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ABSTRACT 

We report our recent studies on the use of Neural 
Networks to process the measured Brillouin gain 
spectrum (BGS) from Brillouin Optical Time Domain 
Analyzer (BOTDA) and extract temperature information 
along fiber under test (FUT). Artificial Neural Network 
(ANN) is trained with ideal Lorentizian BGS before it is 
used for temperature extraction. Its performance is 
evaluated by comparison to conventional curve fitting 
techniques, showing better accuracy especially at large 
frequency scanning step during the acquisition of BGSs. 
We have also applied advanced hierarchical Deep 
Neural Network (DNN) in BOTDA for temperature 
extraction to improve the training and testing efficiency. 
We believe that ANN/DNN can be attractive tools for 
direct temperature or strain extraction in BOTDA 
system with high accuracy. 

Keywords: Distributed fiber sensor, Stimulated 
Brillouin scattering, BOTDA, neural networks 

1. INTRODUCTION

Intensive research efforts have been made in distributed 
Brillouin fiber sensors during the past two decades. 
Among them, Brillouin Optical Time-Domain Analyzer 
(BOTDA) has attracted much research interest due to 
its promising properties for temperature and strain 
monitoring [1]. In BOTDA the local Brillouin Gain 
Spectrum (BGS) is reconstructed by scanning the 
frequency offset of a continuous wave and a pump 
pulse around Brillouin frequency shift (BFS) when they 
are counter-propagating inside fiber under test (FUT), 
and the local BFS and hence the temperature and/ or 
strain information are determined accordingly. 
However, due to the noise on the measured BGSs, the 
determination of BFS is not such easy. Curve fitting 
methods, e.g. Lorentzian curve fitting (LCF) and 
quadratic curve fitting, are usually adopted to estimate 
the BFS [2, 3]. However, the BFS accuracy by curve 
fitting techniques depends on the proper setting of 
initial parameters and it could lead to poor estimation if 
the initializations are far away from the expected values 

[2, 4]. Moreover, the data points collected on the BGS 
should be as many as possible to ensure the fitting 
accuracy. 

Recently we have applied the Artificial Neural 
Network (ANN) in a BOTDA system and has 
successfully extracted temperature distribution from the 
measured BGSs [5]. Neither curve fitting process nor the 
BFS determination are needed. The training makes ANN 
learn the knowledge of the BGS patterns under different 
temperatures, thus it allows better accuracy even if the 
data points collected on BGS become fewer. To 
improve the training and testing efficiency, we further 
replace ANN by more advanced hierarchical Deep 
Neural Network (DNN) in BOTDA to extract 
temperature [6]. In this paper, we will review our work 
on using ANN/DNN for temperature extraction in a 
BOTDA system.  

2. TEMPERATURE EXTRACTION BY
ARTIFICIAL NEURAL NETWORK

Fig. 1 (a) plots a typical ANN structure with input, 
hidden, and output layers, which are interconnected by 
neurons with different weights. Oi, Oj and Ok are the 
outputs of ith, jth and kth neurons in the input, hidden 
and output layers, respectively. wij and wjk are 
connecting weights among different layers. Fig. 1(b) 
shows the two independent training and testing phases 
required for ANN to extract temperature from the BGSs 
measured by BOTDA. In the training phase, a number 
of known BGS-Temperature (BGS-T) pairs are used as 
the input-output patterns to optimize the connecting 
weights in ANN before temperature extraction. The 
optimization is realized by back-propagation (BP) 
algorithm [5]. The training of ANN by BP algorithm 
starts with random initial weights and is repeated until 
the pre-defined target error is satisfied for all the known 
BGS-T pairs. After the training is finished, the local 
BGSs measured by BOTDA are fed to the ANN input 
layer and the temperature distribution along FUT is 
directly obtained at the ANN output layer. 

We construct ideal Lorentzian BGSs as the known 
BGS-T pairs for ANN training in the following way: 
the BFS at each T is determined using the calibrated 
BFS temperature coefficient of ~0.92924 MHz/oC for 
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Fig. 1. (a) Structure of typical feed-forward ANN with one hidden 
layer; (b) training and testing phases of ANN to extract temperature 
information from BGS. 
 
our FUT; the temperature range is from 10 oC to 70 oC 
with 1 oC step and under each temperature the linewidth 
of the ideal BGSs with the same BFS transverses values 
from 25 to 70 MHz with 1 MHz step in order to 
minimize the linewidth variation effect along FUT; the 
frequency range and step for the ideal BGSs are the 
same as the frequency scanning range and step in the 
experiment. In the testing phase, we use a conventional 
BOTDA setup for BGSs acquisition, where 40 ns pump 
pulse, 2000 times averaging and frequency scanning 
steps of 1, 2, 5, 10, 15 and 20 MHz are adopted, 
respectively. The collected BGSs are processed by 
ANNs with optimal weights for those frequency steps 
to directly extract temperature information. A 41 km 
long FUT is used in our demonstration and the last 50 
m section is put into the oven.  

Fig. 2 shows the temperature distribution along the 
FUT extracted by ANN when the oven is set at different 
temperatures. We can see that the extracted 
temperatures for large scanning steps are almost the 
same as those for 1 MHz scanning step, indicating the 
performance of ANN does not degrade much at large 
frequency scanning steps, unlike the case using LCF. 
Quantitative comparison of the ANN and LCF 
performance is given by calculating the Root Mean 
Square Error (RMSE) and Standard Deviation (SD) of 
the temperature extracted by ANN and LCF, 
respectively. The RMSE is calculated along the last 50 
m fiber heated to 29.90oC, while the SD is obtained 
near the end of the FUT. The results are depicted in Fig. 
3. As the RMSE and SD have similar trend, we use 
RMSE as an example in the following description. At 
each frequency scanning step the ANN provides smaller 
RMSE than LCF does, which means the extracted 
temperature using ANN is more closer to the value 
displayed on the thermometer. As the frequency 
scanning step increases, the RMSE using LCF degrade 
much more quickly than that using ANN, e.g. the 
RMSE using ANN at 15 MHz scanning step is even 
smaller than that using LCF at 5 MHz scanning step. It 

 
Fig. 2. Temperature distribution along FUT by ANN when the oven is 
set at (a) room temperature ~21 oC, (b) 29.90oC, (c) 39.14oC and (d) 
48.63 oC; inset: zoom-in view from 40.9 km to 41 km [5]. 
 

 
Fig. 3. (a) RMSE of the temperature calculated within the last 50 m 
fiber heated to 29.90 oC; (b) SD of the temperature calculated near the 
end of FUT [5]. 
 
implies that using ANN to extract temperature under 
large scanning step for BGS collection is even more 
accurate than that using LCF under small scanning step 
for BGS collection. In other words, BOTDA using 
ANN for temperature extraction can employ large 
frequency scanning step to reduce the data acquisition 
time but still maintain better accuracy compared to 
those adopting small frequency scanning step with LCF 
for temperature extraction. Therefore, by adopting large 
scanning step, BOTDA systems using ANN for 
temperature extraction can significantly reduce the 
measurement time but without much sacrifice of the 
sensing accuracy. 
 

3. TEMPERATURE EXTRACTION BY DEEP 
NEURAL NETWORK  

 
In order to improve the training and testing efficiency, 
we further apply more advanced hierarchical Deep 
Neural Network (DNN) in BOTDA to replace ANN for 
temperature extraction. As DNN can learn the features 
 

 
Fig. 4 Typical structure of DNN with two autoencoder hidden layers.  
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of the input data automatically through a feature 
learning process, it is more easier to design and train 
than ANN, especially when the relationship between 
input and output is complicated. Fig. 4 shows a typical 
DNN structure with two autoencoder hidden layers. The 
function of autoencoder hidden layers is to extract 
features from the input of the previous layer to 
represent the input and hence compress the data size for 
processing. Each hidden layer is trained individually 
with given activation functions and initial values of 
weight vectors, where the input features are extracted 
by autoencoders and serve as the input to the next 
hidden layer. The output layer is trained in a supervised 
way using the features from the last hidden layer and 
the target output vector. After the individual training of 
hidden layers and output layer, the fine tuning of the 
whole DNN structure is performed by using the known 
input-output pairs in BP algorithm. We use the 
following parameters to obtain ideal Lorentzian BGS-T 
pairs for DNN training: the BFS temperature coefficient 
of 0.974968 MHz/oC for the FUT, the temperature 
range from 0 oC to 100 oC with 0.1 oC step, the 
linewidth range of the ideal BGSs from 40 to 70 MHz 
with 1 MHz step, and the frequency range from 10.760 
to 11.010 GHz with frequency step of 1 MHz. In the 
testing phase, the BGSs are collected by BOTDA where 
20 ns pump pulse, 1000 times averaging and 38.46 km 
FUT with last 607 m section put into the oven are used. 
The collected BGSs are processed by DNN to directly 
extract temperature information. Fig. 5 shows the 
temperature distributions extracted by DNN along the 
whole FUT and near the heated section when the last 
607m section is heated to 30, 40, 50, 60 and 70 oC, 
respectively. As an example, when the last section is 
heated to 40 oC, the RMSE and SD of the temperature 

 
Fig. 5 (a) Temperature distribution along FUT by DNN when the last 
607m section is heated to 50oC; (b) zoom-in view of temperature 
distribution around last 2km section by DNN when the last 607m 
section is heated to 30, 40, 50, 60 and 70 oC, respectively [6].  

extracted by DNN are calculated to be 0.6733 oC and 
0.6094 oC. For comparison, the two values by LCF are 
0.7015 oC and 0.6172 oC, respectively. We can see that 
the accuracy of temperature extraction using DNN is 
comparable to that of LCF when the frequency scanning 
step is 1 MHz, which agrees well with the case of ANN. 
Like ANN when the frequency scanning step is 
increased, the DNN will outperform LCF as DNN is an 
advanced type of ANN. 
 

4. CONCLUSION 
 
We have reviewed our recent work on the use of 
ANN/DNN to extract distributed temperature 
information from the BGSs measured along FUT by 
BOTDA. The ANN/DNN are trained using ideal 
Lorentzian BGS-T pairs before used for temperature 
extraction. At large frequency scanning step, 
temperature extraction using ANN/DNN has better 
accuracy than that using LCF. The BOTDA using 
ANN/DNN for temperature extraction can adopt large 
frequency scanning step to reduce the measurement 
time without much sacrifice of accuracy. Therefore 
ANN/DNN are potential for direct temperature or strain 
extraction in BOTDA system with high accuracy and 
fast speed. 
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