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Abstract—Indoor Positioning Systems should be able to
locate an object or person in a dynamic environment. In
this research work, we present experimental results when
performing indoor positioning in a dynamic environment
when using channel frequency response as the indoor
location’s fingerprint. Dynamic environments introduce
varying channel frequency responses for a given indoor
location, which makes it difficult to locate desired indoor
objects. According to our experiments, we find that
indoor fingerprints become uncorrelated within a 15-min
window. To bridge the gap between daily fingerprints,
we propose three quick remedies in updating the CFR
database. These updates allow indoor localization even
in the presence of dynamic environmental changes (e.g.,
people movement, interference of other wireless signals,
etc.) and are able to 100% localize indoor locations
separated by at least five (5) centimeters. We highlight
that in the experiments, there is only one anchor node
used to estimate the desired indoor location.

Index Terms–Indoor Positioning, Channel Frequency
Response, Dynamic Environment, Fingerprint Averaging

I. INTRODUCTION

Global Positioning System (GPS) cannot be em-
ployed for locating a point of interest in an indoor
environment since satellite signals do not penetrate
walls very well [1]. Instead, Indoor Positioning System
(IPS) is developed to address the accurate, reliable and
real-time localization of static or mobile person, or
device [2] with the aid of wireless communication in-
frastructures, specifically the WLAN IEEE 802.11 tech-
nology [3] in an indoor environment. Others combine
this wireless technology with ultrasonic sensors [4] and
Bluetooth [5]. Various applications of IPS can be found
in robotic indoor surveillance [6], navigation assistance
for the disabled [7], and indoor people tracking and
monitoring [8]. Indoor positioning systems are termed
in as automatic object location detection in [9]. With
the emergence of gadgets capable of communicating
with each other through wireless technology, thus, de-
veloping the Internet of Things (IoT), indoor positioning
is playing an important role in sharing location and

other pertinent information for better service and user
experience.

Modeling radio propagation in an indoor environment
is difficult to obtain due to the presence of multi-
path, non-line-of-sight conditions and indoor parameters
such as room layout and moving people. Triangula-
tion, scene analysis and proximity are three commonly
used measuring principles and positioning algorithms.
Triangulation uses geometric properties for target es-
timation from measuring the received signal strength
(RSS), time of arrival (TOA) or time difference of ar-
rival (TDOA). Scene analysis or location fingerprinting
relies on collecting desired indoor location features.
These features are called fingerprints and stored in a
database. Like human fingerprints, these features are
unique characteristics of a given indoor location. Thus,
scene analysis estimates the target location by matching
the online measurements to those measured in real
time. Finally, proximity techniques work like cellular
networks in estimating the targets location. A mobile
handset location is approximated by knowing which cell
site is used at a given time. This technique obviously
relies on the dense deployment of antennas in known
positions.

TABLE I
COMPARISON OF IPS TECHNOLOGIES [10]

Tech- Existing Min Low Res. Res. Commercial
nology Hardware? Anchors Cost? LOS (m) NLOS (m) Examples

iBeacon,
Active RFID,

RSSI YES 3 – 1–3 5–10 SPIRIT
Navigation,

Modulated LEDs
UWB,
Zebra,

TOA NO 3 NO 0.2–0.4 1–5 Decawave,
TDOA Time Domain,

Nanotron
AOA YES 2 – 0.4 1–5 None
Time YES 1 YES 0.02 0.02 Origin

Reversal Wireless

Indoor positioning systems are evaluated in terms of
accuracy, precision, complexity, scalability, robustness
and cost. Table I summarizes the most common tech-
nologies used in indoor positioning and emphasizes the
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resolution achieved under the line-of-sight (LOS) and
non-line-sight (NLOS) conditions.

The Time Reversal technique uses only a single an-
chor to implement fingerprint analysis based on Channel
Frequency Response (CFR). The collected fingerprints
are matched to those stored in the database to determine
the estimated location. This technique can localize an
object up to the centimeter-level.

This research work implements CFR collection and
processing as described in [11]. However, we found
out through experiments that a dynamic environment
greatly impacts the CFR of an indoor location, which
is in contrast to the results in [11].

Overall, the major contributions of this paper are as
follows:

1) When using only one anchor point for localiza-
tion, the effects of a dynamic environment on
CFR collection are highlighted, e.g., fingerprint
correlation between the same indoor location is
at a low level and bandwidth increase does not
necessarily improve indoor detection accuracy.
These variations in the collected CFRs makes it
impractical to use them in Time Reversal-based
indoor positioning systems.

2) Having the effects of a dynamic environment
in mind, three quick remedies are proposed to
further improve CFR-based fingerprint matching
for more robust indoor localization. These meth-
ods, in effect, transform a dynamic environment
into a quasi-static environment, making the Time
Reversal technique still applicable for indoor lo-
calization.

This paper is organized as follows: Section 2 briefly
discusses the experimental setup and how fingerprints
are processed. Section 3 presents the results and dis-
cussion obtained from the experiments. Section 4 then
proposes three elementary improvements for better lo-
calization. Finally, this paper is concluded in Section
5. Future research directions are also discussed in this
section.

II. EXPERIMENTAL SETUP

The experimental setup in obtaining the desired CFR
fingerprint of a target indoor location is shown in Figure
1. Two Universal Software Radio Peripheral (USRP)
N210s, each employing single antenna, are used as the
anchor point (AP) and targeted indoor location (IL) in
the experiments. The fingerprints to be collected are
the Channel Frequency Responses (CFRs) [11]. Figure
2 illustrates the grid showing where the 10 Indoor
Locations (IL) are situated. Adjacent ILs are separated
by 5 cm.

The parameters used in the experiments are given in
Table II. The length of the cyclic prefix, Ng , is 16. There
are N = 64 subcarriers with 53 usable subcarriers. The

Fig. 1. Experimental Setup for Fingerprint Collection of Desired
Indoor Locations.

Fig. 2. Positions of the 10 Indoor Locations (IL) where the CFRs
were obtained.

total length of the OFDM frame, Ns, is 80 which is
equivalent to N +Ng .

TABLE II
INDOOR LOCALIZATION EXPERIMENTAL SETTINGS

Setting Value
Tx/Rx Gain 15/15 dB

Sampling Rate Tx/Rx 12.5 MHz
Frequency Band 2.51 – 2.61 GHz

Number of Channels Used 11
Channel Bandwidth 10 MHz

In obtaining the CFR database measurements, the
USRPs are set to a frequency and capture the channel
response depending on the desired number of measure-
ments before switching to the next center frequency.
There are 11 center frequencies used in the experiment
each with an effective bandwidth of 10 MHz. In the
experiments, the frequency band is swept from 2.51 –
2.61 GHz, effectively having a total bandwidth of 110
MHz.

When collecting the CFRs, the transmitter USRP
is turned ON before the receiver USRP. The receiver
USRP receives the signal for a few seconds so that
not too much data are stored. On average, using the
12.5 MHz sampling rate, a 5-second received signal
approximately needs 200 MB of storage. For each saved
file, the first and second long training preambles defined
in the OFDM signal are used to estimate the channel



and extract the CFR.
Figure 3 shows a sample processed channel frequency

response from USRP IL to USRP AP. The raw data are
compensated by mitigating the carrier frequency offset
(CFO), symbol frequency offset (SFO) and symbol
timing offset (STO). The CFO is due to the oscillator
inaccuracies between the transmitter and receiver os-
cillators, while the SFO is introduced by the sampling
interval mismatch at the transmitter and receiver. STO,
on the other hand, is caused by the receiver’s imperfect
timing synchronization [11].

For each of the L = 10 locations, we collect 10 CFR
measurements, where five will be stored in the database
and the rest will be used as the online measurements
that are to be localized. These CFR measurments are
sanitized, sifted, averaged, and concatenated according
to the steps provided in [11].

Fig. 3. Processed CFR (IL → AP) at location 1.

To determine whether a fingerprint belongs to any of
the target indoor locations, we use the Time Reversal
Resonating Strength (TRRS) [11] defined by:

η[Ĥ, Ĥ′] =
|
∑K

k=1 Ĥuk
Ĥ ′uk
|2

〈 Ĥ, Ĥ〉〈 Ĥ′, Ĥ′〉
(1)

where Ĥ = [Ĥu1 , Ĥu2 , · · · , ĤuK
]T and Ĥ′ defined

similarly the processed real-time and online CFRs,
respectively. To determine which location the finger-
print under test corresponds to, define l∗ = arg max

l=1,2,··· ,L
η[Ĥ[l], Ĥ′[l′]]. The estimated location index L′ is

L′ =

{
l∗ if η[Ĥ[l∗], Ĥ′[l′]] ≥ Γ

0 Otherwise
(2)

When l∗ is obtained and found to be greater than
or equal to the tunable variable Γ, we say that indoor
localization is achieved for the fingerprint under test and
this estimated location index is denoted as L′.

III. RESULTS AND DISCUSSION

The experimental setup shown in Figure 1 is situated
in one of the laboratory rooms in the university. We
collected fingerprints (CFRs) on these 10 locations from
May 8 to May 17, 2017. In this interval, research
students are going into the office and using different
equipment during weekdays. On weekends, there are
few or no people working in the lab and functioning
devices.

The fingerprints that are collected used bandwidths
equal to 60 MHz and 110 MHz. From the collected CFR
measurements, the TRRS η’s are calculated using (1).
Figure 4 illustrates the obtained TRRS from testing and
training fingerprints, with a separation of 10 seconds of
each other, on a Sunday. Indoor positioning for the said
day is achieved by setting the over-all tunable values of
Γ ≥ 0.54 and 0.55 when using 60- and 110-MHz CFRs
respectively. These show that target locations separated
by 5 cm can be distinguished.

Due to the dynamic nature of the environment, we
observe that extending the bandwidth from 60 MHz to
110 MHz does not necessarily translate to a better lo-
calization via TRRS. This finding is verified in the other
nine days. However, one thing consistent is that the off-
diagonals from this dataset tends to decrease when there
is more bandwidth. The additional bandwidth introduces
more of the environment’s dynamics, thus, lowering the
similarities between CFR measurements, even for the
same indoor location.

TABLE III
TRRS VALUES OBTAINED FROM THE 10-DAY

EXPERIMENT USING BW = 110 MHZ

Day Main Diagonal Off-Diagonal Γ Values for
TRRS Values TRRS Values Localization

May 8, 2017 0.45–0.94 ≤ 0.37 ≥ 0.45
May 9, 2017 0.39–0.89 ≤ 0.47 —

May 10, 2017 0.26–0.88 ≤ 0.35 —
May 11, 2017 0.29–0.89 ≤ 0.37 —
May 12, 2017 0.54–0.92 ≤ 0.36 ≥ 0.54
May 13, 2017 0.52–0.92 ≤ 0.39 ≥ 0.52
May 14, 2017 0.55–0.91 ≤ 0.33 ≥ 0.55
May 15, 2017 0.23–0.96 ≤ 0.32 —
May 16, 2017 0.49–0.97 ≤ 0.38 ≥ 0.49
May 17, 2017 0.44–0.92 ≤ 0.39 ≥ 0.44

Table III summarizes the indoor localization TRRS
measurements for the 10-day experiment when using
a 110-MHz bandwidth. For each day, there is a wide
range of TRRS values that should be used to locate an
indoor position (see Main Diagonal Values), while there
are days where localization cannot be achieved since the
Off-Diagonal values coincide with the Main Diagonal
values, e.g. May 9–11, and 15, 2017. On these days,
only one indoor location is difficult to localize and the
TRRS value is the lower bound of the Main Diagonal
TRRS values of each respective day.



Fig. 4. TRRS matrices of fingerprints with (a) 60 MHz and (b) 110 MHz Bandwidths when CFRs are taken on a Sunday, May 14, 2017.

Each column of the TRRS matrix is the similarity
measure between the online and stored CFRs. To deter-
mine the suitable Γ value for positioning, we first obtain
the maximum TRRS in each column. Among all these
maximum TRRS values, we identify the minimum one
and set this to be the Γ value for localization.

The daily CFRs are compared with each other to
test the indoor locations’ stationarity during the 10-
day interval. The average TRRS ηave of the 10-day
CFRs is shown in Figure 5. It is evident that there is
no channel stationarity. Therefore, the difference in the
environment gives rise to quite different CFRs to be
used for positioning. We also highlight that there are
no two days that exhibited a high correlation between
them, even when two same days are compared, e.g. May
8 and May 15, 2017, which are both Mondays.

Fig. 5. Average TRRS matrix of the fingerprints obtained from May
8–17, 2017.

Brought about by this finding, we collected one
indoor location’s fingerprints every 15 minutes for two
(2) hours to investigate how channel stationarity varies

over time. This is illustrated in Figure 6. We observe
that channel stationarity is not achieved because of the
low correlation between measured CFRs. This justifies
the results shown in Figure 5. To achieve stationarity
so that TRRS can be used for indoor positioning, CFRs
must be measured in short intervals (seconds interval),
just like what was done to obtain Figure 4.

Fig. 6. TRRS matrix of IL 8 when each of its CFR fingerprints is
obtained every 15 minutes.

IV. QUICK REMEDIES FOR ELIMINATING THE
EFFECT OF THE DYNAMIC ENVIRONMENT

From Figures 5 and 6, we saw that an indoor location
exhibiting stationarity is hard to establish, thus, there is
a need to update the fingerprint database to ensure that
localization can still be achieved with a possibly high
value of TRRS η even though there may be changes in
the environment.

We implement three quick remedies for improving
the indoor localization scheme on a daily basis, namely
(1) Continuous Fingerprint Appending (CFA), (2) Fin-



Fig. 7. TRRS matrix derived using Method (a) Continuous Fingerprint Appending, (b) Fingerprint Averaging and (c) Weighted Fingerprint
Averaging.

gerprint Averaging (FA), and (3) Weighted Fingerprint
Averaging (WFA).

In the CFA method, the latest fingerprint after tested
for localization is automatically added to the current
database. The localization is determined by getting the
maximum among all TRRS η’s, i.e.

l∗ = argmax{η1[Ĥ1[l], Ĥ′[l′]], · · · , ηM [ĤM [l], Ĥ′[l′]]}
(3)

where M is equal to the total number of fingerprints
which are already stored in the database.

We present M = 9 fingerprints already stored in the
database and a 10th fingerprint is to be matched. The
TRRS’s ηi=1,··· ,9 between the stored fingerprints and
the new fingerprint are calculated. Equation (3) is then
used for all the TRRS η1, · · · , η9. This is shown in
Figure 7 (a).

CFA allows the database to grow by storing newly ac-
quired fingerprints after localization while retaining the
older fingerprints. Possible applications of this method
in indoor localization are:

1) Fingerprint data size is in the range of KB or
a few MB. For the 10 locations, the testing or
training dataset size is approximately equal to 100
KB (Matlab *.mat file size).

2) Targeted indoor locations are only a few. For
example, in an indoor location of size 100 cm
by 100 cm, only 10% is of critical importance.
Outdated fingerprints that have been kept for a
long time can also be removed.

If storing new fingerprints to the database will be
a disadvantage or if there are many possible indoor
locations to be tracked, such that data storage becomes
critical, then averaging the fingerprints is considered.
FA and WFA can overcome this disadvantage. Averag-
ing the fingerprints using FA is done by:

ĤM =
Ĥ1 + · · ·+ ĤM

M
(4)

On the other hand, averaging the fingerprints using
WFA is done by:

ĤM =
ĤM

2
+ · · ·+ Ĥ1 + Ĥ0

2M
(5)

Localization for FA and WFA becomes:

l∗ = argmax{η[ĤM [l], Ĥ′[l′]]} (6)

The FA and WFA propositions allow storing fin-
gerprints by using a data size equivalent to a single
fingerprint data size. Since for the 10 locations above
consume approximately 100 KB each, then averaging
the old and new fingerprints will also approximately
need this much of space. Unlike FA that gives equal
weights to all fingerprints, WFA gives more significance
to the most recent fingerprint. This is done to allow
storing the most recently acquired environment changes.
Localization when using the averaging methods is
shown in Figure 7 (b) and (c).

CFA and WFA allow perfect localization with Γ ≥
0.46, while FA suffers from incorrect estimation at some
indoor locations, e.g. location 5 and 10.

For the three methods stated above, we compare each
TRRS to the ideal localization results, i.e. a square
matrix I where the main diagonal is equal to 1 and
the off-diagonals equal to zero. A “1” means there is
a perfect localization via the spatial-temporal focusing
effect [12] and a “0” means otherwise. The mean-square
error (MSE), given below, is obtained.

MSE =
1

λ

L∑
i=1

L∑
j=1

(Ii,j − ηi,j)2 (7)

where, for all elements, ∀i and ∀j, λ = L2, for diagonal
elements only, i = j, λ = L, and for off-diagonals, i 6= j,
λ = L2 − L. The resulting MSEs are shown in Table
IV.

Between the averaging methods (FA and WFA),
WFA provides the least MSE during localization. This



TABLE IV
COMPARISON OF THE THREE METHODS USING MSE

Method All Elements Diagonal Off-Diagonal
CFA 0.0604 0.0670 0.0597
FA 0.0708 0.1678 0.0600

WFA 0.0463 0.0664 0.0441

implies that the target and non-target indoor locations
can be discriminated from each other while using only
weighted-averaged fingerprints.

On the other hand, CFA performs better than FA since
all fingerprints are stored in the database. There is a high
probability that one of those fingerprints is a replica of
the fingerprint currently being tested for localization.

Also, we highlight that in CFA, the total required
storage is 1 MB since there are 10 stored fingerprints,
each requiring 100 KB. For FA and WFA, only 100
KB is needed for storing the averaged fingerprints
for all positions. CFA will also suffer to a longer
processing time when compared with the other two
methods for improving indoor localization since it needs
to compute for M TRRS. For this experiment, using an
Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz for post-
processing the CFRs, the processing times are shown
in Table V.

TABLE V
ELAPSED COMPUTATIONAL TIME FOR THE THREE QUICK

REMEDIES

Method Processing Time (in seconds)
CFA 0.031381
FA 0.001567

WFA 0.010787

V. CONCLUSION AND FUTURE WORK

In this work, we have been able to verify indoor
localization of target locations separated by five (5) cm
using the Channel Frequency Response (CFR) as the
location’s fingerprint. However, we found out through
experiments that indoor location stationarity is difficult
to achieve due to the dynamics of the environment. It
has been shown that a minutes-interval depicts the non-
stationarity of the environment.

From these findings, we have presented three quick
remedies to provide robust localization when CFRs are
collected in seconds-interval. CFA allows instantaneous
updates of location fingerprints, but requires more data
storage and processing time. FA and WFA update
the location fingerprint by averaging the fingerprints
and assure that there is an up-to-date indoor location
fingerprint, especially FWA since more than 50% of
the averaged value come from the latest fingerprints.

In the future, we will explore how to extract distinct
features of an indoor location using deep learning or
nonlinear processing techniques. The features extracted

are the fingerprints for that indoor location even if there
will be uncontrollable environment changes introduced,
such as people walking around and rearrangements in
the indoor setup.
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