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Abstract—High Efficient Video Coding (HEVC) achieves 

twofold coding efficiency improvement compared to its 
predecessor H.264/MPEG-4 AVC. However, it suffers from high 
computational complexity due to its quad-tree structure in 
motion estimation. This paper exposes the usage of depth maps in 
the multiview video plus depth format for relieving the 
computational burden. The depth map provides an intimation of 
the objects’ distance from the projected screen in a 3D scene, 
which is explored in adaptive search range determination in this 
paper. The proposed algorithm exploits the high temporal 
correlation between the depth map and the motion in texture.  By 
utilizing this correlation, a depth/motion relationship map is built 
for a mapping process. For each block, this forms a tailor-made 
search range with a motion-aware asymmetric shape to skip 
unnecessary search points in motion estimation. The obtained 
search range can be further adjusted by taking the influence of 
3D-to-2D projection into consideration. Simulation results reveal 
that, compared to the full search approach, the proposed 
algorithm can reduce the complexity by 93% on average whereas 
the coding efficiency can be maintained. Besides, the proposed 
search range determination can work well with other fast search 
motion estimation algorithms in the literature.  

Index Terms—Adaptive search range, high efficiency video 
coding, motion estimation, multiview video plus depth, video 
coding. 

I. INTRODUCTION

HE latest High Efficiency Video Coding (HEVC) 
standard is targeted for efficient compression of high 

resolution (720p and 1080p) and 3D videos [1]. Compared 
with the H.264/MPEG-4 AVC standard, HEVC can reduce the 
bit rate by almost 50% with the similar perceptual video 
quality [2], [3]. HEVC adopts the same block-based hybrid 
video coding scheme [4], [5] used in the prior video 
compression standards. The achievement in coding gain 
results mainly from its more flexible block partition 
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mechanism at the cost of high computational complexity [6]–
[8]. In the encoding process as shown in Fig. 1, each picture is 
divided into coding tree units (CTUs), which is the base unit 
in HEVC [9]–[11].  The size of a CTU can be chosen as 
64×64, 32×32, 16×16 or 8×8. A CTU is composed of a luma 
coding tree block (CTB), two chroma CTBs, and the 
associated syntax elements.  The luma and chroma CTBs can 
be further partitioned into smaller blocks using a quad-tree 
structure.  The leaves of the CTBs are specified as coding 
blocks (CBs).  One luma CB, and its corresponding two 
chroma CBs, together with the syntax elements form a coding 
unit (CU).   The CU shares the identical prediction mode 
(intra, inter, skip, or merge), and it acts as the root for a 
prediction unit (PU) partitioning structure. Fig. 1 lists out all 
possible PU modes. The PU is composed of prediction blocks 
(PBs) where the same prediction process is applied for its 
luma and chroma PBs. In the PU partitioning structure of 
HEVC, each luma/chroma CB can be further partitioned into 
one, two, or four rectangular shaped PBs. In HEVC, it adopts 
square motion partitions, symmetric motion partitions, and 
asymmetric motion partitions [12], as shown in Fig. 1. It 
means that every CU undergoes motion predictions by various 
types of PU partitions. With this flexible block partitioning 
mechanism, inter prediction consumes about 60-70% of the 
whole encoding time [13], [14]. 
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Fig. 1.  Flexible block partitioning in HEVC: CTUs, CUs, and PUs. 
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Recently, many researchers have devoted their efforts to 
expedite the inter prediction using fast mode decision or early 
mode termination in HEVC [15]–[20].  Early termination 
based on various coding information was suggested in [15]–
[18]. For instance, zero coded block [15], [16] and the 
selection of SKIP mode [17], [18] are employed to trigger 
early termination of CU size decision. The works in [19], [20] 
further exploited the spatio-temporal analysis, motion 
homogeneity, and RD cost to determine the condition of early 
termination. These methods focus on reducing the 
computational complexity of selecting the best CU and PU, 
which are also highly related to the motion estimation (ME) 
algorithms. Fast ME algorithms always restrict the number of 
search locations. Test Zone Search (TZS) is one of the popular 
methods implemented in the HEVC test model (HM) [21], 
[22].  TZS starts with a diamond or square search pattern with 
different stride lengths of 1, 2, 4, 8, 16, 32, and 64 to locate an 
initial search point.  This initial search point is taken as the 
center search point for the possible raster search and 
refinement.  In [23], a rotating hexagonal grid with alternate 
horizontal/vertical hexagonal patterns was suggested for TZS 
to locate the global minima with early termination.  However, 
the multiple initial search point decision is still a major burden 
on TZS [24]. In addition to TZS, other search strategies [25]-
[27] and directional search were suggested in [28], [29].  
These works focus on applying specific search patterns to 
reduce search points within a fixed search range.  
Nevertheless, various search patterns are not preferable for 
hardware implementation due to their irregular data flow [30]-
[33].  In this circumstance, full search with an adaptive search 
range (ASR) can provide both search point reduction and 
regular data flow.  Besides, ASR can also be applied to 
various search patterns in software implementation to further 
reduce the number of search points.  In [34], [35], the search 
range is modeled by the Cauchy distribution and Laplace 
distribution, which exhibit good results in terms of quality and 

complexity in H.264. Other ASR algorithms proposed in 
H.264 correlates the search range of the current block with the 
motion characteristics of its neighbors.  Examples of these 
motion characteristics include motion vector predictors [36], 
[37], sum of absolute difference [38], and motion activities 
[39] from neighboring blocks, motion vector differences in 
previous frames [40], etc. Recently, these concepts of ASR 
have been directly extended to support the flexible block 
partition in HEVC [30], [41]–[46].  But there are only a few of 
them trying to adopt the new features provided in bitstreams 
for ASR.  For example, the ASR algorithm given in [46] uses 
the correlation between views in 3D-HEVC for ASR 
adjustment.  However, the disparity among views might 
reduce the correlation between the search range of the view 
being coded and the motion vectors of its neighboring views. 
In [47], the authors tried to reveal the usage of depth 
information for fast mode decision.  This algorithm makes the 
fast decision on selecting SKIP, inter-mode, and intra-mode in 
H.264 coding only. To the best of our knowledge, there is no 
existing work of ASR considering the depth information of 3D 
videos, which has gained great attention recently. In this 
paper, the depth information brings new room for designing an 
efficient ASR algorithm in HEVC. 

The rest of this paper is organized as follows. Section II 
illustrates the motivation of using depth maps for search range 
determination. Section III exploits the temporal correlation 
between the depth map and motion in texture. The correlation 
makes the development of a new ASR algorithm possible for 
speeding up the ME process in HEVC. The proposed idea of 
linkage between depth maps and motions for the purpose of 
search range adjustment is then introduced in Section III.  
First, we describe the construction of a depth/motion 
relationship map (DMRMap) based on the correlation between 
the depth map and the motion in texture.  Second, by making 
use of the DMRMap, the retrieval of ASR for the block being 
encoded is presented. Furthermore, the final adjustment of the 
search range due to the influence of the 3D space to the 2D 
image plane projection is discussed in Section IV. The entire 
proposed depth-based ASR algorithm based on the 
construction of DMRMap and the search range adjustment due 
to 3D-to-2D projection is conveyed in Section V. Simulation 
results of the proposed algorithm are provided in Section VI. 
Finally, Section VII concludes this work, with some idea for 
future work. 

II. MOTIVATION OF USING DEPTH MAPS IN SEARCH RANGE 

ADJUSTMENT OF MOTION ESTIMATION 

In recent years, we have witnessed the rapid development of 
3D video technology. Among various 3D video 
representations, the multiview video plus depth (MVD) [48] is 
emerging as the most flexible format.  The MVD includes 
both the color texture and the depth map of the captured scene. 
Two color textures, “Lovebird1” and “Newspaper”, and their 
associated depth maps are shown in Fig. 2. In Fig. 2(a) and 
Fig. 2(c), the objects in front are the couples walking towards 
the camera and two teenagers sitting together, respectively. 
These color textures capture the luminance and chrominance 

    
    (a)                   (b) 

    
           (c)                (d) 

Fig. 2.  Color texture and its associated depth map for a frame. (a) Color
texture in “Lovebird1”. (b) Depth map in “Lovebird1”. (c) Color texture in
“Newspaper”. (d) Depth map in “Newspaper”. 
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information of pixels in the scenes while the depth maps in 
Fig. 2(b) and Fig. 2(d) record the distances of the objects 
associated with every pixel of the color textures.  The lighter 
of the grayscale in the depth map, the closer of the object to 
the viewer. At the decoder side, depth maps can be used to 
synthesize arbitrary numbers of extra views through Depth-
Image-Based Rendering (DIBR) techniques [48], [49]. The 
depth map for each frame is a piece of additional information 
to be encoded in the state-of-the-art 3D video encoder.   

In [47], the authors utilized depth information for fast mode 
decision.  By using depth information, a video scene is divided 
into near, middle, and far regions. Various mode candidates of 
a macroblock are chosen according to the classified region the 
macroblock belongs to. Instead of fast mode decision, our 
previous work in [50] has initially designed an efficient ASR 
algorithm in HEVC by depth information, but only limits to 
two particular CU sizes with symmetric search range. In this 
paper, we further extend our work in [50] to all block sizes 
with an asymmetric search range and a flexible scale factor 
depending on depth information.  This paper proposes a depth 
information based ASR algorithm to adjust the search range to 
speed up ME. Depth maps are able to provide the additional 
intimation on areas/pixels belonging to objects in the same 
distance. In Fig. 2(b) and Fig. 2(d), the distinguished objects 
can be obviously figured out by the depth map since different 
video objects should have the distinct distance in the scene. In 
other words, same object, which shares the similar motion 
activities, can easily be identified by the depth maps. Once 

these objects are located, different search ranges can be 
applied to different objects in order to expedite ME. 

 

III. TEMPORAL CORRELATION BETWEEN DEPTH MAP AND 

MOTION IN TEXTURE STREAMS 

Fig. 3(a) and 3(b) plots the maximum amplitude of motion 
vectors of color texture in the x-direction for various average 
depth intensity values of all blocks in two consecutive frames 
while Fig. 4(a) and 4(b) shows the maximum amplitude of 
motion vectors of color texture in the y-direction for various 
average depth intensity. From these graphs, it can be seen that 
they have very similar distribution. It is because the depth 
information of an object not only represents the physical 
object position but also exhibits the motion activities of the 
object itself on each frame. It reflects that blocks with similar 
average depth intensity value will usually have similar motion 
vectors over a period of time. By making use of this temporal 
correlation between the depth map and motion in texture, we 
establish depth and motion relationship for each frame, and it 
is referred to as a depth/motion relationship map (DMRMap).  

With the aid of the relationship map, motion activities of 
objects between consecutive frames could be roughly 
predicted by depth maps. In this paper, the search range is 
adopted according to the proposed DMRMap. Therefore, 
unnecessary search points within the pre-defined search range 
can be removed. 

A. DMRMap Construction in Reference Frame 

This paper proposes a framework to obtain and maintain the 
depth/motion relationship map (DMRMap) of a reference 
frame, which can be used to determine the search range of the 
current frame.  The DMRMap captures the relationship 
between motion activity and average depth intensity of all 
blocks in a reference frame. The proposed algorithm should 
start with any frame other than the first inter-frame because 
the reference frame of the first inter-frame is intra-coded, and 
no motion vectors from this reference frame can be obtained. 
Therefore, the first inter-frame will go through a conventional 
full rate-distortion optimization (RDO) inter coding. Once the 
motion vectors of all blocks in the frame are obtained, its 
DMRMap is constructed for ME of the next frame. Let d be 
the average depth intensity values of a block in the reference 
frame, where 0  ݀  255.  It is noted that depth maps are 
always estimated using stereo matching methods [51], which 
induces slight variation or noise of depth values within the 
same object. To tolerate the variation of depth values in an 
object, d is divided into an appropriate number of ranges, each 
containing many similar values of d.  To do so, d is quantized 
uniformly by a quantization factor Q into መ݀, where 0  መ݀ 
ڿ Note that .ۀܳ/255ڿ  is the ceiling function. The DMRMap	ۀ
relates the largest motion vectors to all possible values of መ݀ 	in 

the reference frame.  Assume that ܵ௫ௗ
  and ܵ௬ௗ

 are the sets of 
motion vectors in the x- and y-direction, respectively, with the 
blocks in which their quantized average depth intensity value 
is መ݀. The largest motion vector, ൫݉ݒ௫௫൫ መ݀൯,݉ݒ௬௫൫ መ݀൯	൯, in 

 
(a)            (b) 

Fig. 3.  The maximum amplitude of x-component motion vectors MV in 
quarter pixel of color texture for various average depth intensity values 
between consecutive frames, (a) Frame 3 and (b) Frame 4 of “Lovebird1”. 

 
(a)            (b) 

Fig. 4.  The maximum amplitude of y-component motion vectors MV in 
quarter pixel of color texture for various average depth intensity values 
between consecutive frames, (a) Frame 3 and (b) Frame 4 of “Lovebird1”. 
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the x- and y-directions are the maximum values in  ܵ௫ௗ
 and ܵ௬ௗ

 
as follows  

 
ˆmax ˆ( ) max( )d

x xmv d S  (1) 
 

and 
 

ˆmax ˆ( ) max( )d
y ymv d S    (2) 

 
where max(S) gives the maximum value of the set S. Actually, 
௫௫൫ݒ݉ መ݀൯ and ݉ݒ௬௫൫ መ݀൯ can be used to describe the 
DMRMap, which constructs the relationship between the 
largest motion vectors and መ݀. In other words, the largest 
motion vector in both of the x- and y-directions can be 
determined for the given መ݀.   

The DMRMap will be updated frame by frame.  Two 
relationship maps in the x- and y-directions constructed from a 
pair of consecutive frames for “Lovebird1” are illustrated in 
Fig. 5(a) and 5(b), respectively, in which Q is set to 8.  They 
record ݉ݒ௫௫൫ መ݀൯ and ݉ݒ௬௫൫ መ݀൯	for each መ݀ within the frame, 

where መ݀ 	is from 0 to 31.  The value of Q depends on the level 
of noise in the depth map.  The more the noise in the depth 
map, the larger the value of Q is used to absorb depth variation 
in the same object. However, a large Q results in affecting the 
precision of DMRMap, which will have a detailed discussion 
in Section VI.  Setting Q to 8 is always appropriate for the 
quality of most depth maps recommended by the ISO/IEC and 
ITU-T JCT-3V group with the reasonably good DMRMap.  
From Fig. 5(a) and 5(b) for the DMRMap, it can be observed 
that the distributions are very similar to each other for 
consecutive frames in both of the horizontal and vertical 

movements.  

B. Adaptive Search Range Decision based on Mapping 
Process using DMRMap  

By utilizing the temporal correlation of DMRMaps between 
two consecutive frames, the mapping process from the average 
depth intensity for the ith block being encoded in frame t, ܤ௧

, 
to its search range, denoted as ܴܵ௫ሺܤ௧

ሻ and ܴܵ௬ሺܤ௧
ሻ in the x- 

and y-directions, respectively, is conducted.  The mapping is 
based on the DMRMap in the reference frame as defined in (1) 
and (2).  Let ݄ܳݐ݁ܦሺܤ௧

ሻ be the average depth intensity 
values after quantization for ܤ௧

.  From (1) and (2), ܴܵ௫ሺܤ௧
ሻ 

and ܴܵ௬ሺܤ௧
ሻ can then be computed as 

 
max( ) ( ( ))i i

x t x tSR B mv QDepth B  (3) 
 

and 
 

m ax( ) ( ( ))i i
y t y tSR B m v Q D epth B    (4) 

 
This mapping process is to correlate the temporal 

information by the average depth intensity value of the block 
being encoded to those blocks in the reference frame.  Since 
depth maps indicate the location of an object in the video 
scene from the image plane, the average depth intensity value 
could therefore be a criterion for distinguishing various 
objects with different distances in a video scene.  Based on 
this observation, it is likely that the blocks belonging to one 
particular video object across consecutive frames have 
consistent motion associated with the similar average depth 
intensity values. Once the average depth intensity value of the 
current block is matched to those in the same intensity value 
of the reference frame, ASR decision can be made from the 
DMRMap in the reference frame. It is noted that, if 
௧ܤሺ݄ݐ݁ܦܳ

ሻ is empty in the DMRMap of the reference frame, 
the search ranges of ܤ௧

 in both x- and y-directions are set to 
64. It is the default search range of the main profile in HEVC, 
which is larger or equal to the values obtained in (3) and (4). 
After all motion vectors of the frame being encoded are 
determined, the DMRMap is updated for both x- and y-
directions for the next frame.  

IV. INFLUENCE OF 3D-TO-2D PROJECTION ON MOTION 

ACTIVITY ON 2D IMAGE PLANE 

The working principle of the mapping process in (3) and (4) 
is based on the very strong temporal correlation of DMRMaps 
between the current and reference frames. However, an object 
moving towards and away from the camera, or zoom effect 
from the camera changes the distance between the object 
being captured and the camera between frames. This motion 
activity along the camera axis (z-axis) has the potential to 
weaken the degree of this correlation, which reduces the 
prediction accuracy of the search range in (3) and (4).  Taking 
this into consideration, a scale factor for the search range of 
௧ܤ
, ߩሺܤ௧

ሻ, is added to offer extra flexibility in the 
determination of the search range in (3) and (4).  The search 
range prediction is then scaled as follow 
 

 
           (a)  

 
            (b)  

Fig. 5.  The largest motion vector (a) ݉ݒ௫௫൫ መ݀൯ in the x-direction, and (b) 
௬௫൫ݒ݉ መ݀൯ in the y-direction from a pair of consecutive frames for 
“Lovebird1”. 
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max( ) ( ) ( ( ))
x

i i i
t t x tSR B B mv QDepth B    (5) 

 

and 
 

max( ) ( ) ( ( ))
y

i i i
t t y tSR B B mv QDepth B      (6) 

 
Note that ߩ൫ܤ௧

൯ = 1 is the case for the scene without motion 
along the z-axis. In this case, (5) and (6) are equal to (3) and 
(4), respectively. The change in depth intensity between 
frames actually reflects the degree of z-axis motion, which in 
turn gives a good estimation of ߩ൫ܤ௧

൯. The way to determine 

௧ܤ൫ߩ
൯ is underlying on the motion parallax. It states that, 

given the same horizontal or vertical motions of objects in the 
3D space, objects that are closer to the camera move faster on 
the 2D image plane than the objects that are farther.  In other 
words, the degree of the projected displacement of an object 
on the 2D image plane is always influenced by how close it is 
located to the camera in the 3D space. When the object is 
closer to the camera, projected displacement on the 2D image 
plane is larger. This situation is illustrated in Fig. 6. In this 
figure, an example of the geometric relationship between the 
depth information of an object moving towards the camera and 
its displacement variation on the 2D image plane is depicted.  
Let Oref denote a 3D position of an object in the 3D space. It is 
noted that the subscript ref represents the reference position in 
the following discussion. The actual distance value between 
Oref and the camera is Zref, and its search range is assumed to 
be ܴܵ

ଷ  in the 3D space. Assume that Oref moves to Ot with 
the actual distance value of Zt at time t.  In this case of the 
object moving towards the camera, Zt is smaller than Zref since 
Ot is closer to the camera than Oref, as shown in Fig. 6. 
Similarly, the search range of Ot is ܴܵ௧

ଷ. In Fig. 6, ܴܵ
ଶ  and 

ܴܵ௧ଶ are therefore the projections of ܴܵ
ଷ  and ܴܵ௧

ଷ	on the 
2D image plane, respectively.  For the same search range for 

Oref and Ot in the 3D space (i.e., ܴܵ
ଷ 	=	ܴܵ௧

ଷ ൌ ܴܵ ,(ݎ
ଶ  is 

smaller than ܴܵ௧ଶ on the 2D image plane after projection, as 
illustrated in Fig. 6. Consequently, this phenomenon can be 
used to determine ߩ൫ܤ௧

൯. In (5) and (6), ߩሺܤ௧
ሻ is a factor to 

scale the search range projected on the 2D image plane at time 
t due to the motion along the z-axis, which is the ratio of ܴܵ௧ଶ 
to ܴܵ

ଶ  defined by 
 

2

2
( )

D

t

D

ref

i
tB SR

SR
   (7) 

 
The dotted lines in Fig. 6 indicate the trajectory of the 

projections through the camera lens onto the 2D image plane. 
Using triangular similarity, the relationship between ܴܵ

ଶ  

and ܴܵ௧ଶ can be correlated to the actual distances, Zref and Zt 
in the 3D space as 
 

2 D

ref

ref

r
f

SR
Z


 (8) 

 

and 
 
 

2 D

t

t

r

f
SR

Z
    (9) 

 
where f is the focal length of the camera, and r is the search 
range of the object in the 3D space.  By combining (7), (8) and 
௧ܤሺߩ ,(9)

ሻ can be formulated as  
 

1

( ) ref

t

t

i
t

Z

B Z

Z

Z

 


 

 (10) 

 
where ߂Z is the change in the actual distance between Oref and 
Ot in the 3D space due to the z-axis motion of the object, as 
shown in Fig. 6. The positive ΔZ means the object moving 
towards the camera since physically Zt < Zref while the 
negative ΔZ means the object moving away from the camera 
due to Zt > Zref. In addition, there is no z-axis motion when ΔZ 
is equal to zero.   

In (10), it introduces the scale factor based on the changes 
in the actual distance between the current and reference 
blocks. The actual distances, Zt and Zref , in the 3D space can 
be computed from the average depth intensity values without 
quantization in the depth maps, ݄ݐ݁ܦሺܤ௧

ሻ and ݄ݐ݁ܦሺܤ
 ሻ, 

for ܤ௧
 in the current frame and its co-located block ܤ

  in the 
reference frame, respectively, as 

 

( ) 1 1 1

255
1 /

i
t

near far far
t

Depth B

Z Z Z
Z

          
  (11) 

tO refO

3
D

t
S

R
r



3
D

re
f

S
R

r


2
D

re
f

S
R

2
D

t
S

R

Fig. 6.  Geometric relationship between depth of object and motion activity on
the 2D image plane. 



Copyright (c) 2016 IEEE. Personal use of this material is permitted. However, permission to use this material for any other 
purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org. 

6

 

and 
 

( ) 1 1 1

255
1 /

i
ref

near far far
ref

Depth B

Z Z Z
Z

          
    (12) 

 
where Znear and Zfar are the smallest and largest actual distance 
among all points captured by the camera, which  are recorded 
in the camera configure files of the test sequences 
recommended by the ISO/IEC and ITU-T JCT-3V group.  
Their values of Znear and Zfar are listed in Table I in which  
positive or negative values denote the viewing direction of the 
camera. It is noted that the values of Znear and Zfar are signaled 
with the 3D videos for a correct geometric displacement in 
synthesized intermediate views [49] at decoder side. By 
putting (11) and (12) into (10), ߩሺܤ௧

ሻ is expressed as 

 

 
 

( ) 255
( )

( ) 255

i
t far near neari

t i
ref far near near

Depth B Z Z Z
B

Depth B Z Z Z


 


 
 (13) 

 
and it can be summarized as    

case 1 : ( ) 1, ( ) ( )

case 2 : ( ) 1, ( ) ( )

case 3 : ( ) 1, ( ) ( )

i i i
t t ref

i i i
t t ref

i i i
t t ref

B Depth B Depth B

B Depth B Depth B

B Depth B Depth B





  
  
  

 (14) 

 
where case 1 represents a scenario that the object moving 
towards the camera, case 2 represents the object without z-axis 
motion, and case 3 represents the object moving away from 
the camera. 

V. PROPOSED DMRMAP-BASED ADAPTIVE SEARCH RANGE 

(ASR) ALGORITHM  

Fig. 7 shows the flowchart of the proposed DMRMap-based 
ASR algorithm to encode a frame in HEVC.  The proposed 
ASR algorithm has three new features: (a) DMRMap 
construction of the reference frame; (b) ASR determination 
using DMRMap; and (c) ASR update based on 3D-to-2D 
motion projection. Combining these three techniques, the 
proposed DMRMap-based ASR algorithm can be applied to 
the block	ܤ௧

 being encoded as follows. 
 

Step (i)  Construct the DMRMap of the reference frame 
according to (1) and (2). 

Step (ii) Compute ݄ܳݐ݁ܦ൫ܤ௧
൯ for the mapping process. 

Step (iii) If ݄ܳݐ݁ܦሺܤ௧
ሻ is available in DMRMap, go to 

Step (iv); otherwise, go to Step (vii) 
Step (iv) Obtain the horizontal ܴܵ௫ሺܤ௧

ሻ, and the vertical 
ܴܵ௬ሺܤ௧

ሻ based on the mapping processing in (3) 
and (4), respectively. 

Step (v) Determine the scale factor ߩሺܤ௧
ሻ as (13). 

Step (vi)  Update the horizontal ܴܵ௫ሺܤ௧
ሻ to ܴܵ௫

ఘ൫ܤ௧
൯ and the 

vertical ܴܵ௬ሺܤ௧
ሻ to ܴܵ௬

ఘ൫ܤ௧
൯ according to (5) and 

(6), respectively by ߩሺܤ௧
ሻ.  Go to Step (viii). 

Step (vii) Set both of the horizontal ܴܵ௫
ఘ൫ܤ௧

൯ and the vertical 

ܴܵ௬
ఘ൫ܤ௧

൯ to 64. 

Step (viii) Perform motion estimation using ܴܵ௫
ఘ൫ܤ௧

൯ and 

ܴܵ௬
ఘ൫ܤ௧

൯. 

VI. SIMULATION RESULTS  

To evaluate the performance of the DMRMap-based ASR 
algorithm, the techniques proposed in Section III and Section 
IV have been integrated into the HM 14.0 reference software 
[52], and tested under the low-delay P configuration specified 
in the common test condition [53] of the HEVC 
standardization in which the main profile of HEVC was used. 
An I-frame was allowed in the first frame only, and the rest 
were encoded as P-frames. All CU-level of 64×64, 32×32, 
16×16, and 8×8 were enabled. For PU and TU, a full quad-tree 
structure was utilized. All tested algorithms were evaluated 
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Fig. 7.  Flowchart of the proposed DMRMap-based ASR algorithm.  

TABLE I 
VALUES OF ZNEAR AND ZFAR  IN VARIOUS SEQUENCES 

Sequences Znear (cm) Zfar (cm) 
Balloons 448.251214 11206.280350 
Kendo 448.251214 11206.280350 

Lovebird1 -2228.745812 -156012.206815 
Newspaper -2715.181648 -9050.605493 

Poznan_Street -34.506386 -2760.510889 
Poznan_Hall2 -23.394160 -172.531931 
Undo_Dancer 2289 213500 

GT_Fly changes every frame between a range of  
{Znear, Zfar} ={3156.3, 1000000000}  
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with four QPs of 22, 27, 32, and 37 using eight test sequences 
with two resolutions of 1280×720 and 1920×1088.  

Two sets of experiments were performed to evaluate the 
overall efficiency of applying our proposed DMRMap-based 
ASR algorithm to various ME search strategies. First, the 
proposed DMRMap algorithm with and without the scale 
factor ߩሺܤ௧

ሻ in (13) have been incorporated into the 
conventional full-search (FS) in order to provide ASR for ME, 
and let us call them FS+DMRMap+Scaling and 
FS+DMRMap, respectively. Q was set to 8 in both of 
FS+DMRMap+Scaling and FS+DMRMap.  Three most recent 
ASR algorithms have also been implemented for comparisons, 
and they are referred to as FS+MLELD [40], FS+LSMF [43], 
and FS+LAMASR [44], respectively. FS+MLELD [40] 
models the motion vector differences of the previous frame by 
the zero-mean Laplace distribution where the parameters are 
solved by maximum likelihood estimation (MLE) for a motion 
estimator. The estimated distribution model is then used to set 

the final ASR. FS+LSMF [43] classifies the current block 
either in a small motion frame (SMF) or a large motion frame 
(LMF) by the distribution of motion vector differencs in the 
previous frame. Consequenctly, it differentiates the current 
block into two sub-classes of different degrees of motion 
activity by the average motion vector difference of the co-
located CTU. Larger ASR is assigned in high motion activity 
blocks and vice versa. FS+LAMASR [44] adopts a linear 
adaptive search range model including an overdetermined 
equation system. The parameters in the system can be solved 
in considerations on PU size, motion vector difference and 
motion vector predictors. The ASR is then finalized with a 
fixed scale factor. Second, we demonstrate the performance of 
the proposed DMRMap applied to the Test Zone Search 
(TZS), named as TZS+DMRMap+Scaling. TZS was 
employed in the H.264 joint scalable video model (JSVM) 
[13], and TZS is also the only fast method adopted in the 
HEVC reference software [21], [22]. It can prove that our 

TABLE II 
BJONTEGAARD (BD) MEASUREMENT AND CODING TIME CHANGE OF FS+LSMF, FS+MLELD, FS+LAMASR, FS+DMRMAP, AND 

FS+DMRMAP+SCALING FOR ASR AGAINST FS IN HEVC 
 

Seq. QP 

FS FS+LSMF [43] FS+MLELD [40] FS+LAMASR [44] FS+DMRMap FS+DMRMap+Scaling

PSNR 
(dB) 

Bitrate 
(kbps) 

Δtime 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate 
(%) 

Δtime 
(%) 

BD- 
PSNR 
(dB)

BD- 
rate 
(%) 

Δtime 
(%) 

BD- 
PSNR 
(dB)

BD- 
rate 
(%) 

Δtime 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate  
(%) 

Δtime 
(%) 

BD- 
PSNR 
(dB)

BD- 
rate  
(%) 

720p                   

B
al

lo
on

s 37 38.38 335.94 

-40.54 +0.01 +0.13 -63.17 0.00 +0.07 -74.01 0.00 -0.06 -93.43 -0.01 +0.18 -89.63 -0.01 +0.26
32 41.24 593.35 

27 43.56 1171.64 
22 45.46 3134.29 

K
en

do
 37 39.66 372.48 

-53.53 0.00 +0.07 -80.74 -0.01 +0.23 -89.99 -0.01 +0.25 -93.01 -0.01 +0.30 -94.01 -0.01 +0.26
32 42.27 654.66 

27 44.44 1236.53 

22 46.29 2900.38 

L
ov

eb
ir

d1
 37 34.32 164.72 

-71.10 -0.01 +0.35 -87.87 0.00 +0.12 -94.96 0.00 +0.06 -99.42 0.00 +0.11 -99.46 0.00 +0.08
32 37.22 353.62 

27 40.29 830.90 

22 43.64 2069.84 

N
ew

sp
ap

er
 37 35.71 242.51 

-54.77 -0.02 +0.45 -73.84 -0.02 +0.47 -90.94 -0.01 +0.23 -95.82 -0.01 +0.39 -97.23 -0.01 +0.31
32 38.45 451.86 

27 41.08 960.40 

22 43.81 2711.91 

1080p                   

P
oz

na
n 

_S
tr

ee
t 37 35.10 461.62 

-39.99 -0.01 +0.55 -42.87 -0.01 +0.51 -69.47 -0.02 +0.74 -96.38 -0.01 +0.48 -97.15 0.00 +0.17
32 37.48 1142.23 
27 39.94 4223.58 
22 43.24 24872.19 

P
oz

na
n 

_H
al

l2
 37 39.59 237.06 

-22.98 0.00 +0.05 -41.25 -0.01 +0.28 -40.37 -0.01 +0.22 -85.24 -0.01 +0.50 -86.72 -0.01 +0.41
32 41.09 501.60 
27 42.25 1568.65 
22 44.24 13711.65 

U
nd

o 
_D

an
ce

r 37 33.01 1525.83 

-25.14 -0.01 +0.42 -36.78 -0.01 +0.39 -34.74 -0.02 +0.69 -94.59 -0.01 +0.29 -91.74 -0.01 +0.30
32 35.76 4303.43 
27 39.02 11217.01 
22 42.69 25191.12 

G
T

_F
ly

 37 35.82 1166.74 

-25.41 0.00 0.00 -27.32 0.00 +0.03 -36.41 0.00 +0.14 -96.56 -0.01 +0.21 -95.47 -0.01 +0.27
32 38.44 3023.78 
27 41.10 7445.85 
22 43.85 16927.17 

Average: -41.68 -0.01 +0.25 -56.73 -0.01 +0.26 -66.36 -0.01 +0.28 -94.31 -0.01 +0.31 -93.93 -0.01 +0.26
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proposed DMRMap-based algorithm is compatible to a fast 
ME algorithm.  

In all simulations, Bjontegaard (BD) measurement [54] in 
terms of BD-rate (%) and BD-PSNR (ΔdB) were used to 
measure the average coding efficiency of various algorithms, 
and Δtime (%) represents coding time change in percentage as 
compared with the benchmarking algorithms.  Positive and 
negative values denote increments and decrements, 
respectively.  Note that the coding time includes the 
computational cost for all CU quad-tree levels. The test 
platform used for simulations was a 64-bit MS Windows 8.1 
OS running on an Intel Core i7-4770 CPU of 3.4 GHz and 
16.0 GB RAM. 

A. Results of Applying DMRMap to FS 

The full-search (FS) algorithm gives the best and optimal 
rate distortion (RD) performance in block-based ME since it 
searches all points inside the predefined search range. The 
objective of the proposed DMRMap-based ASR algorithms is 
to provide a suitable and reasonable search range for both 
vertical and horizontal directions per block for ME in HEVC. 
As a result, unnecessary search points can be skipped such that 
better resource utilization in ME can be achieved.  

Table II lists the BD measurement and Δtime of our 
proposed FS+DMRMap and FS+DMRMap+Scaling against 
FS for the eight depth-enhanced sequences. FS undergoes its 
fixed search range of 64 pixels, which means that 16641 
search points are used for each block in ME.  From Table II, 
FS+DMRMap and FS+DMRMap+Scaling can averagely save 
94.31% and 93.93% of coding time over FS, respectively. The 
search ranges obtained by FS+DMRMap and 
FS+DMRMap+Scaling are always smaller than that of FS 
since they utilize the high temporal correlation of motions 
revealed by depth intensity mapping. A significant time 
reduction of around 99% by FS+DMRMap and 
FS+DMRMap+Scaling can be observed at “Lovebird1” 
sequence. This can be explained by the fact that “Lovebird1” 
consists of large portion of slow movement so that the 
proposed techniques can offer remarkable reduction in search 

range in the mapping process. As a result, both FS+DMRMap 
and FS+DMRMap+Scaling only consume about 1% encoding 
time of FS. While significant coding time reduction can be 
achieved, the coding efficiency of the proposed FS+DMRMap 
and FS+DMRMap+Scaling can be maintained as compared to 
FS. From the results of Table II, FS+DMRMap obtains 
negligible loss on BD-PSNR by 0.01dB as compared to FS 
while only 0.31% of BD-rate is raised. With the help of the 
proposed scale factor ߩሺܤ௧

ሻ on search range due to the 3D-to-
2D projection, FS+DMRMap+Scaling also attains negligible 
loss on BD-PSNR by 0.01dB as compared to FS. At the same 
time, it only costs an increment of 0.26% in BD-rate.  

Table II further lists out the results of FS+LSMF [43],  
FS+MLELD [40], and FS+LAMASR [44].  It can be observed 
that FS+LSMF [43],  FS+MLELD [40], and FS+LAMASR 
[44] reduce the computational complexity by averagely 
41.68%, 56.73%, and 66.36%, respectively while the proposed 
FS+DMRMap+Scaling reduces the complexity by 93.93%. 
The proposed FS+DMRMap+Scaling can save more 
computational time by about 52%, 37%, and 27%, 
respectively, as compared with FS+LSMF [43], FS+MLELD 
[40] and FS+LAMASR [44]. Meanwhile, these algorithms 
obtain very similar BD-rate deterioration. The reason is that 
FS+DMRMap+Scaling considers the search range in the x- 
and y-directions separately for tracing the true motion vectors. 
Furthermore, FS+DMRMap+Scaling utilizes an adaptive scale 
factor for ASR adjustment. On the other hand, all the 
algorithms in [40], [43], and [44] consider the search range in 
the x- and y-directions jointly. In addition, FS+LAMASR [44] 
simply multiplies a fixed scale factor to the sum of the 
amplitude for ASR.  

From the results of Table II, it can be found that the gain in 
computational time for 1080p sequences is less significant 
compared to that of 720p sequences in FS+LSMF [43],  
FS+MLELD [40], and FS+LAMASR [44]. This can be 
explained by the fact that FS+LSMF [43] and FS+MLELD 
[40] adopt the motion vector difference distribution of the 
previous frame to determine the search range, and 
FS+LAMASR [44] uses the sum of amplitude differences 

TABLE III 
SEARCH RANGE DIMENSION AND AVERAGE NUMBER OF SEARCH POINTS PER CU OF FS, FS+LSMF, FS+MLELD, FS+LAMASR, AND FS+DMRMAP+SCALING 

 

 Dimension (Dn, integer pixel) Average number of search points per CU (SrPt) 

Sequences 
FS 

FS+ 
LSMF 

[43] 

FS+ 
MLELD 

[40] 

FS+ 
LAMASR 

[44] 

FS+ 
DMRMap+ 

Scaling 
FS 

FS+ 
LSMF 

[43] 

FS+ 
MLELD 

[40] 

FS+ 
LAMASR 

[44] 

FS+ 
DMRMap+ 

Scaling 

720p  Dnx = Dny  Dnx = Dny  Dnx  Dny  2-D search window 

Balloons 64 47  38 32  23  14  16641 9025 5929  4225 1363 
Kendo 64 42  27  20  13  18  16641 7225  3025  1681 999 

Lovebird1 64 34  21  14  3  6  16641 4761  1849  841 91 

Newspaper 64 41  32  19  15  8  16641 6889  4225  1521 527 

1080p Dnx = Dny Dnx = Dny  Dnx  Dny  2-D search window 

Poznan_Street 64 48  45  35  14  10  16641 9409  8281  5041 609 

Poznan_Hall2 64 55  48  50  28  22  16641 12321  9409  10201 2565 

Undo_Dancer 64 54  50  52  11  25  16641 11881  10201  11025 1173 

GT_Fly 64 54  53  51  17  11  16641 11881  11449  10609 805 

Average 64 47  39  34  16  14  16641 9174 6796 5643 1017 
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among all motion vector predictors of the current block to 
initialize the adaptive search range. In general, the motion 
vector differences among blocks are used as the hint to guide 
the search range determination for these three ASR 
algorithms.  However, motion activities in 1080p test 
sequences are always richer than those in 720p test sequences 
[55]. In other words, motion vector differences between 
blocks are more likely to have abrupt change such that 
FS+LSMF [43], FS+MLELD [40] and FS+LAMASR [44] 
will have a larger search range in 1080p sequences (i.e. less 
time reduction as a result).  On the contrary, our proposed 
FS+DMRMap and FS+DMRMap+Scaling can obtain the 
consistent gain in computational time for both 1080p and 720p 
sequences, as shown in Table II, since they only use the depth 
map for search range determination, which is insensitive to the 
video resolution.  

Table III further compares the average sizes of the search 
range in the x- and y-directions of FS, FS+LSMF [43], 
FS+MLELD [40], FS+LAMASR [44], and the proposed 
FS+DMRMap+Scaling. This table records the x- and y-
dimensions of the search range (Dnx and Dny, respectively) 
and the average number of search points (SrPt) per block for 
the five tested algorithms. For FS, FS+LSMF [43], 
FS+MLELD [40], and FS+LAMASR [44], Dnx is equal to 
Dny, and they are 64, 47, 39, and 34 on average, respectively, 
as shown in Table III. It implies that all FS, FS+LSMF [43], 

FS+MLELD [40], and FS+LAMASR [44] obtain a search 
window with aspect ratio of 1. For FS+DMRMap+Scaling, the 
search ranges in the x- and y-directions are computed 
independently. Along the sequences, the aspect ratio of the 
search window is no longer equal to 1, and it depends on the 
motion characteristic of the sequence. The proposed 
FS+DMRMap+Scaling therefore can adopt the search window 
with various aspect ratios for well fitting the true motion. As a 
result, the average number of search points for each CU is 
computed as (15) and listed in Table III. 
 

(2 1) (2 1)x ySrPt D n D n       (15) 

 
In (15), SrPt is defined as the number of search points in a 

search window based on Dnx and Dny. Finally, Table III shows 
that FS+LAMASR only requires around one third of search 
points per CU compared to FS whereas the proposed 
FS+DMRMap+Scaling only occupies averagely less than one 
tenth of search points for compared to FS. 

B. Gains of Scaling Technique on DMRMap 

From the results in Table II, we can see that 
FS+DMRMap+Scaling obtains a slight decrease in BD-rate 
compared with FS+DMRMap. The gain is contributed from 
the scale factor ߩሺܤ௧

ሻ in (13) that can adjust the final search 
range based on z-axis motion.  Fig. 8 and Fig. 9 exemplify the 

Fig. 8.  The maximum absolute amplitude of moiton vectors, ݉ݒ௫௫ሺ መ݀ሻ using
FS and FS+DMRMap, and ASR with መ݀ = 7 along frames for color texture of
“Lovebird1”.  

Fig. 9.  The maximum absolute amplitude of moiton vectors, ݉ݒ௬௫ሺ መ݀ሻ using
FS and FS+DMRMap, and ASR with መ݀ = 14 along frames for color texture of
“Newspaper”.  

Fig. 10.  The maximum absolute amplitude of moiton vectors, ݉ݒ௫௫ሺ መ݀ሻ
using FS and FS+DMRMap+Scaling, and ASR with መ݀ = 7 along frames for
color texture of “Lovebird1”. 

Fig. 11.  The maximum absolute amplitude of moiton vectors, ݉ݒ௬௫ሺ መ݀ሻ
using FS and FS+DMRMap+Scaling, and ASR with መ݀ = 14 along frames for
color texture of “Newspaper”. 
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inefficiency in FS+DMRMap. In these figures, ݉ݒ௫௫൫ መ݀൯ 
and ݉ݒ௬௫൫ መ݀൯ represent the largest motion vectors in the x- 

and y-directions at the quantized depth value መ݀, respectively, 
obtained by FS and FS+DMRMap. Fig. 8 displays ݉ݒ௫௫൫ መ݀൯ 
at መ݀=7 in “Lovebird1” from frame 1 to frame 80. In most of 
the time, ݉ݒ௫௫൫ መ݀൯ of FS+DMRMap is the same as that of 
FS. However, there are some discrepancies in a number of 
frames. It can be observed that ݉ݒ௫௫൫ መ݀൯ of FS+DMRMap 

cannot follow the increase in ݉ݒ௫௫൫ መ݀൯ of FS. This is 
because adaptive search range (ASR) decision of 
FS+DMRMap makes use of depth/motion relationship in the 
reference frame. It implies that the ASR at particular መ݀ of the 
current block cannot be larger than ݉ݒ௫௫൫ መ݀൯ of the 
reference frame.   

The ASR decision based on the DMRMap of the reference 
frame is also plotted in Fig. 8 (the blue curve marked with 
circle dots).  It is clearly shown that the resultant ASR is non 
increasing along frames due to the use of the DMRMap in the 
reference frame.  This situation is more obvious in Fig. 9 
where ݉ݒ௬௫൫ መ݀൯ at መ݀=14 in “Newspaper” is shown.  For 
instance, starting from frame 20 in “Newspaper”, there is 
motion of an object along the z-axis, which results in reducing 
the temporal correlation of DMRMaps between the current 
and reference frames, as discussed in Section IV. As a 
consequence, FS+DMRMap may not catch the actual motions 
for the moving object, and may lead to RD deterioration. By 
contrast, FS+DMRMap+Scaling utilizes ߩሺܤ௧

ሻ to provide 

additional flexibility in ASR decision for fitting the maximum 
texture motion. Fig. 10 and Fig. 11 illustrate how ߩሺܤ௧

ሻ can 
contribute the prediction accuracy of ASR.  From these 
figures, it can be seen that FS+DMRMap+Scaling is able to 
catch up with ݉ݒ௫௫൫ መ݀൯ and ݉ݒ௬௫൫ መ݀൯ of FS along frames.  

It is due to the reason that the derivation of ߩሺܤ௧
ሻ from (13) 

complies with the influence of 3D-to-2D projection such that 
the ASR can be enlarged or diminished accordingly. In other 
words, ߩሺܤ௧

ሻ allows ASR to rebound to a larger value, as 
depicted in Fig. 10 and Fig. 11. 

The advantage shown in Fig. 10 and Fig. 11 of 
FS+DMRMap+Scaling cannot be fully depicted in the results 
of Table II as the phenomenon in Fig. 8 and Fig. 9 only 
happens in a very short period of most sequences.  However, 
both of the BD-rate and BD-PSNR in Table II measure the 
whole sequence in which the gain of FS+DMRMap+Scaling 
as compared with FS+DMRMap might be averaged out. To 
demonstrate this benefit of FS+DMRMap+Scaling, Fig. 12 
further shows the performance of FS+DMRMap+Scaling over 
FS+DMRMap in very short time period. Fig. 12(a) shows the 
variation of the average search complexity depending on the 
search range size for all መ݀ with respect to the frame number 
from 216 to 249 in “Poznan_Street”. During this period, 
“Poznan_Street” contains a car moving forward along the z-
axis and a man walking away to the background, as shown in 
Fig. 13. Fig. 14 also shows the corresponding depth maps that 
exhibit remarkable changes in the moving object. Those 
changes in depth maps can be detected by 
FS+DMRMap+Scaling.  In contrast to FS+DMRMap, the 
search range obtained by FS+DMRMap+Scaling is then 
enlarged or diminished accordingly, as shown in Fig. 12(a).  
This mechanism allows FS+DMRMap+Scaling to 
successfully provide a more adaptive search range for ME. 
Furthermore, PSNR results for coding “Poznan_Street”  are 
plotted against the same series of frames in Fig. 12(b). From 
the results, FS+DMRMap+Scaling achieves a better quality of 
coded frames over FS+DMRMap. The observed PSNR gains 
by FS+DMRMap+Scaling verify that the proposed scaling 
scheme can provide a proper adjustment of the search range. 
In conclusion, FS+DMRMap+Scaling can balance the search 
range prediction accuracy, the complexity of ME, and the 

(a) 

(b) 

Fig. 12.  Performance of FS+DMRMap+Scaling over FS+DMRMap (from
frame 216 to frame 249) in “Poznan_Street”. (a) Search compleixty in term of
amplitude of search dimensions. (b) Resultant PSNR. 

     
 (a)       (b)        (c) 

Fig. 13.  Sample texture frames of “Poznan_Street”. (a) Frame 216. (b) Frame
232. (c) Frame 248. 

     
 (a)       (b)        (c) 

Fig. 14.  Sample depth frames of “Poznan_Street”.  (a) Frame 216. (b) Frame
232. (c) Frame 248. 
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PSNR performance with the help of the scale factor ߩሺܤ௧
ሻ. 

C. Results of Applying DMRMap to Fast TZS 

Section VI-A and Section VI-B demonstrate that the 
proposed DMRMap-based ASR algorithm with the scaling 
factor is successful in FS for complexity reduction. It is worth 
noting that our proposed algorithm for search range 
determination is not only applied to FS, it is also compatible 
with other fast search algorithms in HEVC.  To validate this, 
our proposed search range determination has been also used 
by the fast TZS in HEVC, named as TZS+DMRMap+Scaling.  
TZS only searches points on the vertexes of the blocks and the 
diamond patterns with various sizes inside the fixed search 
range. Instead of using fixed search range in TZS, an ASR is 

determined by TZS+DMRMap+Scaling.  It is noted that the 
search strategy of TZS is only suited for a squared search 
window.  However, the DMRMap-based ASR algorithm can 
handle the horizontal and vertical search ranges separately.  
For the sake of simplicity, based on (5) and (6), the search 
range of the squared search window is then computed by 
max	ሺܴܵ௫

ఘ൫ܤ௧
൯, ܴܵ௬

ఘ൫ܤ௧
൯ሻ.   

Table IV shows the BD measurement and the coding time 
change of the proposed TZS+DMRMap+Scaling compared to 
TZS.  As far as TZS+DMRMap+Scaling concerned, 42.61% 
to 63.06% coding time can be saved in various sequences.  
Meanwhile, the coding efficiency almost has no loss in terms 
of BD-PSNR and BD-rate (0.14% increment). The above 
result indicates that the proposed DMRMap-based ASR 

TABLE IV 
BJONTEGAARD (BD) MEASUREMENT AND CODING TIME CHANGE OF TZS+LSMF, TZS+MLELD, TZS+LAMASR AND TZS+DMRMAP+SCALING FOR ASR 

AGAINST TZS IN HEVC 
 

Seq. QP 

TZS TZS+LSMF [43] TZS+MLELD [40] TZS+LAMASR [44] TZS+DMRMap+Scaling 

PSNR 
(dB) 

Bitrate 
(kbps) 

Δtime 
(%) 

BD-PSNR 
(dB) 

BD-rate 
(%) 

Δtime 
(%) 

BD-PSNR 
(dB) 

BD-rate 
(%) 

Δtime 
(%) 

BD-PSNR 
(dB) 

BD-rate 
(%) 

Δtime 
(%) 

BD-PSNR 
(dB) 

BD-rate 
(%) 

720p                

B
al

lo
on

s 37 38.36 337.13 

-12.07 -0.01 +0.11 -15.48 -0.01 +0.14 -14.24 0.00 +0.02 -48.92 0.00 -0.01 
32 41.24 594.51 

27 43.56 1171.83 

22 45.46 3131.69 

K
en

do
 

37 39.64 372.91 

-16.90 0.00 +0.03 -17.46 0.00 +0.12 -25.92 -0.01 +0.30 -50.14 0.00 +0.13 
32 42.27 655.30 

27 44.44 1238.99 

22 46.29 2901.65 

L
ov

eb
ir

d1
 37 34.32 164.99 

-19.75 -0.01 +0.14 -29.30 -0.01 +0.26 -37.90 0.00 +0.02 -63.06 0.00 +0.10 
32 37.22 353.52 

27 40.30 831.54 

22 43.64 2073.03 

N
ew

sp
ap

er
 37 35.71 242.02 

-21.80 -0.02 +0.34 -26.98 -0.02 +0.45 -22.34 0.00 +0.13 -54.50 -0.01 +0.24 
32 38.44 452.42 

27 41.09 960.82 

22 43.80 2710.81 

1080p                

P
oz

na
n 

_S
tr

ee
t 

37 35.09 462.86 

-14.89 -0.01 +0.16 -22.98 -0.01 +0.30 -21.36 -0.01 +0.64 -56.63 -0.01 +0.23 
32 37.47 1144.32 

27 39.94 4223.44 

22 43.24 24864.72 

P
oz

na
n 

_H
al

l2
 

37 39.56 238.55 

-28.10 0.00 +0.22 -39.54 0.00 +0.04 -31.37 0.00 0.00 -54.25 0.00 +0.14 
32 41.07 502.38 

27 42.24 1562.84 

22 44.24 13723.17 

U
nd

o 
_D

an
ce

r 

37 32.99 1532.64 

-5.70 -0.01 +0.17 -12.82 -0.01 +0.15 -5.98 -0.02 +0.58 -55.56 -0.01 +0.19 
32 35.75 4327.77 

27 39.01 11262.33 

22 42.68 25270.98 

G
T

_F
ly

 37 35.78 1169.20 

-26.96 0.00 +0.02 -20.29 0.00 +0.01 -30.14 0.00 +0.09 -42.61 0.00 +0.12 
32 38.41 3040.38 

27 41.08 7481.00 

22 43.84 16976.31 

Average: -18.27 -0.01 +0.15 -23.11 -0.01 +0.18 -23.66 -0.01 +0.22 -53.21 0.00 +0.14 
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algorithm is well compatible with the fast search strategy in 
HEVC and provides up to around 53.21% time saving on 
average with only negligible loss in BD measurements. 
Besides, Table IV also shows the results when LSMF in [43], 
MLELD in [40], and LAMASR in [44] are used in TZS for 
ASR determination as denoted by TZS+LSMF [43], 
TZS+MLELD [40], and TZS+LAMASR [44], respectively. 
On average, TZS+DMRMap+Scaling attains a better BD 
performance comprising 0.01dB BD-PSNR gain and a range 
from 0.01% to 0.08% BD-rate decrement compared to others. 
As shown in Table IV, TZS+DMRMap+Scaling can reduce 
more coding time from 29% to 34%. It shows that an accurate 
ASR determination by TZS+DMRMap+Scaling is very crucial 
in the fast search ME process. The above experimental results 
demonstrate the proposed ASR scheme based on the temporal 
correlation of depth/motion relationship maps and the 3D-to-
2D projection can figure out a more precise range for ME. As 
a result, motion vectors are obtained quickly. 

D. Influence of Q on DMRMap Accuracy 

In the following, we discuss the influence of the 
quantization factor Q on the performance of the proposed 
DMRMap-based algorithm. As mentioned in Section III-A, Q 
is used to absorb depth variation in DMRMap construction 
due to the noise of a depth map.  Fig. 15 illustrates two 
DMRMaps using different Q.   For the example in Fig. 15(b) 
where Q = 16, group A is exactly equivalent to group A1 and 
group A2 (Q = 8) in Fig. 15(a) with the same largest motion 
vector. It implies that the DMRMaps using Q = 8 and Q = 16 
will not affect the accuracy of the mapping processing. In 
contrast, group B1 and group B2 in Fig. 15(a) of  Q = 8 
associate with different largest motion vectors while they are 
combined to group B in Fig. 15(b) of Q = 16.  It means that a 
large search range is required for large Q, but has a chance to 
achieve better BD-rate in this scenario. It is also the tradeoff 
between the computational complexity and BD performance 
of the proposed FS+DMRMap+Scaling.  The evidence can be 
seen in Table V where the performances in terms of the BD 
measurement and the coding time change for various Q are 
shown.  As expected, the complexity reduction increases as Q 
decreases for all sequences.  Nevertheless, it only shows little 
variation for nearly all sequences, except “Balloons” and 
“Undo_Dancer”.   

It is interesting to note that the depth map of 
“Undo_Dancer”, as shown in Fig. 16(a), is different from most 
of other sequences. Its depth map is computer generated 
sequence using 3D models and its depth map is ground truth 
without noise.  Besides, the dancer contains diverse motion 
activities in different parts of his body, as shown in Fig. 16(b) 
to Fig. 16(e).  However, these different parts of his body have 
very close depth values.  The quantization process in the 
construction of DMRMap might merge parts with different 
motions of the hand, leg and head into one group if Q is large, 
which leads to the increase in the computational complexity of 
“Undo_Dancer”, as shown in Table V.  It also happens in 
“Balloons” where the balloons in the foreground have similar 
depth values, but diverse motions. In conclusion, for 

sequences having noiseless depth maps and complicated 
motion with similar depth value, it is beneficent to adopt small 
Q for the DMRMap construction. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed an efficient ASR algorithm 
for HEVC to reduce the computational complexity of ME by 
exploiting the temporal correlation between the depth map and 
motion in texture. The new depth/motion relationship map 
(DMRMap) is then established, and is interpreted to control 
the ASR for each block. DMRMap builds the linkage on the 
same object among consecutive frames which reflects the 
probable range of movements for the object. Based on this, a 
depth intensity mapping is contrived to form an asymmetric 
search range for ME. It results in reducing unnecessary search 
points in ME. Furthermore, the impact of the depth intensity 
variations of the block in 3D-to-2D projection on ASR has 
been analyzed. By taking this into account, a scale factor has 
been proposed to comply with the impact of 3D-to-2D 
projection. The proposed DMRMap could be jointly worked 
with FS and other fast search algorithms such as TZS in 
HEVC for complexity reduction. Simulation results 
demonstrated that the proposed DMRMap-based ASR 
algorithm is able to reduce up to 53% of average coding time 
among various sequences in fast ME algorithms. In the 
meantime, the coding efficiency can be maintained compared 
to FS and TZS in terms of the BD measurement.  

 
Fig. 15.  DMRMaps with various Q, (a) Q = 8, and (b) Q = 16, in 
“Undo_Dancer”. 
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In the future, some effective and efficient ways to determine 
the quantization factor in DMRMap construction will be 
studied.  As mentioned in Section VI-D, it depends on the 
noise level of depth maps, the amount of complicated motion 
activities in a same object, the diversity of motion activities in 
different objects with similar depth values, etc. A challenging 
research topic is to generalize our DMRMap under different 
kinds of depth maps by a sequence-dependent quantization 
factor.  This could be a point for our immediate future work. 
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