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Abstract—In this paper, we propose a novel method called
supernode graph structure representation to model the public
transport network structure of the London city. Supernode
is a set of geographically closely associated nodes. Using the
supernode graph structure, the bus transport and the metro
transport network structures are analyzed by treating them as
independent mono-layer or multi-layer network structures. A
method of spatial amalgamation is proposed to integrate the two
transport layers. A set of most influential nodes in the network is
identified by assigning node weight to each node with respect to
both mono-layer and multi-layer analysis. The behavior of these
influential nodes is better characterized by categorizing them as
either emitter, absorber or neutral zones.

I. INTRODUCTION

Public transport networks (PTN) contain multiple layers
of traffic carrying networks such as bus network, subway
or metro network, tram network, ferry network, etc. Existing
works in the analysis of PTNs using graph theory and complex
networks have focused on the analysis of spatial or temporal
network structure either by considering the individual transport
layers or the overall transport layer (mapping the individual
network layers as a single projected network layer). Though
the different transport layers share common features when an-
alyzed as individual mono-layer structures, by understanding
the interconnectedness among different mono-layers, a more
meaningful insight is gained into the overall network structure
and its dynamics. Also, since passengers use multiple transport
modes (on different transport layers) to reach their destina-
tions, it is of practical importance, though rarely considered, to
study the interaction and connectivity between network layers
of different transport modes.

Kivela et al. [1] presented a detailed literature review by
introducing a general framework for the multi-layer analy-
sis of a wide range of networks. They provided exhaustive
mathematical representation and notations for the monoplex
(mono-layer) networks, multiplex (multi-layer networks), in-
terdependent networks, interconnecting networks, networks of
networks, etc. Tomasini [2] followed up on Kivela’s work by
introducing measures for multi-layer analysis in addition to the
measures already introduced for mono-layer analysis in [1].
Zanin [3] discussed the multi-layer nature of the functional
networks by rightly questioning the validity of a single type
of edges endowed on nodes existing at different levels. The
paper demonstrated that the results of the analysis of single
projected layer might yield a biased understanding of the

actual network by comparing with its multi-layer functional
network counterpart.

In the existing studies on PTNs using graph theory, the
networks are represented as regular graphs with nodes rep-
resenting the bus stops and edges representing the routes
connecting the bus stops. Depending on the edge type, the
graph can be modeled in either L-Space, where an edge exists
between two nodes or stops if they are consecutive stops in
a route or P-Space, where an edge exists between all node
pairs that are serviced by a specific route [4]. Although this
approach of PTN analysis using regular graph representation
is simple, it has been extremely successful. However, with
the advancement of research in the complex network analysis,
a representation beyond these simple graphs (e.g., directed,
weighted, bipartite/multipartite etc.) is needed to investigate
the complicated and realistic network behavior. To contribute
to one such representation, in this paper, we propose a novel
approach called supernode graph structure representation to
analyze the PTN structure of the London city. Unlike the reg-
ular graph representation, in supernode graph representation
we combine geographically closely associated nodes based on
a specific criterion, resulting in a more compact representation
which benefits in a more realistic network analysis. To model
the PTN graph in London, we have considered the bus-stops,
overground stops, underground stops and the DLR (Docklands
Light Railway) stops. For the multi-layer PTN analysis, the bus
stops in the city are treated as one transport layer and is termed
as Bus Transport Network (BTN) layer, the underground, the
overground and the DLR stops are treated as the other transport
layer termed as Metro transport (MTR) layer. Initially, the
London PTN structure is represented as a regular graph struc-
ture (in L-Space) which is then modified to supernode graph
structure at individual layers. The two individual layers are
integrated by the proposed method of spatial amalgamation.
A node weight approach is used to assign weights to the nodes
which helps identify highly influential nodes in the network
with respect to both mono-layer and the integrated multi-layer
networks.

II. SUPERNODE GRAPH STRUCTURE REPRESENTATION

A graph G is a set of nodes V and edges E , i.e., G =
(V,E). Considering the spatial analysis of the network, in the
current work, a graph G is represented by G = (V (x, y), E)
where V = {ni (xi, yi) , xi = latitude, yi = longitude} and
E = {eij → (ni (xi, yi) , nj (xj , yj))}. N = |V |, indicates
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(a) (b) (c)
Fig. 1. (a) Spatial location of bus stops and metro stops in the London public transport network, (b) Buffer zone of 500 m around a node in MTR layer
along with the overlapped nodes on BTN layer, (c) BTN, MTR and the coupling/intermediate layer in the analysis of the London PTN.

the network size. In the subsequent sections, for simplicity,
ni(xi,yi) is represented as ni assuming that a particular node
is always identified with its latitude and longitude. An N ×N
adjacency matrix A with entries aij is used to describe the
connectivity between nodes, where aij=1 if there exists a route
between nodes ni and nj , and 0 otherwise. The geographical
locations of the stations are represented in WGS84 datum
standard using ArcGIS tool [5]. Fig. 1(a) shows the spatial
locations of public transport stops in the London city with
20553 nodes and 29561 edges.

In transport network analysis, the inspection of spatial
embedding of nodes has resulted in a new type of network
element called supernode. A supernode is a set of geographi-
cally closely associated nodes which satisfy the condition, dij
< dth, where dij is the geographic distance between two nodes
ni and nj , and dth is a threshold distance. The value of dth
is set to be 100 m in this paper assuming that it is a walkable
catchment to reach a station. The distance dij is evaluated
using the Haversine formula [6]. The set of nodes satisfying
the condition dij < dth are combined to represent a single
node called the supernode. The combining of nodes is not
physical, but is a structural re-organization, which yields in a
compact topological representation and aids in a more practical
network analysis. A Supernode graph structure consists of
regular nodes (V ), supernodes (VS), regular edges (E) and
superedges (ES) i.e., G = (V (x, y), VS(x, y), E,ES), where
VS and ES are given by (1) and (2) respectively.

VS =
{
sni} ∀i = 1, 2, .., NS . (1)

where NS = |VS |, sni =
{
nj , nk}, such that (djk <

dth) i.e., The supernode set (VS) is a set of supernodes
where each supernode is a combination of two or more
regular nodes with a geographic distance less than dth, with
dth = 100 m. If (sni ∩ snj) 6= Ø, then, s̃ni=

{
sni ∪ snj}

i.e., there exists a condition where some nodes are common
to multiple supernodes and such nodes aid in combining
the supernodes together to form a giant supernode (s̃ni),
which is assigned with a unique node ID. The newly formed
supernode is assigned with a new spatial location, which
is the mean location value of the corresponding supernode
elements i.e., sni(xi, yi) =

{
nj(xj , yj), nk(xk, yk)}, where

xi = mean(xj , xk), yi = mean(yj , yk). The superedge set is
defined as

ES =
{
esni,snj ∪ eni,snj} ∀sni, snj ∈ VS , ni ∈ V (2)

Assuming that an edge eij exists between nodes ni and
nj , a superedge can be defined between two supernodes as
esni,snj → (sni, snj)∀(ni ∈ sni, nj ∈ snj), or, a superedge
can be defined between a regular node and supernode as
eni,snj → (ni, snj)∀(ni ∈ V, nj ∈ snj). While defining the
supernode structure, some of the original nodes and self loops
will be eliminated due to the formation of supernodes and
superedges. Thus, using supernode representation, a network
can be structurally defined close to its original network with
a reduced data set.

III. MULTI-LAYER NETWORK

Considering the supernode graph structure generated in
Section II for the BTN and MTR layers, we define the multi-
layer network, M, as follows [2]

M =
(
VM , EM , Ṽ ,L

)
(3)

where Ṽ is the node set containing both regular nodes and
supernodes including all the layers. L = {La}da=1 is the set
of elementary layers defined by d aspects or dimensions such
that there is one elementary layer set La for each aspect d.
For d = 1 (single aspect), the multilayer network reduces
to a mono-layer network. In this paper, d = 2, with an
elementary layer and an additional layer. Also, VM ⊆ Ṽ such
that VM ×L1,×L2× ..×Ld is a node set in a the multi-layer
network M with different layers L1 to Ld. EM ⊆ VM × VM
is the edge set containing both regular edges and superedges
including all the layers. Among the BTN and MTR layers, the
BTN layer is considered the elementary layer since the London
statistics [7] indicate that 54% of the population prefers bus
transport mode for their daily commute and MTR layer is
considered as the additional layer or the supporting layer
with 27% population using metro services. The remaining
18%, who prefers national rail services is not considered
in the analysis since the combined bus and metro services
have covered up to 80% of the daily commuting modes. It
is interesting to observe that, the transport network structures



belong to the category of layer-disjoint multi-layer networks
where each node exists in at most one layer [1].

(ni)α, (ni)β ∈ VM ⇒ α = β (4)

where a node is present either in layer α (i.e., L1 = α)
or β (i.e., L2 = β). The layer-disjoint property signify an
important observation that there exists no edges between the
layers in the actual network structure, and the layers are
normally connected virtually (by a small walking distance)
and not physically. Hence, to integrate the two layers, in this
paper, we employ the method of spatial combining of nodes.
The spatial combining is carried out using the buffer feature
in ArcGIS tool where a geographical area with a radius of 500
m is considered with a node in the MTR layer as a central
point, and the nodes in the BTN layer that overlaps with the
region considered (500 m radius) are extracted as shown in
Fig 1(b). According to the London statistics [8], the walkable
catchment for bus/tram and MTR stations are 400 m and 700
m respectively. In this paper, we consider 500 m as a walkable
distance for interchanging between different transport layers.
The overlapped nodes in the 500 m region around a node
in the MTR layer are the stations that allow passengers to
interchange between the layers and these nodes are treated as
the third layer called the intermediate layer as shown in Fig
1(c). The set of nodes in the intermediate layer is a subset of
the BTN layer which aids in better understanding of the virtual
connectivity between the BTN and MTR layers. The intra-
layer edge sets Eα and Eβ , and the inter-layer or coupling
edge set EC is defined as

Eα =
{
eij} | eij → (ni, nj)α ∀ni, nj ∈ Vα (5)

Eβ =
{
ekl} | ekl → (nk, nl)β ∀nk, nl ∈ Vβ (6)

EC =
{
eik} | eik ↔ (ni, nk), ni ∈ Vzone, nk ∈ Vβ (7)

where α and β are the BTN and MTR layers, respectively; Eα
and Eβ are the edge set of layer α and β, respectively; Vβ
is the node set of layer β; and Vzone is the set of overlapped
nodes in the 500 m zone such that Vzone ⊆ Vα.

IV. NODE WEIGHT ANALYSIS IN MULTI-LAYER
NETWORK

The accessibility of a bus stop by the public is greatly
influenced by the presence of points of interests (POIs)
around the public transport station, proximity of the transport
station to a POI (Public Transport Accessibility Level) and
its connectivity (degree). Information about location of POIs
around a station, the knowledge about demographics and job
opportunities contribute to a better estimation of the demand
serviced by a node in the PTN analysis. In order to analyze
the demand distribution across multi-layers, in this section,
we propose an approach to assign node weight to a node
considering mono-layer and multi-layer analysis. To make the
analysis more reasonable, we consider the smallest geograph-
ical division. For example, the land area in the London city
is divided into Boroughs, which are subdivided into wards.
By understanding the distribution patterns of POIs, working

population and job opportunities in every ward, we estimate
the demand distribution at microscopic level which aids in
the identification of highly influential nodes in the network
(according to their usage) with respect to both mono-layer
and multi-layer analysis. In the following section we discuss
the detailed procedure for assigning a node weight.
Step 1: Extract information regarding land area, working
population, available job opportunities and the list of POIs
in each ward. The detailed information of the 624 wards in
London can be extracted from [9].
Step 2: By using the spatial combining feature in ArcGIS,
obtain the count of POIs, bus stops and metro stops in each
ward, and calculate their densities (e.g., number of POIs per
km2 in a ward)
Step 3: Evaluate the node occupying probability (NOP), which
is defined as the number of people using a particular station
in each ward. For a reasonable analysis, we calculate NOP as

(NOPi,α)Z = (ρPα/ρNα)Z (8)

where, NOPi,α is the node occupying probability of station i
on layer α, ρPα is the density of working population accessing
the stations on layer α, and ρNα is the density of public
transport stations on layer α in ward Z, for Z = 1, 2, .., 624.
Extending (8) to layer β, (NOPi,β)Z =

(
ρPβ/ρNβ

)
Z

. As
per the statistical data from the London government [10], the
number of people accessing a particular station in a ward on
a particular layer is derived from the total working population
count as

(Pα = 0.54 ∗ PT )Z , (Pβ = 0.27 ∗ PT )Z (9)

where Pα and Pβ denote the working population accessing
the stations on layer α and β respectively, and PT denotes the
total working population in a particular ward.
Step 4: Categorize each ward as either an emitter, absorber
or neutral region based on the three information categories,
i.e., POIs, working population count and the job opportunities
in a ward as shown in Table I. From the distribution patterns
of the three categories, the distribution of POIs and the job
opportunity in a given ward follow an exponential distribution,
and the distribution pattern of working population follows
a normal distribution. In Table I, the category type in a
particular ward is considered scarce if its value is less than the
mean value of the normal distribution for working population
category or the median value of the exponential distribution
for POIs and job opportunity categories. Otherwise, it is
considered abundant.
Step 5: Assign a node weight to each station

(wiα)Z =

(
ρPα
ρNα

)
Z

+ kiα∀Z = 1, 2, .., 624 (10)

where wiαZ is the weight of node i on layer α in a particular
ward, (

ρPα
ρNα

)Z is the NOP of a station in a given ward Z, and
kiα is the node degree which indicates the connectivity of a
node on layer α when the network is analyzed as a mono-layer
network. Equation (10) holds for the β layer network as well.
Step 6: Normalize the node weight to ensure the data integrity
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Fig. 2. (a) The wards in London city categorized as emitter, absorber or neutral zones along with the spatial location of bus stops, (b) influential nodes in
the London PTN under mono-layer analysis, (c) influential nodes in the London PTN under multi-layer analysis.

in all wards. The closer the value of normalized node weight
(wi norm) to one, higher is the usage of a node. Considering the
mono-layer analysis, the most influential nodes in the network
at different layers are the nodes with their normalized node
weight equal to 1. Fig. 2(a) shows the spatial locations of
the stations on layer α along with their ward type categorized
as emitter or absorber or neutral type. Fig. 2(b) shows the
influential nodes according to the node weight assigned for
mono-layer network analysis. Since we normalize the node
weight in every ward, there exists at least one influential node
in each ward. Here influential nodes refers to the most used
nodes in the network at the microscopic level (wards). Thus,
assigning weights to the nodes not only aids in identifying
the existing influential nodes, but also assists in predicting
the future influential nodes in the network with the increase
in the number of POIs, job opportunities, and population
distribution around a station in a chosen ward. However,

TABLE I
CLASSIFICATION OF WARDS INTO EMITTER/ABSORBER/NEUTRAL

REGIONS.

Job Working POIs Ward
opportunities population type

scarce scarce scarce Neutral
scarce scarce abundant Absorber
scarce abundant scarce Emitter
scarce abundant abundant Emitter and Absorber

abundant scarce scarce Absorber
abundant scarce abundant Absorber
abundant abundant scarce Emitter and Absorber
abundant abundant abundant Absorber

the node weight assigned using (10) may slightly bias our
results since people might choose multiple transfer modes
for commuting instead of using a mono-layer mode. To take
this into consideration, the independent mono-layer network is
collapsed into a dependent multi-layer network by integrating
both layers as discussed in Section III, and thus (10) is
modified as

wi = wiα + Cbi (11)

where wi is the overall weight of a node i, wiα is the weight
of a node i on layer α ((11) holds good for layer β also),

and Cbi is the betweenness centrality of node i considering
the integrated network and is given by Cb(i) =

∑
i 6=j 6=k

σjk(i)
σjk

,

where σjk is the total number of shortest paths between nodes
j and k, and σjk(i) is the shortest paths between nodes j
and k passing through node i. Fig. 2(c) shows the influential
nodes in the network according to the node weight assigned
with integrated network analysis. As observed from Fig 2(b),
determining the set of influential nodes in a network by
analyzing its node weight according to mono-layer analysis
is different from that using multi-layer analysis as shown in
and 2(c). Hence, the consideration of the inter-connectedness
between the transport layers assist in understanding the dy-
namic network behavior.

V. CONCLUSION

As compared to regular graph representation, the proposed
supernode graph representation offers a more practical way of
analyzing the transport network topology which not only aids
in a realistic network analysis, but also accounts for a precise
network representation without significant loss. The method
of spatial integration using the concept of walkable catchment
is employed to integrate the BTN and MTR layers in the
London city. A node weight analysis method is proposed to
assign weight to a node. It is observed that, the assigned node
weight differ significantly under the mono-layer and multi-
layer analyses of the network which indicates that neglecting
the interaction between the transport layers may bias our
understanding of the overall network behavior considering
the real-world usage of the network. The classification of
microscopic regions in a city into different types such as
emitter, absorber or neutral regions according to POIs, working
population, and the job opportunities further aids in under-
standing the behavior of an influential node in the network.
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