
 

 

 

Abstract— A learning process is easily trapped into a local 

minimum when training multi-layer feed-forward neural 

networks. An algorithm called Wrong Output Modification 

(WOM) was proposed to help a learning process escape from 

local minima, but WOM still cannot totally solve the local 

minimum problem. Moreover, there is no performance analysis 

to show that the learning has a higher probability of converging 

to a global solution by using this algorithm. Additionally, the 

generalization performance of this algorithm was not 

investigated when the early stopping method of training is 

applied. Based on these limitations of WOM,  we propose a new 

algorithm to ensure the learning can escape from local minima, 

and its performance is analyzed.  We also test the generalization 

performance of this new algorithm when the early stopping 

method of training is applied. 

I. INTRODUCTION

  The Backpropagation (BP) algorithm [1] is the most 

popular training algorithm and it is extensively applied in 

training multi-layered feed-forward neural networks. BP is 

popular because it is simple and its computational complexity 

is low. However, its convergence rate (the rate to converge to 

a global solution) is slow and it is easily trapped into local 

minima, especially for non-linearly separable problems such 

as the exclusive OR (XOR) learning problem [2, 3]. When the 

learning is trapped into a local minimum, it cannot escape 

afterwards to reach a global minimum (solution). This is 

known as the local minimum problem. 

Many learning algorithms based on BP have been proposed 

to improve the performance of BP in terms of the convergence 

rate (i.e., speed up the learning process); however, they 

seldom directly address the local minimum problem [8 – 17].  

Recently, [29] proposed a systematic approach called 

Wrong Output Modification (WOM) to help the learning 

escape from a local minimum if the learning is trapped by the 

local minimum. [30] enhances this algorithm by modifying the 

procedure to escape from a local minimum more effectively 

and introduces a fast checking procedure to quickly identify 

whether the learning is moving back to previous local minima. 

Through the performance investigation in [30], the enhanced 

version of WOM can effectively escape from local minima. 

However, the learning may still be trapped occasionally into a 

local minimum from which it cannot escape using WOM. 

Moreover, there is no performance analysis to show that 
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WOM can increase the probability of converging to a global 

solution. Finally the early stopping method of training is a 

very popular method to overcome the overfitting problem but 

the performance of WOM with this method was not 

investigated.  

Based on the above limitations, we propose a new 

algorithm called WOM with Re-attempts (WOM-R). When 

the learning cannot escape from a local minimum using 

WOM, a new set of initial weights is generated and the 

learning follows the new set of initial weights to converge to a 

global solution. The performance investigation shows it is a 

very effective way to escape from such a local minimum. 

According to the performance investigation, the learning uses 

re-attempt once at most, and it is good enough to escape from 

all local minima for different learning algorithms in different 

learning problems. We also studied the performance analysis 

of WOM and WOM-R, which showed that a learning 

algorithm with WOM-R can finally converge to a global 

solution. Finally, our proposed algorithm WOM-R was 

applied in the early stopping method of training and our 

performance investigation showed that it can enhance the 

generalization performance of some learning algorithms in 

some learning problems.  

This paper is organized as follows. Section II briefly 

describes the WOM algorithm and presents its performance 

analysis. Section III shows the proposed algorithm called 

WOM-R with its performance analysis. Section IV compares 

the performance of our proposed algorithm with WOM and 

other popular learning algorithms in terms of the convergence 

rate and the global convergence capability, and the 

generalization performance of WOM-R is investigated when 

the early stopping method of training is used. Section V draws 

the conclusion. 

II. WOM

The WOM algorithm (Wrong Output Modification) [30] is 

shown in Fig. 1. The procedure Initialization is to set up 

parameters and select a learning algorithm (e.g., BP) to 

process the learning. The learning starts after initialization. If 

it is trapped by a local minimum, the procedure 

Status-Checking is executed to check the current status and 

the procedure Esacpe  is executed to escape from this local 

minimum. The procedure Fast-Checking is processed to avoid 

the learning going back to previous local minima (not only the 

previous local minimum but all local minima that were visited 

before), if any. They will be repeatedly executed until the 

learning converges to a global solution. Note that the learning 
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is said to converge to a global solution if the system error is 

less than or equal to an error threshold. To checks whether the 

learning is trapped by a local minimum, WOM monitors the 

change of the system error and the system error. The learning 

is declared to be trapped by a local minimum if the change of 

the system error is very close to zero but the system error is 

larger than the error threshold. 

 

Process the procedure Initialization 

Randomly generate a set of initial weights. 

Start the learning. 

Repeat 

 // Forward operation 

 Compute the outputs by using the neuron weights. 

If the learning is trapped by a local minimum, then 

 // Check the current status 

 Process the procedure Status-Checking 

 // Require to escape from such local minimum 

 If (Escape = true), then 

  // Escape from the local minimum 

  Process the procedure Escape. 

 Endif 

 Endif 

 // Require to check wehther it goes back to previous 

 // local minimum 

 If (Checking = true), then 

  Process the procedure Fast-Checking. 

 Compute the neuron weights by using the outputs. 

 Endif 

Until the learning converges to a global solution  

Fig. 1. WOM algorithm. 

 

The procedure Status-Checking is shown in Fig. 2. It is used 

to determine the parameters  and α.   is a threshold to 

determine which outputs are declared as wrong outputs. At the 

beginning,  is small to avoid high instability. When the 

learning cannot escape from a local minimum, it will decrease 

to declare more outputs as wrong outputs. The minimum value 

of  is 0.5. α is to determine how close that a wrong output is 

moved to its corresponding desired output. At the beginning, 

it is small to avoid high instability. When the learning cannot 

escape from a local minimum, it will descrease so that a wrong 

output can move closer to its corresponding desired output. 

The minimum value of α is a very small real value. 

The procedure Escape shown in Fig. 3 is used to modify 

wrong output values when the learning is trapped by a local 

minimum. It is expected that, after modification, the new 

output value can push the learning to esacpe from the local 

minimum and converge to a global solution. 

The procedure Fast-Checking is shown in Fig. 4. When the 

learning executes the procedure Escape to escape from a local 

minimum, it needs to monitor the system error and change of 

system error to identify whether it is going back to a previous 

local minimum. It usually takes many iterations to identify this 

and the convergence rate may become too slow. This 

procedure can speed up the checking by monitoring the 

change of neuron weights. If most neuron weights are 

approaching a local minimum, the probability that the learning 

will be trapped by this local minimum is very high. Through 

the performance investigation,  is sufficiently large if it is set 

to 0.8L for all learning algorithms in all learning problems. 

Note that WOM can be implemented in any learning 

algorithms because the operations of WOM are independent 

of the operations of a learning algorithm.  
 

Procedure Status-Checking 

Begin 

 If it is a new local minimum, then 

  Use default parameter setting. 

 Escape = true. 

 Checking = true; 

Else 

 If the local minimum was visited before, then 

  α  α – k. // Move closer to desired outputs 

  Escape = true. 

  Checking = true. 

  Else 

  If α is too small but it still cannot esacpe, then 

      – . // Involve more outputs 

   Escape = true. 

   Checking = true. 

  Endif 

 Endif 

Endif 

End 

Fig. 2. Procedure Status-Checking. 

 

Procedure Escape 

Begin 

 For each output values, 

   = Wrong output value – Desired output value 

 If ( >  )  

  Output = α if desired output value is 0 

  Output = 1 – α if desired output value is 1 

Endfor 

End 

Fig. 3. Procedure Escape. 

 

Procedure Fast-Checking 

Begin 

 After each  iterations, 

  For k = 1, 2, …, K, // number of local minima 

   Count  0; 

   For l = 1, 2, …, L, // number of neural weights 

    If this weight approaches to kth local minimum  

     Count = Count + 1; 

    Endif 

   Endfor 

   If (Count  ), process the procedure Escape. 

   Endif 

  Endfor 

End 

Fig. 4. Procedure Fast-Checking. 

 



 

 

 

The performance study of WOM is shown here. For 

simplicity, we investigated the probability of converging to a 

global solution when the learning escapes from a local 

minimum. The notations and definitions of symbols used in 

the performance study are listed below: 

• i : i th neuron weight 

• )(ki : i th neuron weight at k th iteration 

• )}min()max(:{ iiiiiR  = : the valid range 

of i th neuron weight, where max(x) and min(x) are 

the maximum and minimum acceptable values of x 

respectively. If x is out of this range, the learning is 

declared to diverge. 

• RL = ),,,( 21   : a vector of all neuron 

weights in a neural network and R  is the set of all 

valid vectors ( },:{ iRR ii =  ). 

• Rkkkk L = ))(,),(),(()( 21   : a vector of all 

neuron weights in a neural network at k th iteration 

• )}min()max(:{ )(
,,
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,,
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S
mjii

S
mjii

S
mjiR  = : the 

range of i th neuron weight in the m th region of the j th 

solution (a set of neuron weights is declared to be a 

solution if its MSE (Mean Square Error) can reduce 

to be less than or equal to the error threshold within 

the maximum number of iterations (epochs) allowed) 

where )max(
)(
,,

S
mji and )min(
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,,

S
mji  are the 

maximum and minimum values of the range 

• },:{ )(
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, iRR S

mjii
S
mj =  : the set of vectors of 

neuron weights in m th region of the j th solution 
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S
j RR
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= : the set of vectors of neuron weights in 

the j th solution. 

• 
j

S
j

S
RR

)()(
= : the set of vectors of neuron weights 

which can converge to a solution. 

• x  is the norm of x such that 

)min()max( iiiR  −=          (1) 

 

Thus we have 
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Let )(Sp  be the probability of converging to a global 

solution within the maximum number of iterations allowed 

where 

R

R
p

S

S
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)( = .              (7) 

 

When the learning is trapped by a local minimum at the K th 

iteration (before converging to a solution), we have 
)(

)(
S

RRk −  for k = 1, 2, …, K.      (8) 

When WOM is applied, )()1( KK  + . Some )(* k  

exist such that 
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where p(S,WOM) is the probability of converging to a global 

solution when WOM is applied. Through the above 

performance study, this probability is greater than the 

probability of convergeing to a global solution in the learning 

without WOM. 

III. WOM-R 

The description and the performance study of WOM in 

Section II shows that the probability of a learning algorithm 

converging to a global solution increases when WOM is 

applied. However, it still cannot guarantee that the learning 

can converge to a global solution. In our performance 

investigation, the learning occasionally cannot escape from a 

local minimum when all wrong outputs are modified and 

moved sufficiently close to their corresponding target outputs. 

One possible reason is that the global solution is too far away 

from the local minimum, so it is not good enough to just 

modify wrong outputs but it is necessary to change the value 

of each neuron weight. This reason will be justified later in 

Section IV. 

In this case, a new procedure is required to make the change. 

The procedure is called WOM with Re-attempts (WOM-R) 

and the algorithm is described in Fig. 5.  

 

 

 

 

 



 

 

 

Procedure Status-Checking-With-Re-attempts 

Begin 

 If it is a new local minimum, then 

  Use default parameter setting. 

 Escape = true. 

 Checking = true. 

Else 

 If the local minimum was visited before, then 

  α  α – k. // Move closer to desired outputs 

  Escape = true. 

  Checking = true. 

  Else 

  If α is too small but it still cannot esacpe, then 

      – . // Involve more outputs 

   Escape = true. 

   Checking = true; 

  Else // Whatever the learning cannot escape 

   Randomly re-generate a new set of initial  

   weights but the regions in which the learning 

   is trapped by the local minima which were 

   visited before are excluded. 

   (The step in WOM algorithm “Compute the 

   neuron weights by using the outputs.” can be 

   skipped once when it happens.) 

   Escape = false. 

   Checking = false. 

  Endif 

 Endif 

Endif 

End 

Fig. 5. Procedure Status-Checking-With-Re-attempts. 

 

The procedure Status-Checking in WOM is replaced by the 

procedure Status-Checking-With-Re-attempts. In this new 

procedure, when all wrong outputs are modified and they are 

very close to their corresponding target outputs but the 

learning is still trapped by a local minimum, it is declared that 

modifying wrong outputs only is not good enough to escape 

from the local minimum. Instead, all neuron weights are 

modified. One possible way is to randomly re-generate all 

weights. However, that may lead to the learning moving to 

such a local minimum again since the attractive region of the 

local minimum may be very large. To eliminate this possibility 

effectively, all neuron weights are randomly re-generated but 

the regions in which the learning is trapped by local minima 

that were visited before are excluded. Later, in Section IV, our 

performance investigation will show that at most this 

re-generation needs to be executed once only, and then the 

learning can converge to a global solution. It shows that 

WOM-R is an efficient way to escape from a local minimum 

when the original WOM cannot escape from it. 

 

The performance study of WOM-R is shown here. The 

notations and definitions of symbols used in the performance 

study are listed below: 

• ),( nki : i th neuron weight at k th iteration after nth 

retries 

• 
)(nk : the number of iterations that the learning is 

trapped by a local minimum after nth retries 

• }:{)()( MINMAXnR ii
L

i =  : the range of i th 

neuron weight such that the learning is trapped by a 

local minimum after nth retries 

where )),0(),,(max( )( nnkMAX i
n

i =  and 

)),0(),,(min( )( nnkMIN i
n

i = . 

• )()()1( )( nRnRnR L
iii −=+ : the valid range of i th 

neuron weight after nth retries  

• }),(:{)( inRnR ii =   
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and 
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when n → . Note that )(),( np WOMS
is the probability of 

converging to a global solution after n retires and 
),(),( )0( WOMSWOMS pp = . The performance analysis shows 

the probability is close to 1 when n is large although, in our 

performance investigation, it is good enough to re-generate a 

new set of initial weights at most once. 

IV. NUMERICAL RESULTS  

This section reports a number of experiments that were 

conducted using different benchmark learning problems to 

investigate the performance of different popular learning 

algorithms with and without WOM-R. All data sets of learning 

problems can be found in the UCI Machine Learning 

Repository [25]. Brief descriptions of these learning problems 

are shown in Tables I and II where  and  are the learning 

rate (step size) and the momentum of BP for those learning 

problems respectively. Table II shows the number of data 

patterns used for training, validation and testing when the 

early stopping method of training is applied. 

 

 

 

 

 

 

 

 



 

 

 

TABLE III 

PERFORMANCE COMPARISONS 

Learning 

Algorithms 
Iris Wine 

Breast 

Cancer 

BP 
559,337 

(14%) 

null 

(0%) 

130,513 

(47%) 

BP + WOM-R 
129,891 

(100%) 

null 

(0%) 

12,477 

(100%) 

MGF 
39,159 

(100%) 

null 

(0%) 

7,829 

(99%) 

MGF + WOM-R 
44,210 

(100%) 

null 

(0%) 

8,619 

(100%) 

QP 
null 

(0%) 

846 

(38%) 

2,366 

(4%) 

QP + WOM-R 
132,699 

(100%) 

7,378 

(100%) 

3,221 

(100%) 

RP 
4,046 

(100%) 

1.453 

(60%) 

2,151 

(2%) 

RP + WOM-R 
24,274 

(100%) 

1,966 

(100%) 

1,742 

(100%) 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that N, K, and M represent the number of input, 

hidden, and output nodes respectively. The network 

architectures are obtained from other research papers or by 

trial-by-error. The input and the target patterns for these 

learning problems consist of 0s and 1s only. All learning 

algorithms in this paper were terminated when the mean 

square error E reached the error threshold 0.001 within 

1,000,000 epochs. 

Four popular learning algorithms (Backpropagation (BP) 

[1], MGFPROP (MGF) [13], Quickprop (QP) [4] and RPROP 

(RP) [5]) were applied to the above learning problems to 

investigate the performance of WOM-R in terms of the 

convergence rate (the number of epochs) and the global 

convergence capability (the probability of converging to a 

global solution within 100 runs). A set of initial weights is 

randomly generated between -0.3 and 0.3. Finally, all 

simulations are implemented in C and executed in identical 

personal computers with the same hardware and software 

environments. 

 Table III shows the performance of different learning 

algorithms with and without WOM-R in different learning 

problems. The values shown outside and inside the brackets 

are the convergence rate (i.e., the  average number of 

iterations to converge to a global solution) and the global 

convergence capability (i.e., the percentage of runs in which 

the learning converges to a global solution) respectively. For 

example, Backpropagation (BP) without WOM-R in the Iris 

problem spends 559,337 iterations on average to converge to 

a global solution and it can converge to a global solution in 14 

out of 100 runs. Note that there are no data for Quickprop in 

the Iris problem because the probability of converging to a 

global solution is too small so that the learning cannot meet its 

terminating condition in all 100 runs. Moreover, there are no 

data for both BP and MGFPROP in the Wine problem 

because their learning rates are extremely small when the 

learning is close to converging to a global solution and thus 

they never meet the terminating condition in all 100 runs. 

Table III, except for the above special cases, shows that all 

learning algorithms can converge to a global solution in all 

runs when WOM-R is applied. In [30], Quickprop and 

RPROP can converge to a global solution in all runs without 

re-generating a new set of initial weights because it was found 

that they can finally converge to a global solution if it keeps 

trying to escape from local minima. However, other learning 

algorithms like BP and MGFPROP cannot converge to a 

global solution without re-generating a new set of initial 

weights, which was the motivation why a new procedure was 

required to escape from a local minimum when the original 

WOM cannot do it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table IV shows the the difference between local minima 

and global solutions. D(j) is the normalized mean difference 

between the j th local minimum and the global solution that the 

learning finally converges to. The definition of D(j) is 


=

−
=

L

i i

ii

GM

GMLMj

L
jD

1 )(

)(),(1
)(




        (13) 

Note that L is the total number of neurons. Moreover, 

TABLE II 

PROBLEM DESCRIPTIONS II 

Learning Problem Training Validation Testing 

Iris 100 10 40 

Wine 118 20 40 

Breast Cancer 99 200 400 

 

TABLE I 

PROBLEM DESCRIPTIONS I 

Learning 

Problem 
Description 

Network 

Architecture 

(N, K ,M) 

Parameter 

Setting  

(, ) 

Iris 

 

The data set contains 3 

classes of 50 instances each, 

where each class refers to a 

type of iris plant. 

  

(4, 15, 3) (0.02, 0.05) 

Wine 

These data are the results of a 

chemical analysis of wines 

grown in the same region in 

Italy but derived from 3 

different cultivars. The 

analysis determined the 

quantities of 13 constituents 

found in each of the three 

types of wines. 

  

(13, 10, 3) (10-8, 0.1) 

Breast 

Cancer 

These breast cancer 

databases were obtained 

from the University of 

Wisconsin Hospitals, 

Madison, from Dr. William 

H. Wolberg. The databases 

reflect this chronological 

grouping of the data. 

  

(9, 20, 1) (0.005,0.03) 

 



 

 

 

TABLE V 

GENERALIZATION PERFORMANCE 

Learning 

Problem 
QP 

QP + 

WOM-R 
RP 

RP + 

WOM-R 

Iris 0.04795 0.04778 0.04718 0.04613 

Wine 0.1414 0.1173 0.1075 0.1003 

Breast 

Cancer 
0.04333 0.04334 0.04227 0.04222 

      

TABLE IV 

DIFFERENCE BETWEEN LOCAL MINIMA AND GLOBAL SOLUTIONS 

Case 
Learning 

algorithm 

Learning 

Problem 
D(j) 

1 Quickprop Wine 

 

D(1) = 0.21 

 

2 RPROP 
Breast 

Cancer 

D(1) = 0.97 

D(2) = 0.43 

3 Quickprop Wine 

 

D(1) = 89.38 

D(2) = 261.31* 

D(3) = 0.02 

 

4 RPROP Wine 

D(1) = 7.95 

D(2) = 8.77 

D(3) = 9.34 

D(4) = 8.81* 

 

5 Quickprop Iris 

D(1) = 26.31  

D(2) = 26.26*  

D(3) = 1.91  

D(4) = 0.47  

D(5) = 0.084  

 

      

),( LMji  is the i th neuron weight when the learning is 

trapped by j th local minimum, and )(GMi is the i th neuron 

weight when the learning finally converges to a global 

minimum (solution). The number inside the bracket is  the 

sequence to identify local minima. A number with * represents 

that the procedure to re-generate a new set of initial weights is 

executed when the learning is trapped by such local minimum. 

For example, in case 3, the first local minimum is found and 

the normalized mean difference between this local minimum 

and the final global solution is 89.38. After escaping from the 

first local minimum, the learning is trapped into the second 

local minimum and this time the procedure to re-generate a 

new set of initial weight is executed. After that, the learning is 

trapped into the third local minimum. Finally, the learning 

escapes from the third local minimum and converges to a 

global solution. In case 1 and 2, the original WOM can escape 

from all local minima because the differences are very small 

(less than 1). In cases 3, 4 and 5, the procedure to re-generate 

a new set of initial weights is required because the differences 

are large (greater than 7.95 and up to 261.31). This means, 

when the local minima are very far away from its global 

solution, it becomes necessary to execute this new procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally the generalization performance of WOM-R was 

investigated when the early stopping method of training is 

applied. This method is very popular because it generally 

solves the overfitting problem (see Fig. 6) [31]. The 

early-stopping point is used to get the set of neuron weights 

for generalization . 

 

 
Fig. 6 Early stopping method of training [31] 

 

Table V shows the the generalization performance of different 

learning algorithms in different learning problems. For each 

benchmark learning problem, 10,000 runs were executed and 

the result is the mean mis-classification rate of a learning 

algorithm with and without WOM-R. A learning algorithm 

with WOM-R sometimes has better generalization 

performance. It happens only when the learning is trapped by 

a local minimum before it reaches the minimum of the curve 

of the validation-sample error. If that is the case, WOM-R can 

esacpe from a local minimum and then the learning can reach 

the minimum of the curve and therefore obtain a better 

generalization performance. 

 

  

 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS 

This paper presented a new algorithm called Wrong Output 

Modification with Re-attempts (WOM-R) in training 

multi-layered feed-forward neural networks. It systemically 

modify the outputs and the neuron weights to escape from 

local minima, if any. When all wrong outputs are declared and 

modified but the learning still cannot escape from a local 

minimum, WOM-R randomly re-generates all neuron weights 

but the regions in which the learning is trapped by local 

minima that were visited before are excluded. Moreover, it 

showed the performance study of this algorithm, and it 

investigated the performance of some popular learning 

algorithms with WOM-R in some brenchmark learning 

problems. Learning with WOM-R always converged to a 

global solution in our performance investigation and 

sometimes produced better generalization performance.  
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