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ABSTRACT
Heart arrhythmia is a heart disease that threatens the health of
many people. As Electrocardiography (ECG) is an efficient
measurement of heart arrhythmia, lots of research efforts have
been spent on the identification of heart arrhythmia by classi-
fying ECG signals for health care. Among them, support vec-
tor machines (SVMs) and artificial neural networks (ANNs)
are the most popular. However, most of the previous studies
reported the performance of either the SVMs or the ANNs
without in-depth comparisons between these two methods.
Also, a large number of features can be extracted from ECG
signals, and some may be more relevant to heart arrhythmia
than the others. This paper is to enhance the performance of
heart arrhythmia classification by selecting relevant features
from ECG signals, applying dimension reduction on the fea-
ture vectors, and applying deep neural networks (DNNs) for
classification. A holistic comparison among DNNs, SVMs,
and ANNs will be provided. Experimental results suggest that
DNNs outperform both SVMs and ANNs, provided that rele-
vant features have been selected.

Index Terms— Heart arrhythmia classification; ECG,
SVM, deep neural networks; Fisher discriminant ratio.

1. INTRODUCTION

Heart arrhythmia is a kind of heart diseases in which the pa-
tients suffer from irregular heartbeat. It is one of the main
heart diseases that threaten the health of human, especially the
elderly. Some types of heart arrhythmia such as atrial fibrilla-
tion, ventricular escape and ventricular fibrillation may even
cause strokes and cardiac arrest. A recent report published by
American Heart Association (AHA) suggests that more than
four million Americans have recurrent arrhythmias [1].

Heart arrhythmia can be detected by using electrocardio-
graphy (ECG), which records the electrical activities of the
heart of a patient for a period using two electrodes attached
to the skin. Because ECG signals reflect the physiological
conditions of the heart, they are commonly used by medi-
cal doctors to diagnose heart arrhythmia. Thus, being able to
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identify the dangerous types of heart arrhythmia from ECG
signals is an important skill of medical professionals. How-
ever, interpreting the ECG waveforms manually is tedious and
time-consuming. With the increasing use of personal portable
devices to acquire ECG data, the amount of data will eas-
ily overload the medical professionals. As a result, the de-
velopment of automatic techniques for identifying abnormal
conditions from daily recorded ECG data is of fundamentally
importance. Moreover, timely first-aid procedures can be ap-
plied if such abnormal conditions can be detected automati-
cally by health monitoring equipment. In this regard, machine
learning will play an important role [2].

Support vector machines (SVMs) and artificial neural net-
works (ANNs)1 are the two commonly used classifiers for
identifying heart arrhythmia [3–5]. For example, Kohli et
al. [6] used a one-versus-rest SVM as the classifier to pre-
dict heart arrhythmia and achieved good performance on the
UCI benchmark dataset [7] (the best classification accuracy
on their test data is over 70%). In [8], Khare et al. proposed
a hybrid approach combining rank correlation [9] and princi-
pal component analysis (PCA) [10] for feature extraction and
SVMs for classification. They demonstrated that the hybrid
approach achieves much better performance than the predic-
tor proposed by Kohli et al. [6] on the same dataset. How-
ever, the hyper-parameters of the heart arrhythmia classifiers
in these works were optimized based on the test data. Thus,
the claimed accuracy in these studies may be over-estimated.
In [11], ANNs were applied to the same arrhythmia dataset.
The authors showed that the best performance of the ANNs is
close to that of the SVMs. Unfortunately, they did not specify
the network structures and parameter settings in their paper,
causing difficulty in comparing the capability of ANNs and
SVMs in predicting heart arrhythmia.

Previous work either optimized the hyper-parameters of
the feature extractors and classifiers using test data (e.g.,
[6, 8]) or provided a single random split of the benchmark
dataset into a training set and a test set (e.g., [6,8,11]). These
experimental settings make comparison of methods difficult.
In this paper, we perform 10-fold cross validations on the

1In this paper, ANNs refer to the feedforward networks with a shallow
architecture and DNNs refer to the networks with a deep structure.
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dataset and repeat the cross-validation runs a number of times,
each with a different random split of the dataset. Therefore,
unlike previous work, we report not only the classification
accuracy but also its range in these repeated runs. We have
also investigated feature pre-processing methods, including
Fisher discriminant ratio (FDR) [12] and PCA, and various
classification methods, including SVMs and deep neural net-
works (DNNs). More importantly, we attempt to investi-
gate which feature pre-processing methods are appropriate
for which classification methods. Performance evaluations on
the UCI benchmark dataset suggests that feature selection to-
gether with DNNs achieve the best performance.

The paper is organized as follows. Section 2 briefly intro-
duces the feature selection method called Fisher discriminant
ratio (FDR) and describes how to use SVMs and DNNs for
constructing classifiers to classify the selected features. Sec-
tion 3 outlines the experimental protocol and compares the
performance of DNNs against ANNs and SVMs based on the
full feature set and the selected feature set. The name of the
most important features will also be identified. Finally, Sec-
tion 4 concludes our findings.

2. METHODOLOGY

2.1. Feature Pre-Processing

It is not uncommon for biological data to contain missing val-
ues and heart arrhythmia data derived from ECG signals are
of no exception. For example, in the UCI benchmark dataset,
there are 408 missing entries, which account for about 0.33%
of the total number of entries. In this work, we filled these
missing entries with the average value of the corresponding
features. Another characteristic of heart arrhythmia data is
the high dimensionality of the feature vectors. For example,
in the UCI dataset, the dimension is 279 but the number of
feature vectors is only 452. To address this problem, we used
Fisher discriminant ratio (FDR) [12] to select relevant fea-
tures and PCA to reduce the dimension of feature vectors.

FDR is a simple and effective measure of features for clas-
sification problems. For the two-class problem, FDR of the
j-th feature is defined as:

FDR(j) =

[
µ(1)
j − µ

(2)
j

]2
[
σ(1)
j

]2
+
[
σ(2)
j

]2 , (1)

where µ(1)
j , µ(2)

j , σ(1)
j and σ(2)

j represent the class-conditional
means and standard derivations of the j-th feature, respec-
tively. In Eq. 1, the superscript represents the class labels.
For multi-class problems, we may estimate the average FDR
values across all class pairs.

A high FDR implies that the corresponding feature pro-
duces large separation between different classes. Therefore,
its classification capability is stronger, and it should be se-
lected for classification. In practice, the FDR of individual

features can be computed independently and ranked in de-
scending order. We retained the features with FDR scores
larger than a predefined threshold (0.001 in this work). FDR
can remove all insignificant features from the data set. Per-
formance evaluations show that dropping some irrelevant fea-
tures by FDR helps the training of SVMs and boost the per-
formance of DNNs.

2.2. Classification

We investigated two popular classifiers (SVMs and DNNs)
for the classification of heart arrhythmia. We also investigated
which of the feature pre-processing approaches is the best for
these two types of classifiers.

To apply SVMs forK-class classification, we constructed
K one-versus-rest RBF-SVM [10, 13], one for each class.
Specifically, the k-th SVM is trained to discriminate between
the feature vectors of the k-th class and those of the other
classes. During recognition, given an unknown vector x, its
class label is predicted according to the maximal output:

l(x) = arg max
k∈{1,...,K}

hk(x), (2)

where
hk(x) =

∑
i∈Sk

αk
i y

k
iK(x,xi) + bk (3)

is the output of the k-th SVM. In Eq. 3, Sk is the set of sup-
port vector indexes corresponding to the k-th SVM, yki ∈
{−1,+1} are the target output of the k-th SVM, αk

i ’s are the
Lagrange multipliers, bk’s are bias terms, and K(·, ·) is a ker-
nel function. In this work, the radial basis function (RBF)
kernel was used.

To apply DNNs for K-class classification, we trained a
DNN with several hidden layers comprising sigmoid non-
linearity and a soft-max output layer comprising K outputs
nodes. We applied the greedy layer-wise training [14] to pre-
train the hidden layers which are formed by stacking a num-
ber of restricted Boltzmann machines (RBMs) [15,16]. Then,
we fine-tuned the whole network (including the soft-max out-
put layer) with backpropagation. The pre-training step is very
important for arrhythmia classification because the number of
training vectors is typically small for this task. The architec-
ture of the DNN with stacked RBMs is shown in Figure 1.

3. EXPERIMENTS AND RESULTS

3.1. Data Set and Evaluation Protocol

The UCI cardiac arrhythmia [17] was used in the experiments.
In the dataset, one of the classes is named “Normal”. It con-
tains 245 samples. The remaining fifteen classes represent
different kinds of heart arrhythmia. Since the numbers of
samples in these classes are highly imbalance, we combined
them into one class, called “Abnormal”. Thus, the “Abnor-
mal” class contains 206 samples.
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Fig. 1: DNN with stacked RBMs

To rigorously estimate the accuracy of different classi-
fiers, 10-fold cross validation was performed. For each con-
figuration of feature pre-processing and classification, the cor-
responding 10-fold cross-validation was repeated 10 times,
each with a random reshuffling of the samples in the dataset.
Then, the average accuracy and the range of accuracy were
obtained from the results of the 10 repetitions. The DNNs
program is based on G. E. Hinton’s Matlab code [18].

3.2. Selected Features

Table 1 shows the top-10 features selected by FDR, i.e., fea-
tures with the top-10 FDR scores. As can be seen from the ta-
ble, these features can be divided into five types, each having
features obtained from different channels. The five types in-
clude QRSTA, QRS duration, Amplitude of T, Average width
of R, and the number of intrinsic deflections. These are the
features that were found important by medical profession-
als [19]. Therefore, our feature selection method agrees well
with the diagnostic criteria of medical doctors.

3.3. Performance of SVM Classifiers

For the RBF-SVMs, the hyper-parameters (RBF width and
penalty factor) were further optimized based on the training
data in each fold. Specifically, for each fold of the 10-fold
cross-validation, we applied an inner 5-fold cross validation
on the training split to optimize the hyper-parameter of the
RBF-SVMs. The optimal RBF-SVMs were then tested on
the remaining data in the test split. In other words, we further
partition the training split of each fold into 5 portions in the
inner 5-fold cross validation. We set the base 2 logarithm of
the RBF width and penalty factor to values from −16 to 16
for the inner cross validation.

Table 2 shows the performance of the SVM classifiers
with different feature pre-processing methods. For FDR, the
cut-off threshold for feature selection is 0.001, which results
in 236 selected features. For PCA, we kept 95% of the vari-
ance after projection, which results in 89-dimensional pro-

Table 2: The average accuracy (across ten 10-fold cross-validations)
of SVM classifiers with different feature pre-processing methods

Feature
Pre-Processing

Feature
Dimension

Classification
Acc. (average)

Nil (All features) 279 77.77%
FDR 236 78.23%
PCA 89 76.97%
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Fig. 2: Classification accuracy of the DNN with or without pre-
training. The results were based on one of the 10 runs of the 10-fold
cross-validation.

jected vectors. The results show that FDR is the best pre-
processing method for SVMs and PCA degrades the perfor-
mance. This is reasonable because SVMs are known to be
able to handle high dimensional data and PCA will inevitably
remove some useful information features. On the other hand,
feature selection is able to keep the relevant features.

3.4. Performance of DNN Classifiers

Figure 2 show the effect of applying pre-training on a DNN
with three hidden layers. For the network without pre-
training, the backpropagation algorithm was applied to a
DNN whose weights were initialized with small random val-
ues. On the other hand, 5 epochs of contrastive divergence
(CD-1) [16] were applied to pre-train the network when pre-
training was applied. The result clearly shows that pre-
training can help the backpropagation to find a better solution.

Figure 3 shows the effect of increasing the number hidden
nodes (in all hidden layers) on the classification accuracy. It
shows that peak performance (80.64%) is achieved when the
number of hidden nodes is 25, with the second best (80.04%)
occurs at 20 nodes. Therefore, we used 25 hidden nodes per
layer in the rest of our experiments.

To optimize the network structure, we fixed the number
of hidden nodes per layer to 25 and varied numbers of hidden
layers. According to Table 3, the performance becomes worse
if the number of hidden layers is more than four because of
the small number of training samples in this dataset.



Table 1: The top-10 features selected by FDR
Rank Feature ID FDR Score Feature Information

1 199 0.237 QRSTA from channel AVR
2 5 0.230 Average QRS (msec.)
3 167 0.204 Amplitude of T wave measured in millivolts from channel DI
4 169 0.200 QRSTA from channel DI
5 197 0.183 Amplitude of T wave measured in millivolts from channel AVR
6 277 0.173 Amplitude of T wave measured in millivolts from channel V6
7 91 0.155 Average width of R wave in msec. from channel V1
8 279 0.139 QRSTA from channel V6
9 179 0.125 QRSTA from channel DII

10 93 0.122 Number of intrinsic deflections from channel V1

Table 3: Performance comparisons of DNN with different numbers of hidden layers
Feature Pre-Processing Feature Dimension Network Structure Classification Accuracy (average)

Nil (All Features) 279

[25 25]
[25 25 25]

[25 25 25 25]
[25 25 25 25 25]

79.00%
79.18%
79.29%
78.25%

FDR 236

[25 25]
[25 25 25]

[25 25 25 25]
[25 25 25 25 25]

79.23%
80.64%
79.91%
79.54%

PCA 89

[25 25]
[25 25 25]

[25 25 25 25]
[25 25 25 25 25]

74.89%
73.65%
73.50%
71.11%
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Fig. 3: The effect of increasing the hidden nodes on the DNN

Table 4 shows the performance of DNNs with different
feature pre-processing methods. From the table, DNNs with
FDR outperform DNNs with PCA and DNNs without any
feature pre-processing (i.e., using the full features). The re-
sults also show that PCA does not work well with DNNs.

Figure 4 shows the range and rough distributions of the
classification accuracies across the 10 runs of 10-fold cross-
validation for different feature pre-processing methods com-
bined with different classification methods. In the figure, the
central mark inside each box indicates the median accuracy,

Table 4: The average accuracy (across ten 10-fold cross-validations)
of DNN classifiers with different feature pre-processing methods

Feature
Pre-Processing

Feature
Dimension

Classification
Acc. (average)

Nil (All features) 279 79.18%
FDR 236 80.64%
PCA 89 73.65%

and the bottom and top edges of each box indicate the 25th
and 75th percentiles, respectively. The horizontal dashes rep-
resent the lowest and highest accuracies. The results in Fig-
ure 4 clearly show that FDR can improve the performance of
DNN and SVM. However, PCA degrades their performance.
Moreover, the performance of DNN is better than SVM, ex-
cept when PCA is applied.

A reason for the poor performance of PCA is that it is
a linear transformation method that reduces the dimensional-
ity of data while retaining most of the variance. Therefore,
PCA is not suitable when the data lie on a nonlinear manifold
of the feature space. Table 2, Table 4 and Figure 4 suggest
that PCA is not an appropriate pre-processing method for this
dataset, regardless of the classification methods used. Intu-
itively, when the data dimension is high and the amount of
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Fig. 4: The distribution of classification acc. of different algorithms

training data is small (the so-called small sample-size prob-
lem), PCA should be able to reduce the dimension so that
the overfitting problem can be avoided. However, our results
suggest that PCA is not necessary and that overfitting does
not occur in our DNNs even for such a small dataset. This
is mainly because we pre-trained [14, 15] our DNNs before
applying backpropagation with early stopping (20 epoches).
The pre-training step provides the necessary regularization to
the networks [20] and the early stopping strategy avoids over-
fitting.

3.5. Comparing with Other Studies

Because there is no standard protocol for this dataset, differ-
ent studies used different evaluation protocols, causing dif-
ficulty in comparing performance across studies. For exam-
ples, in [8], 30% of the data were used for training and the
remaining 70% were used for testing, whereas in [11], var-
ious percentages of splitting were tried and the best result
was obtained from the split where 90% of the data were used
for training and the remaining 10% were used for testing.
Also, these studies optimized the hyper-parameters (such as
the number of hidden nodes and parameters of RBF kernels)
of the classifiers based on the test set, which may give over-
optimistic performance. Nevertheless, we attempt to compare
our classifiers with [11] and [6] whose evaluation protocols
are closest to ours.

Two-class Case: As [11] reported the best performance of
its ANN, for fair comparisons, we compare its accuracy with
the highest achievable accuracy of our DNNs. The results are
shown in Table 5, which show that the performance of DNNs
is comparable with that of the ANN in [11]. When relevant
features have been selected, the DNN slightly outperforms the
ANN in [11].

Table 5: The best accuracy (across ten 10-fold cross-validations)
achieved by the DNN classifiers with different feature pre-
processing methods

Feature Pre-Processing
with ANNs/DNNs

Feature
Dimension

Classification
Acc. (best)

ANNs only [11] 279 82.22%
DNNs only 279 81.42%

FDR with DNNs 236 82.96%
PCA with DNNs 89 75.22%

Table 6: The class labels and number of samples in each class after
the data preparation steps

Class
ID

Class
Label

No. of
Samples

01 Normal 237
02 Ischemic changes 36
04 Old Inferior Myocardial Infarction 14
06 Sinus bradycardy 24
10 Right bundle branch block 48
16 Others 18

Multi-class Case: we have also compared the perfor-
mance of our heart arrhythmia classifiers with those in [21]
under the multi-class scenarios. We generally followed the
evaluation protocol and data preparation procedures in [21] to
make performance comparisons meaningful. Specifically, we
followed [21] to remove the features whose values are all ze-
ros across all samples and to remove the samples that contain
missing values. After this data preparation steps, 377 samples
remain. These samples are distributed into 6 classes as shown
in Table 6. By dropping Classes 04, 06 and 16, which contain
a small number of samples only, we reduce the 6-class prob-
lem to a 3-class one. Similar to [21], we selected half of the
samples for training and remaining half for testing. However,
unlike [21], we repeated the division of data 100 times, each
with a different training and test sets, to obtain the average
accuracy.

In [19], PCA was applied to reduce the dimension of fea-
ture vectors. In this work, we not only applied PCA to reduce
dimension but also used FDR to select relevant features. Al-
though FDR is originally designed for binary classification
problems, it can be easily adopted to the multi-class scenarios
by noting that each SVM in the one-versus-rest SVM classi-
fier is a binary classifier. Therefore, for a K-class problem,
there will beK sets of FDR-selected features, one set for each
SVM. While this strategy works very well for one-versus-rest
SVM classifiers, it is not applicable to the DNN classifiers.
Therefore, we did not use DNNs for comparison.

Table 7 shows the performance of the classifiers in this
paper and the best arrhythmia classifier in [21] under the 6-
class and 3-class scenarios. Two conclusions can be drawn



Table 7: Performance of the best SVM classifier in [21] and the
SVM classifiers in this paper.

Feature
Pre-Processing

Feature
Dimension

Classification
Accuracy

Nil [21] 166 75.0%
Nil 245 77.77%

FDR 236 78.23%
PCA 80 76.97%

(a) 6-class Case

Feature
Pre-Processing

Feature
Dimension

Classification
Accuracy

Nil [21] 166 78.13%
PCA [21] 70 83.71%

Nil 245 86.15%
FDR 236 86.26%
PCA 77 85.04%

(b) 3-class Case

from Table 7. First, FDR not only reduces the feature dimen-
sion but also helps the SVM classifier to achieve better perfor-
mance. Second, our classifier outperforms the best classifier
in [21].

4. CONCLUSION

In this paper, SVMs and DNNs were applied to classify heart
arrhythmia. Results show that for classifying normal against
abnormal heart arrhythmia, the best combination of feature
pre-processing and classification is FDR and DNNs. For
multi-class classification, FDR can be easily adopted to one-
vs-rest SVMs. Results also show that pre-training DNNs is
an essential step for training DNN classifiers, especially when
the number of training samples is very limited.
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