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Abstract—Fisher Linear Discriminant Analysis (LDA) is a 

widely-used projection technique.  Its application includes face 

recognition and speaker recognition.  The kernel version of LDA 

(KDA) has also been developed, which generalizes LDA by 

introducing a kernel.  LDA and KDA consists of a within-class 

scatter matrix and a between-class scatter matrix.  The original 

formulations of LDA and KDA involve the inversion of the 

within-class scatter matrix, which may have singularity problem.  

A simple way to prevent singularity is adding a regularization 

term to the within-class scatter matrix.  The resulting LDA and 

KDA are called Regularized LDA (RLDA) and Regularized KDA 

(RKDA).  In this paper, we experimentally investigate how this 

regularization term will influence the performance of LDA and 

KDA.  In addition, we introduce an extra regularization term to 

the between-class scatter matrix, and the resulting LDA and 

KDA are then called Doubly Regularized LDA (D-RLDA) and 

Doubly Regularized KDA (D-RKDA).  We then apply LDA, 

KDA, RLDA, RKDA, D-RLDA and D-RKDA as a feature 

projection technique to two audio signal classification tasks. 

Gaussian Supervector (GSV) is used as the feature vector and 

linear Support Vector Machine (SVM) is used as the classifier.  

Experimental results show that, RLDA, D-RLDA, RKDA and D-

RKDA are more effective than the conventional LDA and KDA. 

Besides, D-RLDA and D-RKDA are more robust than RLDA and 

RKDA. 

Keywords—Fisher linear discriminant analysis, kernel Fisher 

discriminant analysis, double regularization, audio signal 

classification 

I. INTRODUCTION

Fisher Linear Discriminant Analysis (LDA) is a powerful 
feature projection technique.  The kernel version of Fisher 
Linear Discriminant Analysis (KDA) has also been developed, 
which generalizes LDA by introducing a kernel [1][2].  The 
applications of LDA and KDA include face recognition [3]-[6], 
music classification [7] and speaker recognition [8].  In this 
paper, we apply LDA and KDA as a feature projection 
technique to deal with two audio signal classification tasks. 
One is microphone classification, aiming to recognize the 
recording microphone based on the recorded speech.  The other 

is mobile phone classification, aiming to recognize the 
recording mobile phone according to the recorded speech. 

It is known that Gaussian Supervector (GSV) is a good 
feature vector suitable for different audio classification tasks, 
such as speaker recognition [9], microphone identification 
[10][11], telephone handset identification [10], mobile phone 
identification [12] and verification [13].  The merit of GSV lies 
in that it can map audio signals of different lengths to a fixed-
length feature vector.  Therefore, in this paper, we use GSV as 
the feature vector for microphone and mobile phone 
classification.  GSV is calculated based on a Universal 
Background Model (UBM) [9]. 

Support Vector Machine (SVM) is one of the most widely 
used classifiers.  SVM has been applied to various audio signal 
classification tasks, such as speaker recognition [9], 
microphone identification [10][11][14][15], mobile phone 
identification [12][16]-[18], and telephone handset 
identification [10].  Therefore, in this paper, we use linear 
SVM as the classifier for microphone and mobile phone 
classification. 

We apply LDA and KDA as the feature projection 
technique to improve the performance of the raw feature (i.e. 
GSV).  The conventional LDA and KDA involve an operation 
of inverting the within-class scatter matrix, which may have 
singularity problem.  This singularity problem can be solved by 
using Principal Component Analysis (PCA) to reduce the 
dimensionality of the raw feature [3].  However, 
dimensionality reduction may result in loss of information.  In 
[1], this problem was solved by adding a small regularization 
term to the within-class scatter matrix.  After adding this 
regularization term, the resulting LDA and KDA are then 
called Regularized LDA (RLDA) and Regularized KDA 
(RKDA) [19].  Although the authors in [1] pointed out that this 
regularization term could be useful, they did not further 
explore the usage of it.  In this paper, we experimentally 
investigate how this regularization term will influence the 
performance of RLDA and RKDA.  Besides of adding a 
regularization term to the within-class scatter matrix, we also 
add a regularization term to the between-class scatter matrix. 
The resulting LDA and KDA are then called Doubly 
Regularized LDA (D-RLDA) and Doubly Regularized KDA 
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(D-RKDA), as there are now two regularization terms.  We 
then compare the performance of LDA, KDA, RLDA, RKDA, 
D-RLDA and D-RKDA as the feature projection technique in 
audio signal classification tasks.  Experimental results show 
that RLDA and RKDA can improve the effectiveness over the 
conventional LDA and KDA, while D-RLDA and D-RKDA 
can improve both the effectiveness and robustness. 

This paper is organized as follows.  In Section II, we 
describe the formulations of LDA, RLDA and D-RLDA.  In 
Section III, we describe the formulations of KDA, RKDA and 
D-RKDA.  In Section IV, we briefly describe the audio 
datasets used in this paper.  In Section V, we show and discuss 
the experimental results.  A conclusion will be drawn in 
Section VI. 

II. FISHER LINEAR DISCRIMINANT ANALYSIS 

A. Conventional LDA 

Given N training vectors {x1, x2, … xN} belonging to K 
different classes, let Ck denote class k and Nk denote the 
number of vectors in class k.  LDA aims to find a projection 
space, where vectors coming from the same class are moved 
closer while vectors coming from different classes are moved 
farther.  The projection space is represented by a projection 
matrix W whose i-th column vector wi is namely a projection 
direction or basis in the projection space.  The relationship 
between the original vector xn and the projected vector yn is 
expressed as, 

 n
T

n xWy   

LDA finds the projection matrix W by maximizing the 
objective function J(W) defined in (2) below, where SB is the 
between-class scatter matrix given by (3), SW is the within-
class scatter matrix given by (4), mk is the mean value of those 
vectors in class k as given by (5), and m is the mean value of 
all the vectors as given by (6) [20]. 
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The solutions of maximizing J(W) are the eigenvectors of 
SW

-1SB, namely wi is an eigenvector [20].  The number of 
projection directions is then the number of eigenvectors. 

B. Regularized LDA (RLDA) 

As SW
-1SB involves the operation of matrix inversion, in 

order to prevent SW to be singular, we can add a matrix εWI as a 
regularization term to SW, where εW is a nonnegative value and 
I is an identity matrix with the same dimensionality as SW.  The 
resulting LDA is namely RLDA, and the solutions of RLDA 
are then the eigenvectors of (SW+εWI)-1SB. 

C. Doubly Regularized LDA (D-RLDA) 

As can be seen from (3) and (4), the rank of SW
-1SB is at 

most K-1, because the rank of SB is at most K-1 [20].  This 
means there are at most K-1 orthogonal eigenvectors of SW

-1SB, 
i.e. K-1 orthogonal projection directions.  Thus, we also add a 
regularization term εBI to SB, where εB is a nonnegative value 
and I is an identity matrix.  Adding εBI to SB can modify the 
rank of SB, and therefore can potentially increase the number of 
orthogonal projection directions.  The resulting LDA is namely 
D-RLDA, and the solutions of D-RLDA will be the 
eigenvectors of (SW+εWI)-1(SB+εBI).  If εB=0, D-RLDA 
becomes RLDA; if εW=0 and εB=0, D-RLDA becomes the 
conventional LDA. 

In summary, adding εWI to SW can prevent singularity, and 
adding εBI to SB can increase the number of orthogonal 
projection directions.  Singularity and low rank are two basic 
limitations of LDA; but fortunately, these two limitations can 
be partly overcome by adding two regularization terms to the 
original formulation of LDA. 

III. KERNEL FISHER DISCRIMINANT ANALYSIS 

A. Conventional KDA 

According to (4), SWwi can be expanded as follows, 
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If defining a new coefficient βn
(W) as in (8), SWwi can then 

be expressed in terms of βn
(W) as given in (9). 
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Eq. (9) supports the claim in [1] and [11] that, if wi is a 
solution of maximizing J(W), wi must be a linear combination 
of all the vectors in the training set, as expressed in (10), where 
vi is an N-dimension column vector and (vi)n denotes its n-th 
element. 
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If we map the original vector xn to another dimensional 
space using a mapping function φ and then apply LDA in the 
mapped feature space, we then have (11), where wi

(φ) denotes 
the projection direction in the mapped space, vi

(φ) denotes the 
N-dimension coefficient vector in the mapped space, and φ(xn) 
is the mapped feature vector, similar to (10).  The superscript φ 
denotes the mapped feature space. 
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In the original feature space, we have the between-class 
scatter matrix SB and the within-class scatter matrix SW.  
Correspondingly, in the mapped feature space, we have the 
between-class scatter matrix SB

(φ) and the within-class scatter 
matrix SW

(φ).  It has been shown in [11] that, wi
(φ)TSB

(φ)wi
(φ) and  

wi
(φ)TSW

(φ)wi
(φ) can be expressed in terms of vi

(φ) and two new 
matrices UB and UW, as given by (12) and (13) below. 
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UB and UW are given by (14) and (15) below, where lk, l  
and qn are N-dimension column vectors, whose j-th elements 
are given by (16), (17) and (18) respectively.  The detailed 
derivation can be found in [11]. 
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By defining a kernel function k(xj,xn)=φ(xj)Tφ(xn), we then 
have the KDA.  Compared to LDA, KDA includes an implicit 
feature mapping before projection, and this mapping can be 
useful.  In this paper, we use the Gaussian kernel defined in 
(19), where h is the kernel parameter. 
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Then instead of finding the eigenvectors of SW
-1SB for wi, 

we now need to find the eigenvectors of UW
-1UB for vi

(φ).  After 
finding vi

(φ), for any given vector xt, its projected version yt can 
be computed using (20), where (yt)i is the i-th element of yt. 
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B. Regularized KDA (RKDA) 

Like LDA, an operation of matrix inversion is required in 
finding the eigenvectors of UW

-1UB.  Thus, in order to prevent 
singularity (as well as improve the performance), we can add a 
regularization term εWI  to UW, where εW is a nonnegative value 
and I is an identity matrix with the same dimensionality as UW.  
The resulting KDA is namely RKDA, and the solutions of 
RKDA are then the eigenvectors of (UW+εWI)-1UB. 

C. Doubly Regularized KDA (D-RKDA) 

From (14) and (15), the rank of UW
-1UB is still at most K-1, 

because the rank of UB is at most K-1.  This means there are at 
most K-1 orthogonal eigenvectors of UW

-1UB, i.e. K-1 
orthogonal projection directions.  Thus, we also add a 
regularization term εBI to UB, where εB is a nonnegative value 
and I is an identity matrix.  Adding εBI to UB can modify the 
rank of UB, and therefore can potentially increase the number 
of orthogonal projection directions.  The resulting KDA is 
namely D-RKDA, and the solutions of D-RKDA will be the 
eigenvectors of (UW+εWI)-1(UB+εBI).  If εB=0, D-RKDA 
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Fig. 1. Microphone classification with LDA. 

TABLE I. MICROPHONE SPEECH DATASET 

Notation Microphone 

Model 

Number of Utterances Duration 

Training Testing 

M1 AKG C410B 
Head Mounted 

240 260 2s ~ 5s 

M2 AKH D80S 

Desktop 

240 260 

M3 SONY ECM 
66B Lapel 

240 260 

M4 TARGET 

Lapel 

240 260 

UBM All the models 599 10s ~ 100s 

 

TABLE II. MOBILE PHONE SPEECH DATASET 

Notation Mobile Phone 

Model 

Number of Utterances Duration 

Training Testing 

MB1 Apple iPhone5 60 60 1s ~ 6s 

MB2 HTC Desire C 60 60 

MB3 HTC Sensation 

XE 

60 60 

MB4 LG GS290 60 60 

MB5 LG L3 60 60 

MB6 LG Optimus L5 60 60 

MB7 LG Optimus L9 60 60 

MB8 Nokia 5530 60 60 

MB9 Nokia C5 60 60 

MB10 Nokia N70 60 60 

MB11 Samsung E1230 60 60 

MB12 Samsung E2121B 60 60 

MB13 Samsung E2600 60 60 

MB14 Samsung Galaxy 

GT-I9100 S2 

60 60 

MB15 Samsung Galaxy 
Nexus S 

60 60 

MB16 Samsung GT-

I8190 Mini 

60 60 

MB17 Samsung GT-
N7100 (Galaxy 

Note2) 

60 60 

MB18 Samsung S5830i 60 60 

MB19 Sony Ericsson 
C510i 

60 60 

MB20 Sony Ericsson 

C902 

60 60 

MB21 Vodafone Joy 845 60 60 

UBM All the models 2520 
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Fig. 2. Mobile phone classification with LDA. 

becomes RKDA; if εW=0 and εB=0, D-RKDA becomes the 
conventional KDA. 

IV. AUDIO DATASETS 

In this paper, we use Ahumada-25 [21] for microphone 
classification, and MOBIPHONE [22] for mobile phone 
classification.  Ahumada-25 consists of utterances recorded 
using 4 different microphones.  For each microphone, 240 
utterances are used to form the training set and 260 utterances 
are used to form the testing set.  Consequently, 960 utterances 
are used for training, 1040 utterances are used for testing.  
Another 599 utterances are used for UBM, which includes all 
the models of microphones [11].  MOBIPHONE consists of 
utterances recorded from 21 different mobile phones.  In our 
experiments, we use the modified MOBIPHONE described in 
[18].  For each mobile phone, 60 utterances are used to form 
the training set and 60 utterances are used to form the testing 
set.  Consequently, 1260 utterances are used for training, 1260 
utterances are used for testing.  Another 2520 utterances are 
used for UBM, which includes all the models of mobile phones 
[18].  Details are also shown in Table I and Table II. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

GSV calculated from a 32-mixture UBM with a relevance 
factor of 5 is used as the feature vector.  The UBM is 
constructed using the mixture splitting technique [23] and the 
Expectation Maximization (EM) algorithm [24].  More details 
of GSV can be found in [9]-[11].  The frame-level feature is 
the 24-dimension Mel-frequency Cepstral Coefficient (MFCC) 
obtained using Hamming window with 50ms frame length and 

10ms frame shift.  More details of MFCC can be found in [25].  
The linear SVM is implemented using LIBSVM [26].  In the 
following, the performances of the raw feature and the raw 
feature assisted by LDA and KDA in microphone classification 
and mobile phone classification are compared.  On using 
different versions of LDA (i.e. conventional LDA, RLDA, and 
D-RLDA), different regularization parameters εW and εB are 
evaluated.  On using different versions of KDA (i.e. 
conventional KDA, RKDA, and D-RKDA), different 
regularization parameters as well as different kernel parameters 
are evaluated. 
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Fig. 3. Microphone classification with KDA. 

A. Classification Assisted by LDA 

In this part, we compare the performances of the 
conventional LDA, Regularized LDA (RLDA) and Doubly 
Regularized LDA (D-RLDA), in microphone classification and 
mobile phone classification.  The classification results are 
illustrated in Fig. 1 and Fig. 2.  In the figures, the polyline 
marked with “raw feature” represents the results of using GSV 
only, whereas other polylines represent the results of applying 
different versions of LDA to GSV.  In fact, RLDA is merely a 
special case of D-RLDA with εB=0.  Since “raw feature” and 
“conventional LDA” are unrelated to εW, the results are merely 
horizontal lines. 

From Fig. 1 and Fig. 2, it can be seen that, the conventional 
LDA may not improve the performance of the raw feature in 
some cases; however, by choosing suitable regularization 
parameters, both RLDA and D-RLDA can give performance 
improvement.  This indicates that RLDA and D-RLDA can be 
more effective than the conventional LDA, and therefore able 
to improve the quality of the raw feature.  On using RLDA, 
when εW is small, the performance tends to be improved with 
the increase of the value of εW, however, when εW is too large, 
the performance tends to drop.  On using D-RLDA, with a 
fixed value of εB, similar to RLDA, the performance is first 
improved and then degraded, with the increase of the value of 
εW (e.g. considering D-RLDA with εB=1 in Fig. 1 and Fig. 2).  
Another observation is that, the performances of D-RLDA with 
different values of εB can be quite different when a small value 
of εW is used, but tend to converge when the value of εW is large 
(e.g. comparing D-RLDA with εW=0.001 and εW=1000 in Fig. 1 
and Fig. 2).  This indicates that the two regularization terms are 
probably interacting with each other. 

It can also be observed that, although εW is probably the 
dominant regularization parameter controlling the effectiveness 
of RLDA and D-RLDA because the polylines change 
obviously with the change of εW, the other regularization 
parameter εB can control the robustness of D-RLDA, making 
D-RLDA less dependent on the choice of εW (e.g. considering 
D-RLDA with εB=1000 in Fig. 1 and Fig. 2). 

B. Classification Assisted by KDA 

In this part, we compare the performances of the 
conventional KDA, Regularized KDA (RKDA) and Doubly 
Regularized KDA (D-RKDA), in microphone classification 
and mobile phone classification.  Results of microphone 
classification are illustrated in Fig. 3, while results of mobile 
phone classification are illustrated in Fig. 4.  In the figures, the 
polyline marked with “raw feature” represents the results of 
using GSV only, whereas other polylines represent the results 
of applying different versions of KDA to GSV.  In fact, RKDA 
is merely a special case of D-RKDA with εB=0.  Since “raw 
feature” and “conventional KDA” are unrelated to εW, the 
results are merely horizontal lines.  On using different versions 
of KDA, different values of Gaussian kernel parameter h are 
evaluated (i.e. h=200, 500, 1000, 2000). 

From Fig. 3 and Fig. 4, it can be seen that, the choice of the 
kernel parameter influences the effectiveness of the 
conventional KDA, and if the kernel parameter is not properly 
chosen, the conventional KDA cannot improve the 
performance of the raw feature (e.g. considering the plots in 
Fig. 4).  Yet, with suitable regularization parameters, RKDA 
and D-RKDA can be more effective and thus can improve the 
performance of the raw feature even if the conventional KDA 
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Fig. 4. Mobile phone classification with KDA. 

fails.  In addition, as can be seen from Fig. 4, the performances 
of RKDA and D-RKDA tend to degrade with the increase of 
the value of εW, meaning that both RKDA and D-RKDA are 
highly dependent on the choice of εW.  However, on using D-
RKDA, increasing the value of εB tends to make the 
performance less dependent on the choice of εW (e.g. 
comparing D-RKDA with εW=10, 100, 1000 in the bottom two 
plots in Fig. 3 and Fig. 4).  From Fig. 3, increasing the value of 
εB may even improve the effectiveness of D-RKDA (e.g. 
considering the bottom two plots in Fig. 3).  These 
observations indicate that RKDA and D-RKDA are less 
dependent on the choice of the kernel parameter than the 
conventional KDA.  Compared to RKDA, the extra 
regularization term involved in D-RKDA makes it more robust 
and effective than RKDA. 

VI. CONCLUSION 

In this paper, we experimentally investigate how the 
regularization term will influence the effectiveness of 
Regularized Fisher Linear Discriminant Analysis (RLDA) as 
well as Regularized kernel Fisher Discriminant Analysis 
(RKDA).  By choosing suitable regularization parameters, 
RLDA and RKDA can outperform the conventional LDA and 
KDA as the feature projection technique for signal 
classification.  Besides, to make RLDA and RKDA more 
robust to different choices of regularization parameters, we 
propose the Doubly Regularized LDA (D-RLDA) and Doubly 
Regularized KDA (D-RKDA), which include two 
regularization terms.  The regularization terms aim to 1) solve 
the singularity problem in matrix inversion, and 2) increase the 
number of projection directions that can be obtained.  

Experimental results on two audio signal classification tasks 
demonstrate that, D-RLDA and D-RKDA can be more robust 
and even more effective than RLDA and RKDA. 

In particular, on using KDA as the feature projection 
technique, the kernel parameter plays an important role.  If the 
kernel parameter is not wisely chosen, applying KDA may 
even degrade the performance of the raw feature.  Fortunately, 
even the conventional KDA fails to improve the performance 
of the raw feature in some cases, with suitably chosen 
regularization parameters, RKDA and D-RKDA can still 
improve the performance of the raw feature. 
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