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Abstract—High Efficient Video Coding (HEVC) improves cod-
ing efficiency but suffers from high computational complexity due
to its quad-tree partitioning structure in motion estimation (ME).
In recent development of 3D video technology, depth map from
the 3D video provides an intimation of the objects’ distance from
the projected screen in a 3D scene, which inspires the exploration
in adaptive search range determination for complexity reduction
in HEVC. The proposed algorithm exploits the high temporal
correlation between the depth map and the motion in texture.
By utilizing this correlation and the potential impact of 3D-to-
2D projection, a depth/motion relationship is built for a tailor-
made search range with a depth-projected scale factor to skip
unnecessary search points in ME. Besides, the proposed ASR
algorithm can work well with other fast ME algorithms with
up to 53% of average coding time reduction whereas the coding
efficiency can be maintained.

I. INTRODUCTION

The latest HEVC video coding standard has achieved the
coding gain of bitrate reduction of 50% at similar perceptual
quality compared to H.264 [1]. However, high computational
complexity is induced since a flexible quad-tree partitioning
structure is adopted where a recursive split of a coding unit
(CU) is conducted for every cycle of ME [2]. With quad-
tree partitioning, inter prediction consumes about 60-70%
of the whole encoding time [3]. Therefore, fast ME search
approaches are used to expedite the inter prediction process.
Directional search was suggested applying various search
patterns to reduce search points within a fixed search range
[4]. Nevertheless, arbitrary search patterns are not preferable
for hardware implementation due to their irregular data flow
[5]. In this circumstance, full search with an adaptive search
range (ASR) can provide both search point reduction and
regular data flow. Some ASR algorithms proposed in H.264
determine the search range of a block by motion characteristics
of its neighbors. Two most recent algorithms extended to
support HEVC are Maximum Likelihood Estimation Laplace
Distribution Algorithm (MLELD) [6], and Linear Adaptive
Model for Adaptive Search Range Algorithm (LAMASR) [7].
MLELD [6] models the motion vector (MV) differences of the
previous frame by the zero-mean Laplace distribution where
the parameters are solved by maximum likelihood estimation
(MLE) to set the final ASR. LAMASR [7] adopts a linear ASR
model with a fixed scale factor, including an overdetermined
equation system. The system is solved by parameters of
prediction unit (PU) size, MV difference and MV predictors.

To the best of our knowledge, only one work in [8] tried to
reveal the usage of depth information for fast mode decision
rather than ASR determination in H.264. We are the first

one raising the depth information to design an efficient ASR
algorithm for HEVC. In our previous work [9], a technique of
depth intensity mapping for ASR was proposed. Different from
our previous work, this paper further proposes a depth/motion
relationship map (DMRMap) for retrieval of ASR in individual
x and y directions. Furthermore, a depth projection aided
scale factor is proposed based on the geometric correlation
between 3D scene and 2D image plane. This paper starts with
exploring the high temporal correlation between depth maps
and the motion in texture in Section II. In Section III, the
proposed DMRMap is introduced. By utilizing the DMRMap,
the retrieval of ASR for the encoding block is then presented.
The ASR adjustment due to the impact of the 3D-to-2D plane
projection is discussed in Section III. Simulation results are
provided in Section IV. Section V concludes this paper.

II. TEMPORAL CORRELATION BETWEEN DEPTH MAP
AND MOTION IN TEXTURE STREAMS

Texture plus depth is one of the data representation formats
including both the color texture and the depth map of a
scene [10]. The color texture stream captures luminance and
chrominance information of every pixel while the depth map
records the distances of the objects from the camera [9]. Thus,
the depth map being a piece of additional information ob-
jectively reflects distance between objects with their dynamic
movements between frames. This motivates us to utilize depth
map to expedite the texture video coding process in HEVC.

Fig. 1 plots the maximum amplitude of MVs of color
texture along average depth intensity values of all blocks in
two consecutive frames. Fig. 1(a) and Fig. 1(b) reveal that
the maximum horizontal MV (in x direction) amplitude distri-
bution could be very similar in consecutive frames. Fig. 1(c)
and Fig. 1(d) also show the same high temporal correlation in
the vertical MV (in y direction). Fig. 1 demonstrates that the
depth information of an object not only represents the physical
object position but also exhibits the motion activities of the
object between frames. By this temporal correlation between
the depth map and motion in texture, the proposed algorithm
can determined a tailor-made search range for each block.

III. THE PROPOSED DMRMAP-BASED ASR ALGORITHM
AND DEPTH-PROJECTED SCALE FACTOR

Revealed by Section II, a depth/motion relationship map
(DMRMap) is proposed to reflect the probable range of move-
ments for any object such that motion activities of objects
could be predicted by depth maps. The ASR is then set
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Fig. 1. The maximum MV amplitude of color texture against
average depth intensity values between consecutive frames, x-
component for (a) Frame 3 and (b) Frame 4, and y-component
for (c) Frame 13 and (d) Frame 14 of “Lovebird”.

according to the proposed DMRMap, followed by an adjust-
ment with a depth projection aided scale factor where the
impact of 3D-to-2D projection by motion activity is considered.
Unnecessary search points within the pre-defined search range
can be removed accordingly for x and y directions.

A. DMRMap Construction and Motion Vector Extraction

The DMRMap is established after the first inter-frame has
gone through a conventional full rate-distortion optimization
(RDO) inter coding and once the MVs of all blocks in the
reference frame are obtained. Let d be the average depth
intensity value of a block, where 0 ≤ d ≤ 255. It is noted
that depth maps are always estimated using stereo matching
methods [11], which induces slight variation or noise of depth
values within the same object. To tolerate the noise, d is
quantized uniformly by a quantization factor Q=8 into d̂, where
0 ≤ d̂ ≤ ⌈255/Q⌉. Note that ⌈ ⌉ is the ceiling function.

By the quantized average block intensity, DMRMap com-
prises mapping sets, Sd̂ containing blocks with the particular
d̂. Examples of the mapped candidates with d̂=2 and d̂=8 are
marked on the reference frame as depicted in Fig. 2. They are
linked with the corresponding current block with d̂=2 and d̂=8,
respectively. To extract motion activities from the DMRMap,
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Fig. 2. Illustration of DMRMap establishment between consec-
utive frames.
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Fig. 3. The largest motion vector (a) MV xmax(d̂) by quantized
depth in the x direction, and (b) MV ymax(d̂) in the y direction
from a pair of consecutive frames for “Lovebird”.

Sd̂
x and Sd̂

y are the sets of MVs obtained by the mapped
candidates in the x and y direction, respectively. The largest
MV, (MV xmax(d̂),MV ymax(d̂)), in the x and y directions are

MV xmax(d̂) = max(Sd̂
x) (1)

and
MV ymax(d̂) = max(Sd̂

y ), (2)

where max(S) gives the maximum value of the set S.
MV xmax(d̂) and MV ymax(d̂) are the descriptors of the DM-
RMap, the largest motion in both x and y directions can
be determined for the given d̂. Two pairs of DMRMaps in
the x and y directions constructed from consecutive frames
for “Lovebird” are illustrated in Fig. 3(a) and Fig. 3(b),
respectively, in which Q is set to 8. They record MV xmax(d̂)
and MV ymax(d̂) for each d̂, where d̂ is from 0 to 31. Fig. 3
reveals that the motion distributions of both directions are in
high similarity between consecutive frame pairs against d̂.

B. Adaptive Search Range Decision based on DMRMap

By utilizing the high temporal correlation of DMRMaps,
the ASR of which search ranges are respectively denoted as
Rx(Bn

t ) and Ry(Bn
t ) in the x and y directions, is determined

for block n being encoded in frame t. From (1) and (2),
Rx(Bn

t ) and Ry(Bn
t ) can respectively be computed as

Rx(Bn
t ) = MV xmax(QDepth(Bn

t )) (3)
and

Ry(Bn
t ) = MV ymax(QDepth(Bn

t )). (4)

Here, QDepth(Bn
t ) is the quantized average depth inten-

sity value for Bn
t . If QDepth(Bn

t ) is empty in the DMRMap,
the search ranges of Bn

t in both x and y directions are set to
64. It is the default search range of the main profile in HEVC,
which is always larger than or equal to the proposed ASR.
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Fig. 4. Geometric relationship between depth of object and
motion activity on the 2D image plane.

C. The Proposed Depth-projected Scale Factor

An object moving towards and away from the camera, or
zoom effect from the camera changes the distance between
the object being captured and the camera along time. This
motion activity along the camera axis (z-axis) has the potential
to weaken the DMRMap temporal correlation. Taking these
distance/depth changes and the impact of 3D-to-2D projection
on the image plane into consideration, a scale factor of Bn

t ,
ρ(Bn

t ), is applied to the proposed ASR in

Rxρ(Bn
t ) = ρ(Bn

t )×MV xmax(QDepth(Bn
t )) (5)

and
Ryρ(Bn

t ) = ρ(Bn
t )×MV ymax(QDepth(Bn

t )). (6)

In (5) and (6), ρ(Bn
t ) is underlying on the motion parallax

stating that, given the same horizontal or vertical motions
of objects in the 3D space, objects that are closer to the
camera move faster on the 2D image plane than the objects
that are farther. In other words, the degree of the projected
displacement of an object on the image plane is always related
to its distance from the camera. This situation is illustrated in
Fig. 4 with an example of the geometric relationship when an
object moving towards the camera and how its displacement on
the 2D image plane varies. Let Oref denote an initial reference
position of an object. Its actual distance from the camera is Zref,
and its search range implied by its motion range is assumed to
be SR3D

ref in the 3D space. When an object moves from Oref to
Ot between time t− 1 and time t such that the object moving
towards the camera, and now Zt < Zref since Ot is closer
to the camera than Oref. The dotted lines in Fig. 4 indicate
the trajectory of the 3D-to-2D projections through the camera
lens onto the image plane. Therefore, the projection amplitudes
show SR2D

ref < SR2D
t on the image plane provided that Oref

and Ot have the same search range in the 3D space (i.e.,
SR3D

ref = SR3D
t = r). Consequently, depth intensity changes

can be used to determine a deviation of the projection ratios
and form ρ(Bn

t ) for scaling the proposed ASR due to the
motion along the z-axis by the triangular similarity as

ρ(Bn
t ) =

SR2D
t

SR2D
ref

=

r·f
Zt

r·f
Zref

=
Zref

Zt
. (7)

Determine            &            by the mapping in (3) & (4)

ME using the updated               &  

ASR 

Decision 

using 

DMRMap

Correlate                       to its                    &                   

No

Yes

Compute             based on (10)  

DMRMap 

Construction

n
tQDepth(B )

in DMRMap?
n
tQDepth(B )

n
txR (B ) n

tyR (B )

n
t(B ) ASR Update 

based on 3D-

to-2D Motion 

Projection

            & Based on (5) & (6), update 

              &

ME using the 

Proposed ASR

max
d̂MVx ( ) max

d̂MVy ( )

= 64

= 64
set

n
tRx (B )
n
tRy (B )

n
tyR (B )n

txR (B )
n
tRx (B )

n
tRx (B ) n

tRy (B )

to
nRy (Bt )

Fig. 5. Flowchart of the proposed depth projected ASR algo-
rithm.

In (7), f is the focal length of the camera, and r is the
search range amplitude of the object in the 3D space. The
actual distances, Zt and Zref, in the 3D space can be computed
from the average depth intensity values without quantization
in the depth maps, Depth(Bn

t ) and Depth(Bn
ref), for Bn

t in
the current frame and its co-located block Bn

ref in the reference
frame, respectively, as

Zt = 1/

[
Depth(Bn

t )

255
×
(

1

Znear
− 1

Zfar

)
+

1

Zfar

]
(8)

and

Zref = 1/

[
Depth(Bn

ref)

255
×

(
1

Znear
− 1

Zfar

)
+

1

Zfar

]
, (9)

where Znear and Zfar are, respectively, the smallest and the
largest actual distances captured by the camera, which are
freely available in the camera configure files of the test
sequences recommended by the ISO/IEC and ITU-T JCT-3V
group. Putting (8) and (9) into (7), ρ(Bn

t ) is finally expressed
as

ρ(Bn
t ) =

Depth(Bn
t )(Zfar − Znear) + 255× Znear

Depth(Bn
ref)(Zfar − Znear) + 255× Znear

, (10)

and it can be summarized as
case 1 : ρ(Bn

t ) > 1, Depth(Bn
t ) > Depth(Bn

ref)

case 2 : ρ(Bn
t ) = 1, Depth(Bn

t ) = Depth(Bn
ref)

case 3 : ρ(Bn
t ) < 1, Depth(Bn

t ) < Depth(Bn
ref)

, (11)

where case 1 represents a scenario that the object moving
towards the camera, case 2 represents the object without z-
axis motion, and case 3 represents the object moving away
from the camera. The flowchart of the proposed DMRMap-
based ASR algorithm with the depth-projected scale factor for
encoding a block in HEVC is provided in Fig. 5.

IV. SIMULATION RESULTS

The proposed depth-projected scaling DMRMap-based
ASR algorithm (SDMRMap) and algorithms in literatures for
comparisons were implemented respectively in the conven-
tional full-search (FS) and fast Test Zone Search (TZS) in
HEVC model, HM14.0 [12]. Bjontegaard (BD) measurement
[13] in terms of BD-rate (%) and BD-PSNR (dB), and ∆time
(%) representing coding time change in percentage were eval-
uated. The coding time includes the computational cost for
all CU quad-tree levels. Positive and negative values denote
increments and decrements, respectively.



TABLE I. BD AND CODING TIME CHANGES OF THE PRO-
POSED FS+SDMRMAP AND LITERATURES AGAINST FS

Sequences 
(720p & 1080p) 

FS+MLELD FS+LAMASR Proposed FS+SDMRMap

time 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate 
(%) 

time 
(%) 

BD- 
PSNR 
(dB) 

BD-
rate 
(%) 

time 
(%) 

BD-
PSNR 
(dB) 

BD-
rate  
(%) 

Balloons -63.17 0.00 +0.07 -74.01 0.00 -0.06 -89.63 -0.01 +0.26 

Kendo -80.74 -0.01 +0.23 -89.99 -0.01 +0.25 -94.01 -0.01 +0.26 

Lovebird -87.87 0.00 +0.12 -94.96 0.00 +0.06 -99.46 0.00 +0.08 

Newspaper -73.84 -0.02 +0.47 -90.94 -0.01 +0.23 -97.23 -0.01 +0.31 

Poznan_Street -42.87 -0.01 +0.51 -69.47 -0.02 +0.74 -97.15 0.00 +0.17 

Poznan_Hall2 -41.25 -0.01 +0.28 -40.37 -0.01 +0.22 -86.72 -0.01 +0.41 

Undo_Dancer -36.78 -0.01 +0.39 -34.74 -0.02 +0.69 -91.74 -0.01 +0.30 

GT_Fly -27.32 0.00 +0.03 -36.41 0.00 +0.14 -95.47 -0.01 +0.27 

Average: -56.73 -0.01 +0.26 -66.36 -0.01 +0.28 -93.93 -0.01 +0.26 

 

d

TABLE II. BD AND CODING TIME CHANGES OF THE PRO-
POSED TZS+SDMRMAP AND LITERATURES AGAINST TZS

Sequences 
(720p & 1080p) 

TZS+MLELD TZS+LAMASR Proposed TZS+SDMRMap

time 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate 
(%) 

time 
(%) 

BD- 
PSNR 
(dB) 

BD-
rate 
(%) 

time 
(%) 

BD-
PSNR 
(dB) 

BD-
rate  
(%) 

Balloons -15.48 -0.01 +0.14 -14.24 0.00 +0.02 -48.92 0.00 -0.01 

Kendo -17.46 0.00 +0.12 -25.92 -0.01 +0.30 -50.14 0.00 +0.13 

Lovebird -29.30 -0.01 +0.26 -37.90 0.00 +0.02 -63.06 0.00 +0.10 

Newspaper -26.98 -0.02 +0.45 -22.34 0.00 +0.13 -54.50 -0.01 +0.24 

Poznan_Street -22.98 -0.01 +0.30 -21.36 -0.01 +0.64 -56.63 -0.01 +0.23 

Poznan_Hall2 -39.54 0.00 +0.04 -31.37 0.00 0.00 -54.25 0.00 +0.14 

Undo_Dancer -12.82 -0.01 +0.15 -5.98 -0.02 +0.58 -55.56 -0.01 +0.19 

GT_Fly -20.29 0.00 +0.01 -30.14 0.00 +0.09 -42.61 0.00 +0.12 

Average: -23.11 -0.01 +0.18 -23.66 -0.01 +0.22 -53.21 0.00 +0.14 

 

A. Results of Applying SDMRMap to FS

Table I lists the coding performance and ∆time of our
proposed SDMRMap against FS, denoted as FS+SDMRMap.
The proposed FS+SDMRMap can averagely save 93.93%
of coding time over FS since it utilizes the high temporal
correlation of motions revealed by depth intensity mapping.
While significant coding time reduction can be achieved,
FS+SDMRMap attains negligible loss on BD-PSNR by 0.01dB
and a trivial increment of 0.26% in BD-rate as compared
to FS. From Table I, the proposed FS+SDMRMap can save
more computational time by about 37%, and 27%, respectively,
as compared with the algorithms in literatures, FS+MLELD
[6], and FS+LAMASR [7]. The reason is that FS+SDMRMap
considers the search range in the x and y directions separately
for tracing the true MVs. But, FS+MLELD, and FS+LAMASR
consider the search range in both directions jointly, which
provide more than enough search range dimension. Further-
more, FS+SDMRMap utilizes an adaptive scale factor for ASR
adjustment. But, FS+LAMASR simply multiplies a fixed scale
factor to its resultant ASR.

B. Results of Applying SDMRMap to Fast TZS

Table II shows the BD measurement and the coding time
change of TZS+MLELD [6], TZS+LAMASR [7], and the
proposed TZS+SDMRMap, compared to TZS. To have fair
comparison since TZS is only suited for a squared search
window, the proposed ASR by TZS+SDMRMap was com-
puted as max(Rxρ(Bn

t ), Ryρ(Bn
t )) for the sake of simplic-

ity. TZS+SDMRMap could save 42.61% to 63.06% coding
time for various sequences. Meanwhile, almost no loss in
terms of BD-PSNR and BD-rate (averagely 0.14% increment)
was found. The above results indicate that the proposed
TZS+SDMRMap is well compatible with the fast search
strategy in HEVC. On average, TZS+SDMRMap attains a

better BD performance and reduce more coding time by 29%
compared to TZS+MLELD and TZS+LAMASR.

V. CONCLUSION

The proposed ASR algorithm for HEVC reduces the
computational complexity of ME. It proposes a depth/motion
relationship map (DMRMap) which builds the linkage on
the same object among consecutive frames which reflects the
probable range of movements. Based on the DMRMap, a
depth intensity mapping is contrived to form an ASR for
ME. Furthermore, a depth-projected scale factor for the ASR
adjustment has been proposed to comply with the impact of 3D-
to-2D projection during depth intensity changes. The proposed
ASR algorithm performs well with FS and fast ME algorithms
such as TZS in HEVC for complexity reduction. Simulation
results demonstrated that the proposed algorithm is able to
reduce up to 53% of average coding time in TZS while the
coding efficiency can be maintained.
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