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Abstract—When implementing cooperative positioning (CP),
there are a number of challenges and issues including the high
computation complexity, the high probability of encountering
unreliable reference nodes and coordinate uncertainty, which
may offset the benefit of CP. To address these challenges, we
study the impact of node reliability and propose a cooperative
positioning scheme that identifies unreliable reference nodes in
the system and adaptively adjusts the scoring threshold based on
the geographic locations of reference nodes. When compared with
other three conventional cooperative positioning schemes, our
simulation results indicate that the proposed scheme can achieve
the best accuracy of about 2 meters within five iterations, and it
is about 32% better than the conventional schemes in terms of
accuracy.

Index Terms—node reliability; cooperative positioning

I. INTRODUCTION

Highly accurate and ubiquitous indoor positioning is a
current hot research topic. Among all the indoor positioning
methods based on wireless technologies such as Ultra Wide-
band (UWB), WiFi and so on [1], WiFi is the most attractive
one owing to the rapid widespread use of 802.11 embedded
products and the continuously expanding WiFi coverage in
public areas. Thanks to unified development platforms such
as Brillo, the hot concept of Internet of Things (IoT) is
spreading rapidly, and such trend offers a feasible platform
for implementing a WiFi-based indoor positioning system [2].
Besides, WiFi can support high speed data transmission, so
the transmission and overhead of positioning information is
never a matter. In a WiFi-based positioning system, the nodes
with known accurate coordinate information are called anchors
while nodes with unknown coordinate information are agents.
Depending on whether an agent takes part in the positioning
process of other agents, we can divide positioning into non-
cooperative positioning (nCP) and CP [3]–[5].

Benefit from WiFi products and wireless development plat-
forms, it is now practical to support CP to enhance traditional
nCP approaches. To adopt WiFi-based CP, several techni-
cal issues should be tackled to avoid accuracy degradation.
They include the coordinate uncertainty, None-Line-Of-Sight
(NLOS) signal propagation, multi-path problem, etc. In this
paper, these problems are encapsulated in the node reliability
problem and they may offset the benefit of CP. An important
issue is to identify whether a set of reference nodes is reliable
or not. In nCP, there are some criteria used to evaluate the

positioning performance of a set of reference nodes like the
Camer-Rao bound (CRB) [6], Geometric Dilution of Precision
(GDOP) [7] and fitness function [8]. For example, CRB is
utilized to predict a lower bound on the covariance of any
unbiased location estimate. The CRBs for both received signal
strength indicator (RSSI) and time of arrival (TOA) distance
measurements are derived in [9], [10]. Some later works
[11]–[13] apply this criterion to propose diverse selection
algorithms. But these criteria do not take the uncertainty of
agents into account. Therefore, these criteria are not suitable
for CP reference node selection. To tackle the uncertainty
problem, alternative solutions are investigated in the past
few years. In [14], the modified bayesian Cramer-Rao bound
(MBCRB) taking ranging quality, geometry and uncertainty
into account is introduced, but the computational complexity
is high. Another solution is Squared Position Error Bound
(SPEB) [15], which was first proposed in [16], then authors of
[15] derived it in a closed-form by considering the imperfect
a priori location knowledge of the located agent. [15] also
proposed a mobile terminal (MT) selection scheme. By com-
bining SPEB and coalition formation games, a utility function
is designed in [17], [18].

We focus on identifying the node reliability to select the
optimal reference node set for agent to be located and propose
a reliability-based CP scheme with combined techniques. The
major contributions of this paper are as follows:

1) We design a set of criteria for reference node reliability
evaluation so that unreliable reference nodes in the
system can be readily identified.

2) We propose a reference node prioritization scheme with
low computation cost at agents. The SPEB [15] and
the proposed orientation index are used to estimate
the positioning performance and hence facilitate the
reference node selection process.

3) The proposed scheme and three conventional positioning
schemes are implemented and simulation is conducted
to evaluate the performance of the proposed scheme.

The reminder of this paper is organized as follows. The
methodologies exploited in this paper are introduced in Section
II. In Section III, the proposed scheme is discussed in detail.
After that, Section IV presents the simulation results and the
corresponding analysis. Finally, Section V concludes the paper.
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II. METHODOLOGIES

A. RSSI-based distance estimation

In terms of distance estimation, we apply the path loss
model for wireless radios in [19] as follows.

Pr(d) = P0(d0)− 10γ log10
d

d0
+Xσ (1)

where Pr(d) is the received power with distance d and
P0(d0) represents the received power at the reference distance
d0. Besides, γ denotes the path loss exponent, Xσ is a log-
normal random variable with variance σ2. If we ignore Xσ ,
(1) can be used to calculate the distance d for the target.

d = d010
P0(d0)−Pr(d)

10γ (2)

However, the practical indoor environment is more compli-
cated because of NLOS, multi-path and so on. These problems
lead to large errors and the reference nodes with such kind
of issues are considered to be “unreliable”. We assume the
distribution of unreliable reference node with large errors
and the corresponding error follow Gaussian distribution with
zero mean, and we call it the calibration standard deviation.
According to our empirical measurements, we found the
average calibration standard deviation σC = 2.12 dB and the
average RSSI standard deviation σRSSI = 1.49 dB.

B. SPEB and Reference node orientation index

The SPEB offers a lower bound to characterize the lo-
calization accuracy of an agent with unknown location. As
mentioned, authors in [15] take the anchor uncertainty into
account and derive a closed-form SPEB according to RSSI-
based distance measurement. This paper utilizes (3) to estimate
the positioning variance of an agent.

P =

∑N
n=1

1
βn

(
∑N
n=1

cos2 φn
βn

)(
∑N
n=1

sin2 φn
βn

)− (
∑N
n=1

sinφn cosφn
βn

)2

(3)
where βn = ω2

n+ε
2d2n, and ε = σ ln 10

10γ . Here dn denotes the
distance from the reference node to the agent to be located. σ
is the shadowing standard deviation. ω2

n denotes the variance
of a priori knowledge of the n-th located reference node (for
an anchor, ω2

n = 0). The last symbol φn denotes the angle
from the n-th reference node to the un-located agent.

Orientation index, is utilized in this paper to assist the
estimation of SPEB. For the situation with N reference nodes
and one un-located agent, if the agent is connected to each
reference nodes with lines and no three nodes lie on a straight
line, there are N angles θ formed by these straight lines. The
reference node orientation index can be calculated as follows.

VN =
1

N

N∑
n=1

(θn −
2π

N
)2 (4)

The index reflects how uniform the reference nodes are
distributed with respect to the target agent. The smaller the
index, the better the positioning performance.

III. THE PROPOSED SCHEME

The proposed scheme can be divided into two stages: the
off-line stage and on-line stage.

A. System model
We focus on addressing the two dimensional localization

problem, the system model consists of N anchors and M
agents. N anchors that offer accurate coordinate information
and adaptive threshold ta construct the set N . For an arbitrary
node i, it can discover a set of anchors N→i. Similarly, we
have the agent setsM andM→i with unknown coordinates or
localization uncertainty. We define the combination of N and
M to be S. And C→i, which is composed of N→i andM→i,
denotes the set of reference nodes that node i can detect.

B. The off-line stage
The first stage is to figure out the parameters in (1) for a

certain environment. More specifically, at the off-line stage,
each node collects the RSSI values from other nodes. Then
with the assumption that all the connections share the same
transmit power, path loss factor, shadowing standard deviation,
the parameters in RSSI-to-distance transformation can be cal-
culated with curve fitting. After that, the RSSI-based distance
estimation can be executed in the on-line stage.

C. The on-line stage
The on-line stage can be divided into the unreliable refer-

ence node recognition, orientation index threshold adaptation
and positioning phases.

1) The positioning phase: In this phase, each agent will
first discover nodes within its sensing range C→i combined
of neighboring anchors N→i and agents M→i and collect the
available localization information. In addition, RSSI values are
transformed to distance values. For each C→i, we suppose the
number of anchors in N→i is n and the number of agents in
M→i is m. The next step is to sort the reference node queue.
Each agent i has a vector composed of distances between
itself to all reference nodes. Then for distance d(i, j) measured
from node j, it would be multiplied by two coefficients: wt
and wr. Specifically, wt = wt1 = 1 if node j is an anchor
and wt = wt2 = 1.5 if node j is an agent. If node j is not
included in the unreliable reference node list, wr = wr1 = 1.
Otherwise, wr = wr2 = 1.9 if node j is an anchor and
wr = wr3 = 1.4 if node j is an agent. We then have a
new vector, and elements in this vector are the criteria for
the corresponding reference nodes. A smaller wt ∗wr ∗d(i, j)
indicates a higher priority in the reference node set. Then we
sort the criteria vector, and with the same order, we establish
the corresponding reference node queue L. According to L, all
available reference nodes are merged into the reference node
set one by one. Each time the new coordinates are calculated,
the corresponding orientation index Va(R) and SPEB P(R),
are computed as well. Once Va(R) reaches the threshold ta,
the process terminates and the current reference node set is
adopted. Otherwise, based on the merge and split rules in [20],
node j will be removed from or added to the reference node
set. Algorithm 1 illustrates the positioning phase.



Algorithm 1 Pseudocode for the positioning phase (executed
by agents)

for all agent i ∈M do
discover N→i, M→i and C→i

collect localization information from C→i

calculate distance d(i, j ∈ C→i) based on RSSI
calculate li,j = wt ∗ wr ∗ d(i, j) and queue L
select three reference nodes with minimum l to form R
utilize R to calculate coordinates, the corresponding
orientation index Va(R) and SPEB P(R)
for j = 4 :size of L do

if Va(R) < ta then
break

end if
add node k with the j-th minimum l to set R
utilize R to calculate Va(R) and P(R)
if P(R) > P(R− nodek) then

remove node k from R
end if

end for
utilize R to be the reference node set and calculate
coordinates for agent i

end for

2) The unreliable reference node recognition phase: In this
phase, after collecting available positioning information from
neighboring nodes, each anchor calculates its distances to
other reference nodes with coordinate information, then the
calculated distances are transformed to RSSIs and compared
with the measured RSSIs. Ideally, the difference between the
calculated RSSIs and the measured RSSIs should be zero, but
it is hard to achieve in reality. The algorithm first remove a
reference node from the set, then the average RSSI error of
the remaining reference nodes is calculated, which denotes the
reliability score of the removed node. Consequently, by remov-
ing reference nodes one by one, the corresponding reliability
scores of all reference nodes can be figured out. For more
reliable nodes, their scores are higher. In our algorithm, we
denote the worst 20% reference nodes as unreliable reference
nodes. The unreliable reference node list is then broadcasted to
other nodes for them to conduct the orientation index threshold
adaptation phase as well as the positioning phase. Algorithm
2 describes the unreliable reference node recognition phase.

3) The orientation index threshold adaptation phase: Sim-
ilar to Algorithm 1, each anchor first calculates its coordinates
based on a set of reference nodes. The difference is that the
merge and split rules depend on the actual positioning error
E(R) instead of SPEB P(R), and all the available reference
nodes are estimated in this process. Each anchor has a set
of reference nodes and the corresponding orientation index
Va(R). They communicate and compute the average value
of their orientation indexes to be the initial threshold ta. In
order to improve the threshold ta, anchors cooperate with each
other to adjust it iteratively. In each iteration, anchors apply
Algorithm 1 and calculate the actual mean positioning errors

Algorithm 2 Pseudocode for the unreliable reference node
recognition phase (executed by anchors)

for all anchor i ∈ N do
discover N→i, M→i and C→i

collect localization information from C→i

calculate the distance matrix with coordinate information
and transform it to RSSI matrix
calculate the difference matrix with calculated RSSI
matrix and measured RSSI matrix
for j ∈ C→i do

calculate the corresponding reliability score
end for
select 20% reference nodes with the worst scores as
unreliable reference nodes

end for

with three different thresholds, ta, ta ∗ δs and ta/δs, where
the step size δs is an arbitrary constant. The threshold is then
updated iteratively until no smaller error can be achieved, and
the maximum number of iterations is 10 in our simulation.
Consequently, the final threshold is figured out and broad-
casted to agents to execute the positioning phase. Algorithm
3 illustrates the orientation index threshold adaptation phase.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Setup and Positioning performance criteria

We consider a 21 × 21 m2 area, multiple anchors are
placed regularly while multiple agents are placed randomly.
The two significant parameters γ and σ for SEPB calculation
are fixed to be 2.77 and 4.4 dB respectively. δs = 1.5 and
itermax = 10. Besides, noise in the simulation follows two
kinds of distribution. The first is white Gaussian noise with
zero mean and different standard deviations. The other type
of noise contains the calibration standard deviation. Two basic
sets of noise distributions are σC = 0 dB, σRSSI = 3.2 dB
and σC = 2.12 dB, σRSSI = 1.49 dB. Three conventional
algorithms, including the MT [15], selection scheme based
on utility function and gridiron spatial correlation (UF-GSC)
[17] [21] and links selection strategy inspired by mono-
objective genetic algorithm (MGA) [13], are simulated as
benchmarks. The program runs 100 times on MATLAB for
every set of configuration. The performance of a positioning
system is evaluated from three aspects: mean positioning error,
complementary cumulative distribution function (CCDF) of
the positioning error and the convergence speed. The CCDF
data are collected at the tenth iteration.

B. Simulation Results and Analysis

We set both the number of anchors and the number of agents
to be 25, and based on two basic sets of noise configurations,
we have two sets of results as shown in Fig. 1 to 4. Overall, the
proposed scheme provides better performance compared with
the other three conventional algorithms. The mean positioning
errors are within 1.4 meters after the first iteration. The pro-
posed scheme provides at least 53% improvement compared



Algorithm 3 Pseudocode for the orientation index threshold
adaptation phase (executed by anchors)

Initialize stepsize δs and maximum iteration time itermax ;
for all anchor i ∈ N do

discover N→i, M→i and C→i

collect localization information from C→i

calculate distance d(i, j ∈ C→i) based on RSSI
calculate li,j = wt ∗ wr ∗ d(i, j) and queue L
select three reference nodes with minimum l to form R
utilize R to calculate the estimated coordinates
utilize the actual and estimated coordinates to calculate
positioning error E(R), namely d(actual location, esti-
mated location), and orientation index Va(R)
for j = 4 :size of L do

add node k with the j-th minimum l to set R
utilize R to calculate E(R) and Va(R)
if E(R) > E(R− nodek) then

remove node k from R
end if

end for
utilizeR to be the reference node set and calculate Va(R)
for anchor i

end for
calculate the average orientation index to be the initial value
of adaptive threshold ta
for i = 1 : itermax do

with threshold ta, ta ∗ δs and ta/δs, all anchors apply
the same positioning algorithm as agents to calculate the
actual mean error E(ta), E(ta ∗ δs) and E(ta/δs)
modify ta to the one with the smallest actual mean error

end for

with other algorithms. The worst improvement occurs at the
scenario with the white Gaussian noise and the second best
algorithm is MT. By referring to the CCDF, in the worst case,
the proposed scheme can guarantee 2 meters accuracy for 80%
of the agents. Besides, Fig. 1 and 3 show that the proposed
scheme can converge within five iterations.

In the next simulation, both the number of anchors and
the number of agents are 25. We multiply the two basic sets
of noise parameters by coefficients ranging from 0.5 to 2.5
with 0.5 interval. The corresponding results are demonstrated
in Fig. 5 and 6. When the coefficient is equal to 0.5, the
difference in error among these algorithms are small. As the
noise coefficient increases, the gap of mean positioning error
among these algorithms changes as well. But the proposed
scheme can maintain at least 32% enhancement compared with
the second best algorithm.

V. CONCLUSION

Indoor WiFi-based CP is motivated by the rapidly growing
population of WiFi users and hotspots. To tackle the practical
challenges and problems of CP implementation such as the
coordinate uncertainty introduced by agents, we have studied
the impact of node reliability and proposed a reliability-

Fig. 1. Mean positioning error with
25 anchors, 25 agents, σC = 2.12
dB and σRSSI = 1.49 dB.

Fig. 2. CCDF with 25 anchors,
25 agents, σC = 2.12 dB and
σRSSI = 1.49 dB.

Fig. 3. Mean positioning error with
25 anchors, 25 agents, σRSSI =
3.2 dB.

Fig. 4. CCDF with 25 anchors, 25
agents, σRSSI = 3.2 dB.

Fig. 5. Mean positioning error under
different noise (with σC ).

Fig. 6. Mean positioning error under
different noise (without σC ).

based CP scheme in this paper. Specifically, we have designed
the unreliable reference node recognition algorithm that the
anchors are exploited to identify abnormal nodes in the system.
Based on distance, geometry and reference node uncertainty,
we have further proposed a reference node prioritization
scheme, in which the queue sorting and scoring threshold
adaptation techniques are exploited to facilitate the reference
node selection and reduce the computation cost in agents.
In general, the proposed scheme can achieve an accuracy
of about 2 meters according to our simulation results. Three
other conventional positioning algorithms are also simulated as
benchmarks. When compared with them, the proposed scheme
is at least 32% better in terms of positioning accuracy.
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