and 5, the procedure to re-generate

a new set of initial weights is required because the differences

are large (greater than 7.95 and up to 261.31). This means,

when the local minima are very far away from its global

solution, it becomes necessary to execute this new procedure.

Finally the generalization performance of WOM-R was

investigated when the early stopping method of training is

applied. This method is very popular because it generally

solves the overfitting problem (see Fig. 6) [31]. The

early-stopping point is used to get the set of neuron weights

for generalization .

Fig. 6 Early stopping method of training [31]

Table V shows the the generalization performance of different

learning algorithms in different learning problems. For each

benchmark learning problem, 10,000 runs were executed and

the result is the mean mis-classification rate of a learning

algorithm with and without WOM-R. A learning algorithm

with WOM-R sometimes has better generalization

performance. It happens only when the learning is trapped by

a local minimum before it reaches the minimum of the curve

of the validation-sample error. If that is the case, WOM-R can

esacpe from a local minimum and then the learning can reach

the minimum of the curve and therefore obtain a better

generalization performance.

V. CONCLUSIONS

This paper presented a new algorithm called Wrong Output

Modification with Re-attempts (WOM-R) in training

multi-layered feed-forward neural networks. It systemically

modify the outputs and the neuron weights to escape from

local minima, if any. When all wrong outputs are declared and

modified but the learning still cannot escape from a local

minimum, WOM-R randomly re-generates all neuron weights

but the regions in which the learning is trapped by local

minima that were visited before are excluded. Moreover, it

showed the performance study of this algorithm, and it

investigated the performance of some popular learning

algorithms with WOM-R in some brenchmark learning

problems. Learning with WOM-R always converged to a

global solution in our performance investigation and

sometimes produced better generalization performance.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Rex G. Sharman for his

proof-reading. This work was supported in part by Project

A-PC0K from “The Hong Kong Polytechnic University

Competitive Research Grants for Newly Recruited Junior

Academic Staff 2007-2008” and in part by The Open

University of Hong Kong Research Grant (Project No. 09/1.3

and 2012/1.1).

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal

Representations by Error Propagation”, in Parallel Distributed

Processing: Exploration in the Microstructure of Cognition, vol. 1.

MIT Press, Cambridge, Mass, 1986.

[2] E. K. Blum, and L. K. Li, “Approximation theory and feedforward

networks”, Neural Networks, vol. 4, pp. 511 – 515, 1991.

[3] M. Gori, and A. Tesi, “On the problem of local minima in

back-propagation”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 14, no. 1, pp. 76 – 86, 1992.

[4] Y. Lee, S. H. Oh, and M. W. Kim, “An Analysis of Premature

Saturation in Back Propagation Learning”, Neural Networks, vol. 6,

pp. 719 – 728, 1993.

[5] F. Stager, and M. Agarwal, “Three methods to speed up the training of

feedforward and feedback perceptrons”, Neural Networks, vol. 10, no.

8, pp. 1435 – 1443, 1997.

[6] A. Van Ooyen, and B. Nienhuis, “Improving the convergence of the

back-propagation algorithm”, Neural Networks, vol. 5, pp. 465 – 471,

1992.

[7] J. E. Vitela, and J. Reifman, “Premature Saturation in Backpropagation

Networks: Mechanism and Necessary Conditions”, Neural Networks,

Vol. 10, no. 4, pp. 721 – 735, 1997.

[8] S. E. Fahlman, “Fast learning variations on back-propagation: An

empirical study”, Proceedings of the 1988 Connectionist Models

Summer School (Pittsburgh, 1988), D. Touretzky, G. Hinton, and T.

Sejnowski, eds., pp. 38 – 51, Morgan Kaufmann, San Mateo,

California, 1989.

[9] M. Riedmiller, and H. Braun, “A direct adaptive method for faster

back-propagation learning: The RPROP Algorithm”, Proceedings of

International Conference on Neural Networks, vol. 1, pp. 586 – 591,

1993.

[10] N. K. Treadgold, and T. D. Gedeon, “Simulated Annealing and Weight

Decay in Adaptive Learning: The SARPROP Algorithm”, IEEE Trans.

on Neural Networks, vol. 9, no. 4, pp. 662 – 668, July 1998.

[11] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative

studies”, Journal of Statistical Physics, vol. 34, pp. 975 – 986, 1984.

[12] S. Kirkpatrick, C. D. Gilatt, and M. P. Vecchi, “Optimization by

simulated annealing”, Science, vol. 220, pp. 671 – 680, 1983.

[13] C. Igel and M. Hüsken, “Empirical evaluation of the improved Rprop

learning algorithms”, Neurocomputing, vol. 50, pp. 105 – 123, 2003.

[14] A. D. Anastasiadis, G. D. Magoulas, and M. N. Vrahatis, “An Efficient

Improvement of the Rprop Algorithm”, Proceedings of the First

International Workshop on Artificial Neural Networks in Pattern

Recognition (ANNPR-03), 2003.

[15] Y. Bard, Non-Linear Parameter Estimation, New York: Academic

Press, 1974.

[16] S. Haykin, “Single-layer perceptrons”, Neural Networks: A

Comprehensive Foundation, 2nd ed., London: Prentice Hall, 1999,

Ch.3, pp. 117 – 155.

[17] S. C. Ng, Chi-Chung Cheung and S. H. Leung, "Magnified Gradient

Function with Deterministic Weight Evolution in Adaptive Learning",

IEEE Transactionson on Neural Networks, vol. 15, no. 6, pp. 1411 –

1423, November 2004.

[18] Chi-Chung Cheung, S. C. Ng, A. K. Lui, and Sean Shensheng,

“Enhanced Two-Phase Method in Fast Learning Algorithms”,

Proceedings of IJCNN 2010, Barcelona, Spain, July 2010.

[19] Chi-Chung Cheung, S. C. Ng, A. K. Lui, and Sean Shensheng, “A Fast

Learning Algorithm with Promising Convergence Capability”,

Proceedings of IJCNN 2011, San Jose, US, August 2011.

[20] L. Behera, “On Adaptive Learning Rate That Guarantees Convergence

in Feedforward Networks”, IEEE Transactions on Neural Networks,

vol. 17, no. 5, pp. 1116 – 1125, September 2006.

[21] X. Yu, O. Efe, and O. Kaynak, “A General Backpropagation Algorithm

for Feedforward Neural Networks Learning”, IEEE Transactions on

Neural Networking, vol. 13, no. 1, pp. 251 – 254, January 2002.

[22] M. T. Hagan and M. B. Menhaj, “Training feedforward neural

networks with the Marquardt algorithm,” IEEE Transactions on

Neural Networks, vol. 5, pp. 989 – 993, November, 1994.

[23] A. Petrowski, “Performance analysis of a pipelined backpropagation

parallel algorithm”, IEEE Transactions on Neural Networks, vol. 4, no.

6, pp. 970 – 981, November 1993.

[24] S. L. Hung and H. Adeli, “A Parallel Genetic/Neural Network Learning

Algorithm for MIMD Shared Memory Machines” IEEE Transactions

on Neural Networks, vol. 5, no. 6, pp. 900 – 909, November 1994.

A. Asuncion and D. J. Newman, “UCI machine learning repository,”

University of California, Irvine, School of Information and Computer

Sciences, 2007. [Online]. Available: http://archive.ics.uci.edu/ml/

[25] G. Huang, Q. Zhu and C. Siew, “Extreme learning machine: Theory

and applications”, Neurocomputing, no. 70, pp. 489 – 501, 2006.

[26] J. Luo, C. Vong and P. Wong, “Sparse Bayesian Extreme Learning

Machine for Multi-classification”, IEEE Transactions on Neural

Networks and Learning Systems, vol. 25, no. 4, pp. 836 – 843, April

2014.

[27] S. C. Ng, Chi-Chung Cheung, A. K. Lui and H. Tse, “Addressing the

Local Minima Problem by Output Monitoring and Modification

Algorithms”, Advance in Neural Networks – ISNN 2012, Lecture Notes

in Computer Science, vol. 7367, pp. 206 – 216, 2012.

[28] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, June

1999.

[29] Chi-Chung Cheung, Sin-Chun Ng, A. K Lui and Sean Shensheng Xu,

“Solving the Local Minimum and Flat-Spot Problem by Modifying

Wrong Outputs for Feed-Forward Neural Networks”, in Proceedings of

IJCNN2013, pp. 1463 – 1469, Dallas, Texas, USA, August 2013.

[30] Chi-Chung Cheung, Sin Chun Ng, Andrew K. Lui, Sean Shensheng Xu,

“Further enhancements in WOM algorithm to solve the local minimum

and flat-spot problem in feed-forward neural networks”, in

Proceedings of IJCNN2014, pp. 1225-1230, Bejing, China, July 2014.

[31] S. Haykin, Neural networks and learning machines, 3rd edition,

Pearson, 2009.

http://archive.ics.uci.edu/ml/

