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Abstract—We propose a novel technique for modulation format 
identification (MFI) in digital coherent receivers by applying deep 
neural network (DNN) based pattern recognition on signals’ 
amplitude histograms obtained after constant modulus algorithm 
(CMA) equalization. Experimental results for three 
commonly-used modulation formats demonstrate MFI with an 
accuracy of 100% over a wide optical signal-to-noise ratio (OSNR) 
range. The effects of fiber nonlinearity on the performance of MFI 
technique are also investigated. The proposed technique is 
non-data-aided (NDA) and avoids any additional hardware on top 
of standard digital coherent receiver. Therefore, it is ideal for 
simple and cost-effective MFI in future heterogeneous optical 
networks.  

Index Terms—Modulation format identification, coherent 
detection, deep machine learning. 

I. INTRODUCTION

HE next-generation fiber-optic communication networks 
are envisioned to be flexible in nature whereby the 
available network resources can be allocated adaptively 

with the objective of maximizing the spectral and energy 
efficiencies [1]. Such elastic optical networks (EONs) are 
expected to be fully capable of dynamically adjusting various 
transmission parameters such as modulation formats, line rates, 
spectrum assignments etc., depending upon the changing traffic 
demands and network condition. One key requirement for 
digital coherent receivers in EONs is the capability to 
autonomously identify the modulation formats of received 
signals without any prior information from the transmitters. 
This vital information about signals’ modulation formats can be 
fed forward to subsequent blocks in the digital signal 
processing (DSP) chain for improving their performances [2].

Over the last few years, a number of MFI techniques for 
digital coherent receivers have been proposed. These include: (i) 
method based on k-means algorithm [3], which performs MFI 
at  
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the final stage of a DSP chain, thus demanding all the earlier 
algorithms to be modulation format-transparent; (ii) signal 
cumulants [4] and signal power distribution [5] based 
techniques, which assume prior information about OSNR of the 
received signal; (iii) method based on evaluation of 
peak-to-average-power ratio (PAPR) of received data samples 
[6], which necessitates additional hardware components such 
as filters, power meters etc., thus increasing the implementation 
complexity (and cost) significantly, particularly in scenarios 
where MFI needs to be performed at multiple locations in an 
optical network; and (iv) Stokes space representation and 
variational Bayesian expectation maximization (VBEM) 
algorithm-based technique [7], which employs an iterative 
framework for the optimization of certain set of parameters, 
thus requiring considerable computation time. This property 
may potentially be disadvantageous in EONs involving rapid 
switching of modulation formats. 

Deep machine learning, also known as deep structured 
learning or hierarchical learning, is a new branch of machine 
learning which is based on the concept of distributed 
representation of data [8]. Deep learning architectures such as 
DNNs, deep convolutional neural networks (DCNNs), deep 
Boltzmann machines (DBMs) etc., exploit the fact that higher 
level features of data can be derived from lower level ones, 
resulting in a hierarchical representation of data. This property 
is somewhat similar to the one exhibited by human brain that 
appears to process information via several different levels of 
transformation and representation [9]. This behavior is 
particularly evident from human visual system which involves 
numerous hierarchical processing stages such as edges 
detection, primitive shapes formation, and proceeding 
gradually to construct more sophisticated visual shapes. 
Inspired by these characteristics, a deep learning architecture is 
comprised of several nonlinear processing layers (whose 
number defines the depth of architecture) performing automatic 
features extraction and transformation. The ability to extract 
and learn features at multiple levels of abstraction enables a 
deep learning system to learn complex relationships between 
inputs and outputs directly from the data instead of using 
human-crafted features.  

Recently, we demonstrated the use of classical machine 
learning techniques namely artificial neural networks (ANNs) 
[10] and principal component analysis (PCA) [11,12] for MFI
in heterogeneous fiber-optic networks. However, since these
methods exploit statistical properties of directly detected
signals, they are not applicable to dispersion-uncompensated
coherent optical systems. In this letter, we propose a novel
technique which employs a DNN architecture to hierarchically
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extract a few representative features of signals’ amplitude 
histograms obtained after CMA equalization in digital coherent 
receivers. These modulation format-sensitive features are then 
exploited by DNN for the identification of unknown signal 
types. The experimental results for 112 Gbps 
polarization-multiplexed (PM) quadrature phase-shift keying 
(QPSK), 112 Gbps PM 16 quadrature amplitude modulation 
(16-QAM), and 240 Gbps PM 64-QAM signals show that the 
proposed technique can enable accurate MFI in digital coherent 
receivers without necessitating any additional hardware as well 
as without requiring prior information about OSNR. 
Furthermore, since this technique is NDA, it does not have any 
adverse effect on spectral efficiency of the system. The 
proposed technique is non-iterative in nature and thus can 
facilitate fast MFI in future EONs. 

II. OPERATING PRINCIPLE  

The receiver DSP architecture, including the proposed MFI 
stage, is shown in Fig. 1. We employ conventional modulation 
format-transparent chromatic dispersion (CD) compensation 
and timing recovery algorithms followed by the CMA 
equalization which aims to compensate almost all linear 
transmission impairments. As clear from the figure, the 
proposed MFI technique processes signals at the output of 
CMA equalization stage. The information about signals’ 
modulation formats, obtained through MFI, is passed to the 
subsequent DSP blocks such as multi-modulus algorithm 
(MMA) equalization for enabling modulation 
format-optimized processing. Figure 2 shows constellation 
diagrams and corresponding amplitude histograms for QPSK, 
16-QAM, and 64-QAM signals after CMA equalization. It is 
obvious from the figure that the shapes of amplitude histograms 
are unique and contain distinctive signatures of these 
modulation formats. Although, the shapes of histograms do 
vary with OSNR, as clear from Fig. 2(b), they still remain 
distinguishable from each other. The modulation 
format-dependent features of amplitude histograms can be 
exploited for MFI by applying deep machine learning-based 
pattern recognition techniques. 
 In this work, we employed a two hidden layers DNN, shown 
in Fig. 3, for hierarchical extraction of amplitude histograms’ 
features which are subsequently exploited by DNN for MFI. 
The DNN is comprised of two autoencoders (acting as features 
extractors) and an output perceptron layer. An autoencoder is 
essentially a feed-forward neural network which aims to learn 
the features of input data itself in order to obtain a compressed 
representation. The output layer of DNN is chosen to be a 
softmax layer due to its suitability for multiclass classification 
problems such as the one under consideration. For the training 
of DNN, a large data set comprising of numerous amplitude 
histograms, corresponding to three modulation formats and 
various OSNRs, is obtained. Each histogram in the training data 
set is represented by an 80 × 1 vector x of bin-counts. In 
addition, for each histogram, we generated a 3 × 1 binary vector 
y, called a label or target vector, with only one non-zero 
element whose location indicates actual modulation format of 
the signal. The vectors x and y pertaining to training data set are 
employed for the training of DNN. For this purpose, 
autoencoder-1 is first  

 
 

Fig. 1. Receiver DSP architecture with the proposed MFI stage shown in red color. 
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Fig. 2. (a) Constellation diagrams and (b) amplitude histograms at two different OSNRs, 
for the three modulation formats types under consideration. 
 
trained alone utilizing vectors x in an unsupervised manner i.e. 
without using labels y. The autoencoder-1 attempts to replicate 
its input vectors x at its output. Hence, the size of its output is 
equal to the size of its input as shown in Fig. 3. The first half of 
autoencoder-1 (called encoder) maps an input vector x to a 
hidden representation while the second half (called decoder) 
attempts to reverse this mapping so as to reconstruct the 
original input x. If the number of neurons in hidden layer-1 is 
selected to be less than the size of input vectors x (i.e. 80), the 
mapping learnt by encoder part of autoencoder-1 provides a 
compressed representation, called feature vectors f1, of input 
vectors x. The decoder part of autoencoder-1 (shown in grey 
color) is then discarded and feature vectors f1 are used for the 



 
 

 3 

unsupervised training of autoencoder-2 in isolation. The 
number of neurons in  

 
 
Fig. 3. Schematic diagram of a two hidden layers DNN. The second half of each 
autoencoder (called decoder) is depicted in grey color with dotted weight lines. 
 
hidden layer-2 is chosen to be less than the size of vectors f1 so 
that autoencoder-2 learns an even smaller representation of 
initial input vectors x. The decoder part of autoencoder-2 is then 
dropped and a second set of feature vectors f2 is extracted by 
passing the previous set through the encoder of autoencoder-2. 
The extremely reduced size feature vectors f2 are utilized for the 
training of final output layer in a supervised manner i.e. by 
using labels y of the training data set as target outputs. Once the 
three individual components of DNN are trained in isolation, a 
complete network is formed by cascading the encoders of two 
autoencoders and the output layer. Finally, back-propagation 
(BP) algorithm is applied to train the whole multilayer network 
one last time in a supervised fashion by using vectors x and y of 
the training data set. This step is often referred to as fine-tuning.  

Once the training process of DNN is complete, its 
performance is analyzed by employing a separate and 
independent set of data called testing data set. For this purpose, 
bin-count vectors x belonging to the testing data set are applied 
at the input of trained DNN. The location of largest element in 
each corresponding output vector v i.e., argmax{v} then gives 
the estimated modulation format type. The identified 
modulation formats are compared with true ones i.e., the ones 
provided by labels y of the testing data set and the estimation 
accuracies are computed. 

III. EXPERIMENTAL SETUP AND RESULTS 
 The experimental setup used is shown in Fig. 4. A 150 
kHz-linewidth external cavity laser (ECL) operating at 1550.12 
nm is used to provide carrier signal to in-phase/quadrature (I/Q) 
modulators which are driven by multilevel electrical signals to 
generate 28 Gbaud QPSK, 14 Gbaud 16-QAM, and 20 Gbaud 
64-QAM optical signals. Polarization multiplexing is then 
achieved by employing polarization beam splitters (PBSs), 
optical delay lines, and polarization beam combiners (PBCs) to 
obtain 112 Gbps PM QPSK, 112 Gbps PM 16-QAM, and 240 
Gbps PM 64-QAM signals. The amplified optical signals are 
transmitted over a fiber recirculating loop comprising of an 80 
km span of standard single-mode fiber (SSMF), an 

erbium-doped fiber amplifier (EDFA), a variable optical   
 

 
 

Fig. 4. Experimental setup used for DNN-based MFI in digital coherent receivers. 
 
attenuator (VOA) for adjusting OSNR, and an optical 
band-pass filter (OBPF) for equalizing channel power. The 
OSNRs of PM QPSK, PM 16-QAM, and PM 64-QAM signals 
are altered in the ranges of 10−23 dB, 17−26 dB, and 25−37 dB, 
respectively, in steps of ~1 dB. The OSNR ranges considered in 
this work are the ones used practically for reliable data 
transmission with the abovementioned signal types. At the loop 
output, the optical signals are first filtered by a 0.4 nm 
bandwidth OBPF to remove the redundant noise present in the 
signals and then coherently detected by an integrated coherent 
receiver. The linewidth of local oscillator (LO) laser is 100 kHz 
while the frequency offset between transmitter and LO lasers is 
around 1 GHz. The bandwidth of analog front-end of the 
receiver is 22 GHz. The coherently detected signals are 
sampled using a 50 Gsamples/s oscilloscope to collect 56,000 
samples which are then processed offline utilizing the DSP core 
shown in Fig. 1. The polarization de-multiplexed signals 
obtained after CMA equalization stage are used to synthesize 
amplitude histograms with 80 bins as shown in Fig. 2(b). In this 
work, we acquired a large data set of 195 histograms 
corresponding to three modulation formats and various OSNRs. 
Two distinct subsets i.e. training and testing data sets are then 
generated by randomly choosing 68% (i.e. 135) and 32% (i.e. 
60) histograms, respectively, from the original data set. For 
each histogram in the two data sets, vector pairs (x, y) are 
obtained which are then utilized for the training and testing of 
DNN using the procedure discussed in previous section. 

Figure 5 depicts elements of DNN output vectors v 
corresponding to 60 bin-count vectors x in the testing data set. It 
is evident from the figure that for each test case, one specific 
element of v has substantially larger value than the others. The 
clear separation between the largest element in v and the rest 
indicates that there is no ambiguity faced by DNN in 
identifying the signals’ modulation formats. Therefore, we can 
expect very high identification accuracies for the three signal 
types considered in this work. The MFI results for 60 test cases 
are summarized in Table 1. It is obvious from the table that 
absolutely no errors are encountered in the identification of all 
three modulation formats thus resulting in an identification 
accuracy of 100%. We also analyzed the performance of MFI 
technique in the presence of fiber nonlinearity. For this purpose, 
the transmitted powers of PM QPSK and PM 16-QAM signals 
are varied in the ranges of -1−3 dBm and -2−2.5 dBm, 
respectively. The experimental results are shown in Fig. 6. It is 
clear from the figure that though the identification accuracies 
decrease slightly in the presence of fiber nonlinearity, they still 
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remain reasonably good thus showing the resilience of 
proposed  

           
                              (a)                                                     (b) 

  
(c) 

Fig. 5. Elements of DNN output vectors v for (a) PM QPSK, (b) PM 16-QAM, and (c) 
PM 64-QAM modulation formats in response to 60 bin-count vectors x in the testing data 
set.  
 
Table 1. Confusion matrix showing the performance of proposed technique for 60 test 
cases in the testing data set.  
 

 

 
 
Fig. 6. Effect of fiber nonlinearity on the identification accuracy of proposed technique. 

 
technique against fiber nonlinear effects. 

From the experimental results, the proposed MFI technique 
offers following main benefits over existing methods [3-7]. (i) 
Unlike [3], this technique performs MFI at an earlier stage of 
DSP chain and thus avoids the need for multiple modulation 
format-transparent algorithms. (ii) The proposed technique 
enables accurate MFI irrespective of signal’s OSNR. This is in 
contrast to [4,5] which require prior information about OSNR 
of the received signal. (iii) Unlike the method presented in [6], 
which necessitates extra hardware components, the proposed 
technique demonstrates MFI functionality using standard 
digital coherent receiver, thus avoiding additional 

implementation costs. (iv) Since this technique is non-iterative 
in nature, MFI can be accomplished quite fast thus making this 
method attractive for use in EONs involving rapid variations of 
modulation formats. On the other hand, the technique proposed 
in [7] employs an iterative algorithm which inherently requires 
significant computation time. 

Note that apart from the signal types under consideration, 
the proposed MFI technique can also be applied to several other 
advanced multilevel modulation formats provided that their 
amplitude histograms are distinguishable from each other. 
Hence, one limitation of the proposed technique is that it can 
not differentiate between various M-PSK (M ≥ 4) signals since 
they produce similar amplitude histograms. 

IV. CONCLUSION  
In this letter, we proposed the use of DNN in combination 

with signals’ amplitude histograms for NDA MFI in digital 
coherent receivers. The experimental results demonstrated 
good identification accuracies for three commonly-used 
modulation formats despite having no prior OSNR information. 
The proposed technique follows a non-iterative approach and 
avoids any additional hardware components. Therefore, it is 
ideal for fast and cost-effective MFI in future EONs. 
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