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Abstract—Probabilistic Linear Discriminant Analysis (PLDA) 

has exhibited good performance in face recognition and speaker 

verification.  However, it is not widely used as a general-purpose 

classifier.  The major limitation of PLDA lies in that, in the 

original formulation, the modeling part and the prediction part 

require the inversion of large matrices, whose sizes are 

proportional to the number of training vectors in a class.  The 

original formulation of PLDA is not scalable if there are many 

training vectors, because the matrices will become too large to be 

inverted.  In the literature, some scalable versions for the 

modeling part have been proposed.  In this paper, we propose the 

scalable version for the prediction part, which completes the 

scalable version of PLDA.  This makes PLDA able to handle a 

large number of training data, enabling PLDA to be used as a 

general-purpose classifier for different classification tasks.  We 

then apply PLDA as the classifier to three different audio signal 

classification tasks, and compare its performance with Support 

Vector Machine (SVM), which is a widely used general-purpose 

classifier.  Experimental results show that PLDA performs very 

well and can be even better than SVM, in terms of classification 

accuracy. 

Keywords—probabilistic linear discriminant analysis, audio 

signal classification 

I. INTRODUCTION

Probabilistic Linear Discriminant Analysis (PLDA) was 
first proposed in [1] for face recognition.  In the PLDA model, 
a feature is supposed to be generated by a between-class latent 
variable and a within-class latent variable.  The between-class 
latent variable reflects the difference between different classes, 
and therefore is the same for the same class.  The within-class 
latent variable reflects the difference between the features 
within the same class, and therefore can be different even for 
the same class.  PLDA has been shown to outperform many 
state-of-the-art methods in face recognition [1][2].  Later, the 
usage of PLDA was extended to speaker verification as an 
alternative to Support Vector Machine (SVM) [3].  In this 
paper, we extend the application of PLDA to more audio signal 
classification tasks, including microphone identification, 
telephone session identification, and speaker identification.  To 
enable PLDA to be used as a general-purpose classifier, we 
propose the scalable version of PLDA.  We then compare the 

performance of PLDA and SVM in the aforementioned three 
audio signal classification tasks. 

In the literature, SVM has been applied to many different 
audio signal classification tasks, such as speaker verification 
[3], mobile phone identification [4][5], and microphone 
identification [6][7]; however, PLDA is not as widely used as 
SVM.  The limitation of PLDA is that, during modeling and 
prediction, finding the inverse of large matrices is needed, and 
the sizes of the matrices are proportional to the dimensionality 
and the number of training vectors.  This matrix inversion 
operation is difficult or even infeasible to be performed if there 
are many training vectors.  Therefore, the application of PLDA 
is limited to small-scale classification tasks, such as face 
recognition and speaker verification, where the number of 
training data is small. 

PLDA consists of a modeling part and a prediction part.  In 
the literature, a scalable version of the modeling part for PLDA 
was given in [8], which made the operation of matrix inversion 
more efficient.  In [9], a variable changing scheme was adopted 
to derive a scalable version of the modeling part.  In this paper, 
we give the scalable version of the prediction part for PLDA, 
which completes the scalable version of PLDA.  The scalable 
version of PLDA is able to handle a large number of training 
data, and therefore has the potential to be used as a general-
purpose classifier for different classification tasks.  We then 
compare the performance of the scalable version PLDA and 
SVM as the classifier in doing microphone identification, 
telephone session identification, and speaker identification.  
Microphone identification aims at identifying which 
microphone is used to record a speech recording; telephone 
session identification aims at identifying when the speech is 
recorded; speaker identification aims at identifying who gives 
the speech.  We use Gaussian Supervector (GSV) [6][10] and i-
vector [11] as the feature vector, which are widely used in 
audio signal classification tasks. 

This paper is organized as follows.  In Section II, we give 
the original formulation of the modeling part and the prediction 
part for PLDA.  In Section III, we give the scalable formulation 
of the modeling part and the prediction part for the scalable 
version of PLDA, and briefly justify the scalability.  In Section 
IV, we briefly describe the datasets used in our experiments. 
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In Section V, we compare the performance of the scalable 
PLDA and SVM as the classifier in different audio signal 
classification tasks, and give some comments.  A conclusion 
will be drawn in Section VI. 

II. ORIGINAL FORMULATION OF PLDA 

Suppose we have a set of training feature vectors denoted 
as {x11, x12 … x1J, x21, x22 … x2J  …  xK1, xK2 … xKJ}, where xkj 
denotes the j-th training vector in the k-th class, K denotes the 
total number of classes, and J denotes the number of training 
feature vectors in a class.  Then in the PLDA model, xkj is 
expressed as in (1) below, where μ is the global mean, F and G 
are two factor loading matrices, hk is the between-class latent 
variable, wkj is the within-class latent variable, and εkj is a noise 
term [1].  The between-class latent variable hk is only class 
dependent, meaning that all the feature vectors in the same 
class share the same between-class latent variable, while the 
within-class latent variable wkj is sample dependent, meaning 
that different feature vectors have different within-class latent 
variables even if they are in the same class. 

 kjkjkkj GwFhx    

PLDA model is a special type of factor analysis model, and 
thus it complies with the assumptions in factor analysis, 
namely, hk, wkj and εkj follow normal distribution with zero 
mean and diagonal covariance, as given in (2) ~ (4) below, 
where I is an identity matrix, and Σ is a diagonal matrix.  Since 
hk, wkj and εkj are assumed to be independent, xkj also follows a 
normal distribution as given in (5). 
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As all the feature vectors in class k {xk1, xk2 … xkJ} share 
the same hk, they are combined to form a super vector and 
considered as a whole, as given in (6) [1].  Eq. (6) can be 
reformulated into a compact form as given by (7), where Xk is 
the concatenation of {xk1, xk2 … xkJ} in a column-wise manner, 
U is the concatenation of J’s μ in a column-wise manner, R 
consists of J’s F and J’s G, Yk is the concatenation of hk and 
{wk1, wk2 … wkJ} in a column-wise manner, and ζk is the 
concatenation of {εk1, εk2 … εkJ} in a column-wise manner. 
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Since xkj follows the normal distribution as given in (5), the 
joint distribution of {xk1, xk2 … xkJ} is also a normal 
distribution as given in (8) [2], where Φ is the covariance of ζk, 
which consists of J’s Σ, as given in (9). 
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A. Modeling Part of PLDA (Training) 

Eq. (7) is the standard form of factor analysis, and the 
model parameters U, R and Φ can be estimated using the 
Expectation-Maximization (EM) algorithm [1][12].  In the E-
step, we calculate the expected mean and the expected 
covariance of Yk, both conditioned on Xk, as given in (10) and 
(11) respectively [1]. 
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Note that (1) can also be reformulated as the standard form 
of factor analysis as in (12) below, where V consists of F and 
G, and zkj is the concatenation of hk and wkj. 
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Originally, we need to estimate U, R and Φ in the factor 
analysis model in (7).  However, noting the fact that U is made 
up of μ, R is made up of F and G, Φ is made up of Σ, we can 
then estimate μ, V and Σ for the factor analysis model in (12).  
Then in the M-step, we calculate μ, V and Σ, using (13) ~ (15) 
below, where K is the total number of classes and J is the 
number of training feature vectors in a class, and diag(.) is an 



operation that sets all the non-diagonal elements to be zero.  
The expected mean E[zkj] and the expected covariance 
E[zkjzkj

T], both conditioned on xkj, can be obtained from E[Yk] 
and E[YkYk

T] by considering the equivalence of (6) and (7) [1]. 
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Each EM iteration includes one E-step followed by one M-
step.  In the E-step, we calculate the expectations using (10) 
and (11), while in the M-step, we re-estimate the model 
parameters using (13) ~ (15).  In the modeling stage of PLDA, 
the EM algorithm is usually executed for a predefined number 
of iterations. 

B. Prediction Part of PLDA (Classification) 

After the estimation of model parameters θ={μ, F, G, Σ} 
using the training feature vectors, for a given test feature vector 
xt, the joint distribution of xt and all the training vectors {xk1, 
xk2 … xkJ} in class k is supposed to be a normal distribution 
[2], given by (16), where Uʹ, Rʹ and Φʹ are given by (17). 
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In (16), the covariance RʹRʹT+Φʹ and the mean Uʹ can also 
be expressed as in (18), where Ua and Σaa are the mean and 
covariance of xt, and Ub and Σbb are the mean and covariance 
of Xk, which are given in (19). 
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Then the conditional probability of xt with respect to class k 
is given by (20), where Ua|b is the conditional mean and Σa|b is 
the conditional covariance [13].  After calculating the 
conditional probabilities with respect to all the K classes, xt can 
then be classified to the class with the highest conditional 
probability [2]. 
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III. THE SCALABLE VERSION OF PLDA 

A. Modeling Part of Scalable PLDA 

In the E-step of the modeling part for the original PLDA 
(i.e. (10) and (11)), the inverse of a large matrix (I+RTΦ-1R) 
has to be found, whose dimensionality is proportional to the 
number of training vectors in a class.  In [8], a scalable version 
of the modeling part of PLDA has been given, which makes 
the computation with a large number of training vectors in a 
class more efficient.  In [8], the formulae of E-step are given by 
(21) ~ (23), while the M-step (i.e. (13) ~ (15)) is unchanged. 
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B. Prediction Part of Scalable PLDA 

To calculate the conditional probability in (20), the inverse 
of a large matrix Σbb is needed to be found, whose 
dimensionality is proportional to the number of training vectors 
in a class. 

Noting that Σbb is a symmetric matrix, thus the inverse of 
Σbb should also have a symmetric form as given by (24), where 
P and Q are symmetric matrices.  Using (24), instead of finding 
the inverse of the large matrix Σbb directly, we can now find 
two small matrices P and Q.  By multiplying Σbb to its inverse 
and equating the result to an identity matrix, as given by (25), 
P and Q can then be solved. 
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By equating the block on the principal diagonal on both 
sides of (25), we have (26).  By equating the blocks not on the 
principal diagonal (e.g. the block on the first row and second 
column) on both sides of (25), we have (27). 
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Then P and Q can be solved easily by considering (26) and 
(27) together, as given in (28). 
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The conditional mean Ua|b and conditional covariance Σa|b 
used in (20) for prediction can be obtained using (29) and (30) 
respectively.  Having obtained Ua|b and Σa|b, we can then 
efficiently calculate the conditional probability using (20). 
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C. Brief Comparison between Original PLDA and Scalable 

PLDA 

Regarding the modeling part, in the E-step, for the original 
PLDA, it can be seen from (10) and (11) that, the inverse of a 
large matrix (I+RTΦ-1R) has to be calculated.  Suppose the 
dimensionality of F and G are D×D, then according to (6) and 
(7), the dimensionality of (I+RTΦ-1R) will be (J+1)D×(J+1)D, 
where J is the number of training vectors in a class.  If J is too 
large, meaning that there are a large number of training vectors 
in a class, the inversion operation may be even infeasible if the 
size of the matrix exceeds the memory of the computer.  On the 
contrary, for the scalable PLDA, as can be seen from (21) ~ 
(23), only F, G and Σ are involved in calculation, whose sizes 
are independent of J, meaning that even the number of training 
vectors is very large, the calculation is still feasible. 

Regarding the prediction part, for the original PLDA, the 
probability that a feature vector is classified to a class is given 
by (20).  As can be seen from (20), the inverse of a large 
matrix Σbb has to be calculated.  Suppose the dimensionality of 
Σ is D×D, then according to (19), the dimensionality of Σbb will 
be JD×JD, where J is the number of training vectors in a class.  
Similar to the modeling part, if J is too large, it may be even 
infeasible to calculate the inverse of Σbb.  Instead of involving 
Σbb in the calculation of the conditional probability, it is also 
possible to directly use Ua|b and Σa|b to calculate the conditional 
probability, according to (20).  Then for the scalable PLDA, 
Ua|b and Σa|b can be calculated efficiently using (29) and (30), 
where only F, G, Σ, P and Q are involved in calculation, whose 
sizes are independent of J.  This means that even J is very 
large, it is still feasible to calculate the conditional probability 
and make prediction. 



TABLE I. MICROPHONE IDENTIFICATION DATASET 

Notation Microphone Model Number of Speech 

Recordings 

Training Testing 

M1 AKG C410B Head Mounted 240 260 

M2 AKH D80S Desktop 240 260 

M3 SONY ECM 66B Lapel 240 260 

M4 TARGET Lapel 240 260 

UBM All the models 599 

 

TABLE II. TELEPHONE SESSION IDENTIFICATION DATASET 

Notation Telephone Session Number of Speech 

Recordings 

Training Testing 

T1 Session 1 240 259 

T2 Session 2 240 260 

T3 Session 3 240 260 

UBM All the sessions 300 

 

TABLE III. SPEAKER IDENTIFICATION DATASET 

Notation Speaker Index Number of Speech 

Recordings 

Training Testing 

L001 Speaker 1 40 40 

L002 Speaker 2 40 40 

L003 Speaker 3 40 40 

L004 Speaker 4 40 40 

L005 Speaker 5 40 40 

L006 Speaker 6 40 40 

L007 Speaker 7 30 30 

L008 Speaker 8 40 39 

L009 Speaker 9 40 40 

L010 Speaker 10 40 40 

L011 Speaker 11 40 40 

L012 Speaker 12 40 40 

L013 Speaker 13 40 40 

L014 Speaker 14 40 40 

L015 Speaker 15 40 40 

L016 Speaker 16 40 40 

L017 Speaker 17 40 40 

L018 Speaker 18 40 40 

L019 Speaker 19 40 40 

L020 Speaker 20 40 40 

L021 Speaker 21 40 40 

L022 Speaker 22 40 39 

L023 Speaker 23 40 40 

L024 Speaker 24 40 40 

L025 Speaker 25 40 40 

UBM All the speakers 421 

 

IV. DATASETS 

In this paper, we consider three audio classification tasks, 
which are 1) microphone identification aiming at identifying 
which device is used to record the speech signal, and 2) 
telephone session identification aiming at identifying when the 
speech is recorded, and 3) speaker identification aiming at 
identifying who gives the speech.  The datasets are obtained 
from AHUMADA [14].  In microphone identification dataset, 
there are 4 different microphones to be identified; in telephone 
session identification dataset, there are 3 different sessions to 
be identified; in speaker identification dataset, there are 25 
different speakers to be identified. 

Each dataset is divided into a training set, a testing set, and 
a Universal Background Model (UBM) set.  The UBM set is 
used to calculate GSV and i-vector.  For microphone 
identification, 599 microphone speeches are used for UBM, 
960 microphone speeches are used for training, and 1040 
microphone speeches are used for testing.  For telephone 
session identification, 300 telephone speeches are used for 
UBM, 720 telephone speeches are used for training, and 779 
telephone speeches are used for testing.  For speaker 
identification, 421 telephone speeches are used for UBM, 990 
telephone speeches are used for training, and 988 telephone 
speeches are used for testing.  Details are shown in Tables I ~ 
III. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this paper, we use GSV [6][7] and i-vector [11] as the 
feature vector, and employ scalable PLDA and linear SVM as 
the classifier.  GSV and i-vector are obtained based on a 32-
mixture Universal Background Model (UBM).  The UBM is 
constructed using the mixture splitting technique [15] and the 
EM algorithm [16].  For GSV, several different relevance 

factors r are investigated; for i-vector, the dimensionality is set 
to be half of that of GSV.  SVM is implemented using 
LIBSVM [17] with default parameters.  When estimating the 
PLDA model parameters θ={μ, F, G, Σ} using the EM 
algorithm, the columns of F and G are initialized to be the 
result of Singular Value Decomposition (SVD) of the between-
class scatter matrix SB and the within-class scatter matrix SW of 
the training vectors, respectively; Σ is initialized to be the 
diagonalized covariance matrix of the training vectors [9].  
Microphone identification results, telephone session 
identification results and speaker identification results are 
shown in Figs. 1 ~ 3 respectively. 

From Fig. 1, it can be seen that, on using GSV as the 
feature vector, PLDA can outperform SVM, but the 
performance of PLDA degrades with the increase of the 
number of EM iterations during modeling.  While on using i-
vector as the feature vector, PLDA also works better than SVM 
when the number of EM iterations is small, but the 
performance of PLDA drops rapidly if there are too many EM 
iterations.  On employing SVM as the classifier, GSV and i-
vector gives similar performances.  While on employing PLDA 
as the classifier, when there are only a few EM iterations 
during modeling, GSV outperforms i-vector; when there are 
more EM iterations, GSV tends to perform worse than i-vector.  
However, GSV tends to be more stable than i-vector with 
different numbers of EM iterations. 
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Fig. 2. Telephone session identification results. 
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Fig. 1. Microphone identification results. 
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Fig. 3. Speaker identification results. 

From Fig. 2, generally speaking, no matter the feature 
vector is GSV or i-vector, PLDA can work better than SVM.  
On using GSV as the feature vector, the performance of PLDA 
tends to degrade with the increase of the number of EM 
iterations during modeling.  While on the contrary, on using i-
vector as the feature vector, the performance of PLDA tends to 
be improved with the increase of the number of EM iterations 
during modeling. 

From Fig. 1 and Fig. 2, it can be seen that, for different 
applications (i.e. microphone identification or telephone 
session identification), the performances of GSV and i-vector 
differ (sometimes GSV outperforms i-vector while sometimes 
i-vector works better).  In fact, although GSV and i-vector are 
both calculated based on a UBM, they are intrinsically rather 
different.  GSV is obtained by adapting the mean vectors in the 
UBM, while i-vector is obtained by applying factor analysis on 
the UBM.  As shown before, PLDA is essentially a factor 
analysis model, so when combining i-vector and PLDA, factor 
analysis is performed twice.  This causes the different 
behaviors of GSV and i-vector on employing PLDA as the 
classifier.  On the contrary, the performances of GSV and i-
vector are quite similar on employing SVM.  It is also noticed 

that there is a sudden drop in performance on using PLDA (for 
i-vector in Fig. 1 and GSV (r=15) in Fig. 2).  As can be seen 
from (1) ~ (5), in the PLDA model, the latent variables hidden 
in the feature vector is assumed to follow normal distributions, 
however, this assumption may not be always true for different 
types of feature vectors in different applications.  Therefore, 
the usage and effectiveness of PLDA may also be dependent 
on the choice of feature vectors as well as the type of 
applications. 

Generally speaking, on using different feature vectors, 
PLDA tends to give a better performance than SVM.  This may 
be owing to the intrinsic characteristics of PLDA.  As can be 
seen from (1), essentially, PLDA is a factor analysis model, but 
the between-class latent variable and the within-class latent 
variable provide similar functionalities to the between-class 
scatter matrix SB and the within-class scatter matrix SW used in 
Linear Discriminant Analysis (LDA).  From this point of view, 
PLDA is the fusion of factor analysis and LDA.  Factor 
analysis is an unsupervised modeling technique, while LDA is 
a supervised modeling technique.  From this perspective, we 
see that PLDA is actually a combination of supervised and 
unsupervised modeling techniques. 

The correlation between the performance of PLDA and the 
number of EM iterations during modeling of PLDA can be 
explained as follows.  In the initialization stage, F and G are 
initialized to be the result of the SVD of SB and SW, 
respectively.  In this stage, PLDA is more like LDA which 

aims to find the eigenvectors of BW SS 1 [18], or the Regularized 

Fisher Discriminant Analysis (RFDA) which aims to find the 

eigenvectors of B WS S  [7].  After initialization, as the 

number of EM iterations increases, PLDA tends to be more 
like factor analysis.  So, there is a trade-off between the 
supervised modeling ability and the unsupervised modeling 
ability of PLDA, and this balance is influenced by the number 
of EM iterations during modeling. 

In Fig. 3, the performances of SVM and PLDA in doing 
speaker identification are compared, with different numbers of 
training data.  The modeling part of PLDA only involves 1 EM 
iteration.  It can be seen that, the performances of SVM and 



PLDA are improved with the increase of the number of 
training data, which is reasonable.  With all the training data 
involved in modeling, both SVM and PLDA work very well.  
On using GSV as the feature vector, PLDA tends to work 
better than SVM if the number of training data is small.  On 
using i-vector as the feature vector, the performances of PLDA 
and SVM tend to be similar with different numbers of training 
data.  In addition, it seems i-vector tends to work better than 
GSV if the number of training data is small, nevertheless, the 
performance is application dependent. 

In terms of the speed, the modeling part of PLDA can be 
slow, as there may be many EM iterations.  However, 
surprisingly, from the experimental results, we can see that 
only 1 EM iteration can be good enough.  In this way, the 
modeling of PLDA (i.e. training) can be fast.  Regarding the 
prediction part of PLDA, according to (20), (29) and (30), for a 
given testing feature vector, we only need to calculate a 
conditional Gaussian probability as given in (20), and the 
parameters of the conditional distribution can be pre-computed 
efficiently using (29) and (30).  In this way, the prediction of 
PLDA (i.e. testing) can also be fast. 

VI. CONCLUSION 

In this paper, we give the formulation of the scalable 
version PLDA.  In the literature, the scalable version of the 
modeling part of PLDA has been given.  In this paper, we give 
the scalable version of the prediction part of PLDA, which 
completes the scalable version of PLDA.  The scalable PLDA 
is able to handle a large number of training data, enabling it to 
be able to be used as a general-purpose classifier.  We also 
compare the performance of the scalable PLDA and SVM as 
the classifier for three different audio signal classification 
tasks.  In terms of classification accuracy, experimental results 
demonstrate that PLDA can outperform SVM in most cases.  
In terms of classification speed, according to the formulation of 
the prediction part of PLDA, the prediction process can be very 
fast; according to the experimental results, the modeling of 
PLDA can also be fast, as only several EM iterations are 
enough.  In addition, on using PLDA to do classification, we 
notice an interesting phenomenon in training the PLDA model: 
the performance of PLDA is highly affected by the number of 
EM iterations during modeling.  This phenomenon is owing to 
the fact that PLDA is the fusion of LDA and factor analysis.  
The fewer the EM iterations, the more PLDA will be like 
LDA; the more the EM iterations, the more PLDA will be like 
factor analysis. 
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