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ABSTRACT

In speaker recognition, the mismatch between the enrollment
and test utterances due to noise with different signal-to-noise
ratios (SNRs) is a great challenge. Based on the observa-
tion that noise-level variability causes the i-vectors to form
heterogeneous clusters, this paper proposes using an SNR-
aware deep neural network (DNN) to guide the training of
PLDA mixture models. Specifically, given an i-vector, the
SNR posterior probabilities produced by the DNN are used as
the posteriors of indicator variables of the mixture model. As
a result, the proposed model provides a more reasonable soft
division of the i-vector space compared to the conventional
mixture of PLDA. During verification, given a test trial, the
marginal likelihoods from individual PLDA models are lin-
early combined by the posterior probabilities of SNR levels
computed by the DNN. Experimental results for SNR mis-
match tasks based on NIST 2012 SRE suggest that the pro-
posed model is more effective than PLDA and conventional
mixture of PLDA for handling heterogeneous corpora.

Index Terms— Speaker verification; i-vector; mixture of
PLDA; deep neural networks; SNR mismatch.

1. INTRODUCTION

I-vectors have become a popular feature representation for
most state-of-the-art text-independent speaker verification
systems. By defining a total variability (TV) space, the poste-
rior means of the latent variables of a factor analyzer [1] are
considered as the fixed-length i-vectors of the corresponding
utterances with different durations. However, in addition to
the speaker-specific information, other undesirable informa-
tion (e.g. session, channel, additive noise, and so on) is also
involved in the i-vectors. More recently, probabilistic LDA
(PLDA) [2] has become a common backend for i-vector based
speaker verification. Given a large collection of i-vectors with
speaker labels, PLDA shows a powerful data-driven mech-
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anism to separate speaker information from other undesired
variability.

More recently, researchers have done much work on using
DNNs for speaker verification [3, 4, 5, 6, 7, 8, 9, 10]. It has
been found that direct applications of DNNs to speaker ver-
ification have not achieved significant performance gain. A
more promising strategy is to incorporate DNNs into i-vector
extraction. For example, Lei et al. [7] demonstrated that re-
placing the universal background model (UBM)—which is
essentially a speaker-independent Gaussian mixture model
(GMM)— with a phonetically-aware DNN for computing the
frame posterior probabilities produces significant improve-
ments compared to the standard UBM/i-vector framework.
In this DNN/i-vector framework, a phonetically-aware DNN
trained for automatic speech recognition (ASR) is used to
softly align speech frames to senone categories. Such align-
ments facilitate the comparison of speakers as if they pro-
nounced the same content.

While considerable progresses have been made in i-vector
extraction, how to develop a noise robust backend classifier
remains a challenge. Garcia-Romero et al. [11] employed
multi-condition training to train multiple PLDA models with
tied speaker factors, one for each condition. A robust sys-
tem was then constructed by combining all of the individ-
ual PLDA models according to the posterior probability of
each condition. In [12], Villalba and Lleida proposed a multi-
channel simplified PLDA (MCSPLDA). It is a kind of mix-
ture model in which each channel condition (SNR level) is
modeled by one channel subspace together with a channel-
dependent shift while speaker variability is modeled by a sin-
gle speaker subspace. The sharing of speaker subspace across
all noise conditions requires the assumption that speaker vari-
ability are noise-level invariant, which may not be the case
in very noisy environments because of the Lombard effects.
This may be the reason why MCSPLDA can only achieve per-
formance comparable to the conventional PLDA.

Based on the observation that i-vectors derived from ut-
terances having similar SNR tend to cluster together in the
i-vector space [13], we have proposed two approaches for
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noise robust speaker verification. One is the enhanced SNR-
invariant PLDA [13] where multiple SNR-dependent speaker
subspaces were introduced. The other one is SNR-dependent
mixture of PLDA [14]. Unlike the conventional mixture of
factor analyzers [15, 16] where the posteriors of the indica-
tor variables depend on the data samples, the posteriors of the
indicator variables in [14] depend on the SNRs of the utter-
ances. One common characteristic of these two approaches
is that the SNR of each test utterance should be estimated
when computing the verification score. Although estimating
the SNR of an utterance is not difficult, this requirement limits
the application of the approaches to handling SNR mismatch
only.

Inspired by the clustering phenomenon mentioned above
and the success of DNN/i-vector extraction, we propose a
DNN driven mixture of PLDA for robust speaker verifica-
tion. In this framework, the posterior probabilities of SNR1

given an i-vector are used as the posteriors of the indicator
variables in the mixture of PLDA to guide the training of the
mixture model, where the SNR posteriors are obtained from
the SNR-aware DNN. In the testing stage, given the i-vectors
of the target and test speakers, the SNR posteriors obtained
from the DNN are used to linearly combine the marginal like-
lihoods of different PLDA mixtures. Therefore, unlike the
SNR-dependent mixture of PLDA, the actual SNR of the tar-
get and test utterances are not necessary, only their SNR pos-
terior probabilities are needed.

2. DNN-DRIVEN MIXTURE OF PLDA

2.1. Training SNR-aware DNN

The SNR-aware DNN aims to provide supervisory infor-
mation to assist the clustering of the i-vectors into SNR-
dependent groups during the training of the PLDA mixture
models. It is believed that a more “crispy” division of the
i-vectors can ensure that each mixture can focus on a nar-
row range of SNR. To this end, the network should be able
to produce posterior probabilities of SNR given i-vectors as
input. Fig. 1 shows the structure of such network. It accepts
i-vectors as input and produces outputs in 1-of-K format so
that each output node represents one SNR range. The DNN
comprises several layers of restricted Boltzmann machines
(RBMs) [17, 18] trained by the contrastive divergency algo-
rithm [19, 20]. It is believed that this pre-training step can
bring the network to a stage that gives better generalization
from training data [21]. After pre-training, a softmax out-
put layer is put on the top RBM and the whole network is
fine-tuned by the backpropagation algorithm that minimizes
the cross-entropy between the desired outputs and actual
outputs. After training, the DNN can produce the posterior
probabilities of SNR groups given an input i-vector.

1Here, we assume that the continuous SNR can be divided into a number
of discrete SNR ranges.
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Fig. 1. Schematic diagram of the SNR-aware DNN.

2.2. Generative Model

The training of conventional mixture of PLDA (SNR-
independent mPLDA in [14]) is equivalent to unsupervised
clustering of i-vectors into a number of Gaussians, each with
a different speaker subspace (PLDA model). Because SNR
information is ignored during training, noisy i-vectors could
be assigned to the clean mixture component, and clean i-
vector could be aligned to the noisy component. To minimize
these mis-assignments, we propose to turn the unsupervised
clustering to a supervised one by incorporating the SNR
information of utterance during model training. More specifi-
cally, an SNR-aware DNN is trained according to Section 2.1.
For each utterance, an i-vector is extracted and presented to
the DNN. The network outputs (posteriors of SNR groups)
are then used as the posterior of indicator variables in the
mixture model so that the clusters in the i-vector space are
more dependent on the SNR levels.

Given a training i-vector xij from the j-th session of the
i-th speaker, the posterior probability of the k-th SNR group
obtained from the SNR-aware DNN is

γxij
(yijk) ≡ P (yijk = 1|xij ,w) (1)

where yijk is an indicator variable specifying which of the
mixture component is responsible for generating the obser-
vation xij and w represents the weights of the SNR-aware
DNN. With these definitions, the i-vectors are modeled by a
mixture of K PLDA models:

p(xij)

=
∑K

k=1

∫
P (yijk = 1|xij ,w)p(xij |z, yijk = 1, θk)p(z)dz

=
∑K

k=1
γxij

(yijk)N (xij |mk,VkV>
k + Σk),

(2)



where z is the speaker factor which is tied across all mix-
ture components, mk, Vk, and Σk represent the mean, the
speaker subspace, and the covariance matrix of the k-th SNR
group, respectively. The parameters of the model in Eq. 2
are denoted as θ = {mk,Vk,Σk}Kk=1. We assumed that the
speaker variability is modeled by VkV>

k and that the session
variability is modeled by Σk, where k = 1, . . . ,K.

2.3. EM Algorithm and Likelihood Ratio Scores

Denote Y = {yijk}Kk=1 as the set of latent indicator vari-
ables specifying which of the K factor analyzers should be
selected based on the SNRs of training utterances. Specifi-
cally, yijk = 1 if the k-th PLDA model produces xij , and
yijk = 0 otherwise. Given a set of D-dim length-normalised
[22] i-vectors X = {xij ; i = 1, . . . , S; j = 1, . . . ,Hi}. The
parameters θ can be learned from a training set using maxi-
mum likelihood estimation. Given an initial value θ, we aim
to find a new estimate θ′ that maximizes the following auxil-
iary function:

Q(θ′|θ) = EY,Z

{
ln p(X ,Y,Z|θ′)

∣∣∣∣X ,θ}

= EY,Z

∑
ijk

yijk ln [p(yijk = 1|θ′)p(xij |zi,θ′)p(zi)]

∣∣∣∣X ,θ


(3)

The EM formulations that maximizeQ(θ′|θ) are identical
to Eq. 15 and Eq. 16 in [14], excepting for replacing the pos-
terior expectations of indicator variables yijk given the SNRs
L = {`ij} by the DNN outputs. More specifically, we replace
〈yijk|L〉 in [14] by γxij

(yijk) in Eq. 1.

During scoring, given a target-speaker i-vector xs and a
test i-vector xt, the log-likelihood ratio score will be identical
to Eq. 13 and Eq. 17 in [14], excepting for the following
replacements:

γ`s,`t(yks
, ykt

)← γxs
(yks

)γxt
(ykt

)

γ`s(yks
)← γxs

(yks
)

γ`t(ykt
)← γxt

(ykt
)

where `s and `t denote the SNR of the target-speaker’s ut-
terance and the test utterance, respectively. Specifically,
the scoring function is given by Eq. 4 shown on the next
page, where α is a scalar to avoid taking exponential of
very large negative numbers, Λ̂kskt

= V̂ks
V̂T

kt
+ Σ̂kskt

,
Λks = VksV

T
ks

+ Σks , Σ̂kskt = diag{Σks ,Σkt}, and
D(x‖y) is the Mahalanobis distance between x and y. We
set α = 5 in this work.

Table 1. SNR ranges in dB for different numbers of SNR
groups (K).

K Group 1 Group 2 Group 3 Group 4 Group 5

2 (−∞, 20] (20,∞) – – –

3 (−∞, 8] (8, 20] (20,∞) – –

4 (−∞, 8] (8, 14] (14, 20] (20,∞) –

5 (−∞, 4] (4, 8] (8, 14] (14, 20] (20,∞)

3. EXPERIMENTAL SETUP

3.1. Speech Data and Front-End Processing

We divided the speech data into three categories: (1) develop-
ment data, (2) enrollment data, and (3) test data.

• Development Data: The microphone and telephone
speech files from NIST 2005–2008 SREs were used as
development data to train the gender-dependent UBMs
and total variability matrices. Babble noise was added
to each telephone speech files – excluding speakers
with less than two utterances – in NIST 2006–2010
SREs at an SNR of 6dB and 15dB. As a result, the
original and noisy telephone speech in NIST 2006–
2010 SREs and microphone speech in NIST 2008–
2010 SREs were used to train the subspace projection
matrices, PLDA models, PLDA mixture models, and
the SNR-aware DNN. The speaker labels in the de-
velopment data were obtained from the target-speaker
table files in NIST 2012 SRE.2

• Test Data: All test data were extracted from NIST 2012
SRE, as defined by the core.ndx file in the evalua-
tion plan. This paper focuses on common conditions
(CCs) 4 and 5 of the evaluation plan.

• Enrollment Data: The enrollment data not only com-
prise the conversations as defined by the speaker-table
files in NIST 2012 SRE but also comprise the noise
corrupted telephone conversations of target speakers, at
SNR of 6dB and 15dB. All of the 10-second utterances
and summed-channel utterances formed by mixing the
speech of two channels were removed from the target
segments. These sentences were not used for enroll-
ment because short utterances do not contain sufficient
speech for reliable estimation of i-vectors and summed-
channel utterances contain the speech of two speakers.
But we ensure that each target speaker has at least one
utterance for enrollment.

2Starting from 2012 SRE, it is legitimate to use target speakers as devel-
opment data. In fact, the speakers in the target-speaker table are speakers
from 2006–2010 SREs.



SDNN-mPLDA(xs,xt)

=

∑K
ks=1

∑K
kt=1 γxs

(yks
)γxt

(ykt
) exp

{
− 1

2 log |αΛ̂kskt
| − 1

2D
([

xT
s xT

t

]T ∥∥ [mT
ks

mT
kt

]T)}[∑K
ks=1 γxs(yks) exp

{
− 1

2 log |αΛks | − 1
2D (xs‖mks)

}] [∑K
kt=1 γxt(ykt) exp

{
− 1

2 log |αΛkt | − 1
2D (xt‖mkt)

}]
(4)

Table 2. Performance of PLDA, SI-mPLDA, SD-mPLDA, and DNN-mPLDA on CC4 and CC5 of NIST 2012 SRE core set.

Method No. of Mixtures
Male Female

CC4 CC5 CC4 CC5
EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA – 3.49 0.308 2.97 0.290 3.14 0.353 2.47 0.346

SI-mPLDA

2 3.49 0.303 3.04 0.300 3.11 0.350 2.55 0.340
3 3.31 0.302 3.06 0.286 3.02 0.351 2.41 0.345
4 3.31 0.299 2.93 0.288 3.00 0.354 2.60 0.332
5 3.52 0.301 3.48 0.303 3.04 0.355 2.71 0.355

SD-mPLDA

2 3.37 0.307 2.92 0.298 3.13 0.359 2.50 0.344
3 3.06 0.315 2.80 0.276 2.65 0.331 2.38 0.324
4 3.20 0.311 2.87 0.284 2.88 0.334 2.38 0.347
5 3.24 0.321 2.87 0.287 2.77 0.331 2.46 0.332

DNN-mPLDA

2 2.95 0.296 2.86 0.282 2.77 0.346 2.38 0.326
3 3.03 0.305 2.73 0.279 2.77 0.339 2.36 0.333
4 3.10 0.319 2.78 0.278 2.79 0.347 2.38 0.329
5 3.19 0.306 2.87 0.278 3.09 0.359 2.51 0.323

A two-channel voice activity detector (VAD) [23, 24] was
applied to detect the speech regions of each utterance. 19 Mel
frequency cepstral coefficients together with log energy plus
their 1st- and 2nd-derivatives were extracted from the speech
regions as detected by the VAD, followed by cepstral mean
normalization [25] and feature warping [26] with a window
size of 3 seconds. A 60-dim acoustic vector was extracted
every 10ms, using a Hamming window of 25ms.

3.2. Training of DNN and PLDA models

I-vectors were extracted based on gender-dependent UBMs
with 1024 mixtures and total variability matrices with 500 to-
tal factors. The i-vectors for training the SNR-aware DNN
were divided into K groups according to the measured SNRs
of the utterances.3 The SNRs of the whole training set were
divided into K SNR intervals, as shown in Table 1. The k-
th group comprises the i-vectors whose corresponding utter-
ances have SNR falling in the k-th SNR interval. The num-
bers of the i-vectors in each group are comparable. The DNN
classifier comprises 500 Gaussian input nodes and three hid-
den layers, each having 150 sigmoidal hidden units. Back
propagation with mini-batch conjugate gradient descent with

3We modified the FaNT tool to measure the SNR. For detail, see [27].

a batch size of 100 was performed in the pre-training stage.
In the fine-tuning stage, conjugate gradient descent was used
to minimize the cross-entropy loss for 30 epochs.

For training the PLDA models, similar to [28], we ap-
plied within-class covariance normalization (WCCN) [29] to
whiten the i-vectors, followed by length normalization (LN)
to reduce the non-Gaussian behavior of the 500-dimensional
i-vectors. Then, LDA was applied to reduce intra-speaker
variability and emphasize discriminative information. This
procedure projects the i-vectors onto a 200-dimensional sub-
space so that the amount of training data should be sufficient
to estimate the PLDA parameters. Then different types of
PLDA models with 150 latent speaker factors were trained.
These models include the following.

• PLDA: Conventional Gaussian PLDA.

• SI-mPLDA: SNR-independent mixture of PLDA in [14]
where the posterior γxij (yijk) in Eq. 4 is replaced by
the prior probability of the k-th mixture.

• SD-mPLDA: SNR-dependent mixture of PLDA in [14]
where the posterior γxij (yijk) in Eq. 4 is obtained from
a 1-dimensional (1-D) GMM modeling the SNR distri-
bution.



• DNN-mPLDA: The proposed DNN-driven mixture of
PLDA where the posterior γxij (yijk) is obtained from
an SNR-aware DNN that uses i-vector as input.

4. RESULTS AND ANALYSIS

We evaluated the performance of different systems us-
ing equal error rate (EER) and minimum normalized DCF
(minDCF) [30].

The experiments on CC4 and CC5 shown in Table 2 and
Table 3 aim to investigate the performance of different mod-
els under noise conditions.4 Results in Table 2 show that both
SD-mPLDA and DNN-mPLDA outperform the PLDA and
SI-PLDA. In most cases, the proposed DNN-mPLDA per-
forms better than SD-mPLDA. PLDA performs worse than
other PLDA mixture models. The reason is that PLDA uses a
single model to deal with a wide range of SNR, whereas the
mixture models use a specific mixture component to deal with
a much smaller range.

In contrast to SI-mPLDA, SNR information is used for
assisting the clustering of i-vectors during the training of SD-
mPLDA and DNN-mPLDA, which results in more proper i-
vector clusters and better SNR-dependent subspace model-
ing. Another important advantage of SD-mPLDA and DNN-
mPLDA is that the verification scores are calculated by com-
bining the PLDA scores using the posterior probabilities of
the indicator variables which are dependent on the test ut-
terances. This leads to a very flexible mixture mechanism.
On the other hand, the mixture weights in SI-mPLDA model
are determined based on the training i-vectors only. Once the
weights are calculated, they are used as the prior for all the
mixtures. As a result, the mixture weights are independent of
the test utterances during scoring. As the same combination
weights are used regardless of the characteristics of the test
utterance, the SI-PLDA is very inflexible.

The main difference between SD-mPLDA and DNN-
mPLDA is that the former computes the posterior probabil-
ities of yijk according to a 1-D GMM that models the SNR

4The results in Table 2 are slightly different from those in our earlier paper
(Table III in [14]) because we re-run all experiments and sped up the EM by
training the 1-D GMM and the mixture model separately.

distribution and the latter computes the posteriors via an
SNR-aware DNN using i-vector as input. Another difference
is that SD-mPLDA relies on SNR information of the test
utterances but DNN-mPLDA does not need such informa-
tion. This trait makes DNN-mPLDA a more general model
compared to SD-mPLDA.

To investigate the robustness of different models, we
added different levels of noise to the test segments in CC4
and CC5 of NIST 2012 SRE to make the SNR distribution of
test segments different from that of the training segments. Re-
call from Section 3.2 and Table 1 that the training segments
comprise the original clean segments and noise contami-
nated segments with a wide range of SNR. The results in
Table 3 show that the proposed model performs better than
other models when the SNR distributions of training and test
utterances are very different.

5. CONCLUSION

This paper proposes a new approach to training and scor-
ing PLDA mixture models for robust speaker verification. A
DNN is discriminatively trained using the SNR information
embedded in the training data. This DNN is used to guide the
training stage of PLDA mixture models, making each mixture
can precisely model one cluster in the i-vector space. In the
testing stage, the verification scores are computed by combin-
ing the PLDA scores with utterance-dependent weights. Ex-
perimental results suggest PLDA mixture models that lever-
age SNR information implicitly embedded in i-vectors signif-
icantly outperform those mixture models that do not make use
of such information.
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