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Abstract—In this paper, we propose Regularized Fisher 

Discriminant Analysis (RFDA) as a projection method applied on 

Gaussian Supervector (GSV).  GSV was originally applied on 

speaker recognition and verification, and has exhibited good 

performance.  Recently GSV has also been applied in audio 

forensics area, such as recording device identification.  It has 

been shown that GSV can also capture useful information related 

to the recording device.  In this paper, we show that GSV can 

also be applied in telephone session identification.  However, 

although GSV can capture useful information for different 

identification purposes, the performance of the raw GSV may not 

be so good.  Thus, we apply RFDA-based projection method on 

the raw GSV, and find that this projection method can 

significantly improve the performance of the raw GSV, in both 

telephone session identification and recording device 

identification tasks. 

Keywords—audio forensics, Regularized Fisher Discriminant 

Analysis, projected Gaussian Supervector, telephone session 

identification, recording device identification 

I. INTRODUCTION

Besides the content, a recorded audio signal also embeds 
the clues about the encoding algorithm, the recording device, 
or the recording date.  These clues can be useful in some 
situations, for example, the recorded audio signal is to be used 
as court evidence [1].  In this paper, we focus on the telephone 
session identification task, where different sessions are 
corresponding to different recording dates.  We also consider 
the microphone identification task, where each audio recording 
is recorded using one microphone. 

In the literature, some researchers try to extract the 
recording date information from a recorded audio signal using 
the embedded Electric Network Frequency (ENF) signal.  ENF 
signal is the operating frequency of the power grid.  If the 
recording device is near the power grid, the ENF signal will be 
embedded in the recorded audio signal due to electro-magnetic 
induction [1].  The ENF signal has been found to be useful to 
authenticate recorded audio signals, such as detecting whether 
the audio has been edited (insertion or deletion) by analysing 
the phase discontinuity of the ENF signal [2] or the higher 
order harmonics of the ENF signal [3].  Audio edit detection 

can also be performed by examining the instantaneous 
magnitude variations of the ENF signal [4]. 

It was found that the ENF signal could be used to verify the 
recording date of an audio recording by comparing the 
embedded ENF signal with the reference ENF signals in the 
database [5].  However, the ENF signal may be tampered, 
which reduces the robustness of the ENF-based recording date 
verification system [6].  In addition, the ENF signal may not 
always be available in an audio recording if the recording 
device is far from the power grid. 

Session variability has always been a consideration in 
speaker recognition studies.  In particular, for telephone 
speeches, the session variability is induced by the telephone 
network variability, which may be used as a clue for 
identifying the recording date of the telephone conversation. 

In this paper, we try to tackle the recording date 
identification problem by identifying different telephone 
sessions using Machine Learning techniques.  Given a set of 
training audio signals recorded in different sessions, we first 
construct a model containing the session information, and then 
classify an unknown audio recording into a session based on 
the model.  Different feature extraction methods, such as the 
averaged frame-level feature vectors and the Gaussian 
Supervector (GSV) will be used.  Besides, we also propose a 
projection method called Regularized Fisher Discriminant 
Analysis (RFDA), and then extend it to a kernel version of 
RFDA.  The kernel RFDA-based projected GSV will be used 
and compared with the raw GSV.  Linear Support Vector 
Machine (SVM) will be used as the identifier.  An overview of 
different feature extraction methods is shown in Fig. 1. 

In fact, GSV has also been applied in recording device 
identification tasks and exhibits good performance [7].  Device 
identification aims to identify which device is used to record 
the audio signal, from a set of candidate devices.  This device 
information helps authenticate whether a claim on the 
recording device is true.  In this paper, we consider 
microphone identification, which aims to identify the 
underlying recording microphone for an audio recording. 
Interestingly, we find that using RFDA-based projection can 
also improve the performance of the GSV for doing 
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microphone identification.  It seems the proposed RFDA 
method has the potential to reorganize the GSV serving 
different identification purposes. 

This paper is organized as follows.  In Section II, the GSV, 
the RFDA method and the kernel version of RFDA are 
described.  In Section III, the dataset used in our experiment is 
briefly described.  In Section IV, experimental results are 
presented and discussed.  A conclusion will be drawn in 
Section V. 

II. GSV AND RFDA 

A. Frame-level Feature Extraction 

In this paper, Mel-frequency Cepstral Coefficients (MFCC) 
is used as the frame-level feature vector, which is commonly 
chosen for speech signals.  MFCC can be obtained as described 
in [8].  In our experiment, we use Hamming window with 
50ms frame length and 10ms frame shift to extract short-time 
frames.  We then apply 48 triangular filters in Mel scale to 
form a 24-dimension MFCC excluding the energy coefficient. 

B. Gaussian Supervector 

Gaussian Supervector (GSV) is obtained by adapting a 
Universal Background Model (UBM), and a UBM is in fact a 
Gaussian Mixture Model (GMM).  Given a set of training 
audios, we first compute the MFCCs, and then construct a 1-
component GMM, which is a simple Gaussian model.  Then 
for a desired M-component GMM (where M is assumed to be a 
power of 2), we use the mixture splitting technique [9] and 
Expectation-Maximization (EM) algorithm [10] to split and 

then retrain the GMM for log2M times.  Each time, we split the 
current GMM to double the number of mixture components 
using the mixture splitting technique, and then retrain the 
newly split GMM using the EM algorithm. 

Suppose that we have constructed a UBM with M 

components, denoted as }...2,1|,,{ MiiiiM   , where 

ωi, μi and σi are the weight, the mean vector and the standard 
deviation vector (assuming diagonal covariance matrix in 
GMM) for the i-th mixture component.  We then use (1) ~ (4) 
to compute the adapted mean vector for a speech audio signal 
whose MFCCs are {z1, z2 … zT}, 
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         Fig.1.    Overview of different feature extraction methods. 

 



where in (1) ),|( iitzp  is the i-th component Gaussian 

probability density function, and in (4) γ is the relevance factor 
reflecting the relationship between the adapted mean vector 

i and the UBM mean vector μi [10].  Then the GSV is 

obtained by concatenating all the i . 

C. Regularized Fisher Discriminant Analysis (RFDA) 

Suppose that we have a set of N training vectors X=(x1, 
x2…xN) belonging to K classes, where class k is denoted as Ck, 

containing Nk training vectors, and NN
K

k
k  1

.  Fisher 

Discriminant Analysis (FDA) then aims to find a set of 
corresponding projected vectors Y=(y1, y2…yN) such that the 
vectors belonging to the same class are moved together while 
the vectors belonging to different classes are separated.  The 
projection is given by (5), where W is the projection matrix 
containing I columns, whose i-th column vector is denoted by 
wi, and each column of W is a projection direction [11]. 

 n
T

n xWy   (5) 

In (5), the projection matrix W is obtained by maximizing 
the objective function J(W) given in (6), where SB is the 
between-class scatter matrix and SW is the within-class scatter 
matrix as given by (7) and (8). 
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In (7) and (8), mk is the mean vector of the training vectors 
belonging to class k, and m is the mean vector of all the 
training vectors, given by (9) and (10) respectively. 
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Maximizing (6) is equivalent to finding the eigenvectors of 

BW SS 1  [11].  However, as the rank of SB is at most K-1, the 

rank of BW SS 1 is at most K-1, there are at most K-1 

independent eigenvectors, which means there are at most K-1 

orthogonal projection directions [11].  Normally the number of 
classes K is small, which resulting in low efficiency of using 
the traditional FDA to construct projected vectors, as the 
number of projection directions is small. 

The objective function in (6) aims to make the between-

class covariance WSW B
T large (i.e. separate vectors coming 

from different classes), and make the within-class covariance 

WSW W
T small (i.e. group vectors coming from the same 

class).  Instead of maximizing (6), we can realize the similar 
target by maximizing the objective function defined in (11) 
subject to some constraints, where α is a pre-defined 
regularization parameter.  Eq. (11) is the objective function of 
our proposed Regularized FDA (RFDA).  There is a similar 
objective function as Eq. (11) in [12], but is more complicated 
and lacking discussions.  It seems the objective function in (6) 
is quite popular, but we are going to show the modified 
objective function (11) is more useful. 
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By applying Lagrange multiplier, we can reformulate (11) 
as (12), where λi is a non-zero coefficient. 
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By setting the derivative of )...,,( 21 IWL  to zero with 

respect to wi, we obtain (13); by setting the derivative of 

)...,,( 21 IWL  to zero with respect to λi, we obtain (14). 

 

  iiiWB

iiiWiB
i

I

wwSS

wwSwS
w

WL












0222

)...,,( 21

 (13) 

 01
)...,,( 21 




i

T
i

i

I ww
WL




 (14) 

Thus wi is an eigenvector of WB SS  with λi being the 

corresponding eigenvalue.  Compared with BW SS 1  whose rank 

is limited by the lower rank of SB and SW, which is at most K-1, 

the rank of WB SS  is limited by the larger rank of SB and SW, 

which can be larger than K-1.  As long as (13) is solved, (14) 
can be satisfied easily, because we can easily normalize the 
eigenvector to have unit length.  The regularization parameter 
α controls the trade-off between the separating ability and the 
grouping ability of the projection.  We emphasize more on 



separating vectors from different classes by choosing a smaller 
α, and emphasize more on grouping vectors from the same 
class by choosing a larger α. 

D. Kernel-based RFDA 

In [13], the kernel version for two-class FDA is proposed as 
an extension to the traditional two-class FDA.  In this part, we 
derive the kernel version for multiple-class RFDA in a similar 
way.  From (7), (9) and (10), we have, 
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Similarly, from (8), (9) and (10), we have, 
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From (15) and (16), we can reformulate (13) as, 
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We can further reformulate (17) as (18), 
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Further reformulating (18) gives (20), where vi is a column 
vector containing N elements, and X is the data matrix whose 
n-th column is the training vector xn.  Eq. (20) implies that wi 
must lie in the space spanned by the set of training vectors xn, 
as wi can be expressed as a linear combination of the training 
vectors. 
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Reconsidering (7), (8) and (11) in view of (20), we have, 
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where we define Mk, M and Qn as a column vector containing 
N elements, whose j-th element is given by (24), (25) and (26) 
below respectively. 
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In (24) ~ (26), k(xj, xn) is a kernel function, defining the 
inner product of two vectors xj and xn.  Plugging (21) ~ (26) 
into (11), we have, 
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If we define UB and UW as in (28) and (29) below, J'(W) 
can be reformulated as (30), where we define a new matrix V 
whose i-th column is vi. 
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This time, instead of finding wi, we need to find vi.  In order 
to obtain a unique solution for maximizing the objective 
function in (30), we need to normalize vi such that 

 Iiforvv i
T

i ...2,11   (31) 

Then we can combine (30) and (31) using Lagrange 
multiplier, as shown in (32), where λi' is a non-zero coefficient. 
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Then after setting the derivative of ),...,,( 21 IVL   to zero 

with respect to vi and λi', we have 
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Thus, instead of finding wi, which is the eigenvector 

of WB SS  , equivalently, we now need to find vi, which is the 

eigenvector of WB UU  .  Eq. (33) and (34) are the kernel 

version of RFDA.  After finding vi based on the training 
vectors, for a given input vector t, we can then calculate its 
projected version t' as (35) below, where t'i is the i-th element 
of t', (vi)n is the n-th element of vi, xn is the n-th training vector, 
k(xn, t) is the kernel function in (24) ~ (26). 
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We can then normalize t'i with respect to wi implicitly: 
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In the above, (33) ~ (36) are the core equations for the 
formulation of kernel-based Regularized FDA (RFDA), where 
the kernel function plays an important role.  It can be seen that, 

TABLE I. TELEPHONE SESSION INFORMATION 

Telephone Speech 

Data Set 

Number of Speeches Speech Duration 

Training Testing 

Session 1 240 259 2s ~ 10s 

Session 2 240 260 

Session 3 240 260 

UBM 300 20s ~ 2min 

 

 



during the calculation of the projected vector, only the kernel 
function is necessary.  Through using a kernel function, we can 
implicitly map the input vector into another dimensional space, 
and then calculate the projected vector using the mapped vector.  
Interestingly, we do not need to know the mapping explicitly, 
as long as we have the kernel function, which is the inner 
product of the mapped vectors. 

In this paper, we will consider two different kernel 
functions, one is the linear kernel function defined in (37) 
below, the other is the Gaussian kernel function defined in (38) 
below, where a and b are two column vectors, and ρ is a 
positive kernel parameter. 

   babak T,1  (37) 

      baebak
Tba






2

,2  (38) 

While using kernel RFDA to project a given vector a, if we 
use the linear kernel function in (37), we are directly projecting 
the given vector onto another dimensional space; if we use the 
Gaussian kernel function in (38), we are first implicitly 

mapping it to a high dimensional vector (a) which is of 
infinite dimension, and then projecting it onto a finite 
dimensional space.  Gaussian kernel function can map the 
vector to an infinite dimensional space implicitly, although the 
inner product of the two vectors in the infinite dimensional 
space is finite [14]. 

III. SPEECH RECORDING DATASET 

In our experiment, we use the Ahumada-25 speech corpus, 
which is a part of the AHUMADA Spanish speech corpus [15].  
Ahumada-25 contains telephone conversations from 25 
speakers recorded in 3 different sessions, and different sessions 
are separated for several days.  Besides, Ahumada-25 also 
contains speech recordings recorded using different 
microphones.  The contents include isolated numbers, 
sentences, specific texts and spontaneous speeches. 

In terms of telephone session identification, for each 
session, we use 240 speeches coming from 12 speakers to form 
part of the training set and 260 speeches coming from the other 
13 speakers to form part of the testing set (for session 1, only 
259 speeches are used for testing, as one speech recording is 
corrupted).  Another 300 speeches are used to construct the 
Universal Background Model (UBM), where all of the 25 
speakers are involved, with each speaker contributing 12 
speeches.  Details about the training set, testing set and the 
UBM set are listed in Table I. 

In terms of recording device identification, we obtain 
totally 4 different microphones, as shown in Table II.  For each 
microphone, we use 240 speeches coming from 12 speakers to 
form part of the training set and 260 speeches coming from the 
other 13 speakers to form part of the testing set.  Another 599 
speeches are used to construct the UBM, where all of the 25 
speakers are involved. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Telephone Session Identification 

In this part, we compare the performances of using 
different feature extraction methods, such as the averaged 
MFCC, the raw GSV, and the kernel RFDA-based projected 
GSV, to identify 3 different telephone sessions.  We use a 
UBM with 32 mixture components to compute the GSV, and 
different relevance factors are used.  As for the projected GSV, 
we also compare the performances of using different 
regularization parameters, different kernel functions and 
different kernel parameters.  We use the linear SVM as the 
identifier, implemented using LIBSVM [16]. 

The identification results of using the averaged MFCC, and 
the GSV with different relevance factors, as the features, are 
shown in Table III.  It can be seen that the GSV outperforms 
the averaged MFCC a lot.  The reasons lie in that, first, the 

TABLE II. MICROPHONE INFORMATION 

Set Microphone Model Number of Speeches Duration 

Training Testing 

M1 AKG C410B Head 
Mounted 

240 260 2s ~ 5s 

M2 AKH D80S Desktop 240 260 

M3 SONY ECM 66B Lapel 240 260 

M4 TARGET Lapel 240 260 

UBM All the models 599 10s ~ 100s 

 

 

TABLE III. TELEPHONE SESSION IDENTIFICATION USING AVERAGED 

MFCC AND GSV (%) 

Feature Relevance Factor Identification Accuracy 

Averaged MFCC n/a 65.08 

Raw GSV 5 75.87 

10 76.38 

15 75.48 

 

 

TABLE IV. TELEPHONE SESSION IDENTIFICATION USING PROJECTED 

GSV WITH DIFFERENT PARAMETERS (%) 

Relevance 

Factor (γ) 

Regularization 

Parameter (α) 

Kernel 

Linear  Gaussian 

Kernel Parameter (ρ) 

10000 20000 50000 

5 10 74.20 68.42 68.68 70.09 

20 75.74 73.04 73.94 74.45 

50 78.43 75.22 75.99 77.66 

100 78.56 76.12 76.25 78.31 

200 79.33 75.35 76.25 78.43 

500 79.46 74.97 75.99 78.05 

10 10 74.20 68.16 68.55 69.70 

20 76.89 73.04 74.33 75.87 

50 79.08 76.38 78.69 80.87 

100 79.33 76.77 79.33 83.31 

200 79.72 76.89 79.20 83.83 

500 79.33 76.25 78.18 82.93 

15 10 73.43 70.86 70.99 70.60 

20 76.64 73.17 73.81 75.48 

50 78.95 75.61 76.89 78.56 

100 79.59 76.38 78.69 80.49 

200 79.59 76.77 79.08 81.64 

500 79.59 76.12 78.95 81.64 

 

 



averaged MFCC does not make good use of all the frame-level 
feature vectors while the GSV does; second, the GSV obtains 
extra information from the UBM while the averaged MFCC 
only relies on the training data. 

The performance of the kernel RFDA-based projected GSV 
is evaluated under different regularization parameters, different 
kernel functions and different kernel parameters.  The 
identification accuracy results are listed in Table IV and plotted 
in Fig. 2.  It can be seen that, generally the performance of the 
projected GSV with linear kernel and Gaussian kernel can be 
improved by increasing the regularization parameter α.  In 

particular, on using Gaussian kernel, the performance of the 
projected GSV can be improved by increasing the kernel 
parameter ρ.  The highest accuracy achieved by the projected 
GSV with linear kernel is 79.72%, and the highest accuracy 
achieved by the projected GSV with Gaussian kernel is 
83.83%, and both are better than the raw GSV (76.38%).  With 
suitable kernel parameters, we see that Gaussian kernel RFDA 
can work better than linear kernel RFDA.  While using 
Gaussian kernel, we first implicitly map the input feature 
vector onto a high dimensional space and then project the 
mapped feature vector from the higher dimensional space to a 
lower dimensional space.  The mapping from a lower 
dimensional space to a higher dimensional space can better 
reveal the relationship between different dimensions of the 
input feature vector. 

B. Recording Device Identification 

In this part, we compare the performances of using the raw 
GSV and the kernel RFDA-based projected GSV to identify 4 
different microphones.  A UBM with 32 mixture components 
is used to compute the GSV, and different relevance factors, 
different regularization parameters and different kernel 
parameters are evaluated.  The identification results of using 
the raw GSV with different relevance factors are shown in 
Table V.  The identification results of using the projected GSV 
with different relevance factors, different kernel parameters 
and different regularization parameters are shown in Table VI 
and plotted in Fig. 3. 

By comparing the results in Table V and Table VI, it can be 
seen that the kernel RFDA-based projected GSV can 
outperform the raw GSV.  In particular, with suitable kernel 
parameters, Gaussian kernel RFDA can work better than linear 
kernel RFDA, which is similar to the results we observe in 
telephone session identification.  The highest accuracy 
achieved by the projected GSV with linear kernel is 82.60%, 
and the highest accuracy achieved by the projected GSV with 
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Fig.2. Telephone session identification using projected GSV with 

different parameters. 

 

TABLE V. MICROPHONE IDENTIFICATION USING RAW GSV (%) 

Feature Relevance Factor Identification Accuracy 

Raw GSV 5 78.17 

10 78.65 

15 79.62 

 

 

TABLE VI. MICROPHONE IDENTIFICATION USING PROJECTED GSV 

WITH DIFFERENT PARAMETERS (%) 

Relevance 

Factor (γ) 

Regularization 

Parameter (α) 

Kernel 

Linear  Gaussian 

Kernel Parameter (ρ) 

10000 20000 50000 

5 10 78.37 87.21 84.90 83.85 

20 79.42 88.75 88.46 87.50 

50 79.13 88.94 88.56 86.83 

100 81.63 88.65 87.69 85.77 

200 81.06 88.37 87.21 84.81 

500 81.25 88.37 87.02 84.42 

10 10 78.27 83.75 83.65 83.85 

20 79.52 87.79 87.69 88.08 

50 81.92 87.69 86.92 86.44 

100 82.31 87.12 87.02 86.35 

200 79.81 87.12 86.73 86.15 

500 81.35 86.92 86.83 86.25 

15 10 78.17 82.60 82.21 81.83 

20 79.71 84.13 84.33 84.81 

50 82.40 85.67 85.48 85.19 

100 82.60 85.00 84.81 85.10 

200 82.31 84.52 84.71 84.90 

500 81.92 84.42 84.23 84.90 

 

 



Gaussian kernel is 88.94%, while the highest accuracy 
achieved by the raw GSV is only 79.62%.  We also observe 
that, on using Gaussian kernel, the performance of the 
projected GSV can be improved by decreasing the kernel 
parameter ρ.  Although this tendency is different from what we 
observe from telephone session identification, yet it is 
reasonable, as we are dealing with different tasks. 

V. CONCLUSION 

In this paper, we propose the Regularized Fisher 
Discriminant Analysis (RFDA), as an alternative to the 
traditional Fisher Discriminant Analysis (FDA).  We also 
develop the kernel version of RFDA, which generalizes RFDA 
by introducing different kernel functions.  we try to identify 
different telephone sessions based on some training telephone 
speeches recorded in different sessions.  We borrow the idea of 

Gaussian Supervector (GSV) from the studies on speaker 
recognition, and show that GSV also works well for telephone 
session identification tasks.  Then we apply the RFDA-based 
projection on the GSV for telephone session identification, and 
find that the projected GSV gives better performance.  Besides, 
we also apply the RFDA-based projection on the GSV used in 
recording device identification, and find that the projected 
GSV also exhibits improvement.  These results show the 
efficiency and potential of RFDA as a feature de-noising and 
purifying technique for improve the performance of the GSV 
serving different identification purposes. 
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Fig.3. Microphone identification using projected GSV with different 

parameters. 

 




