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Abstract—Applying physical-layer network coding (PNC) to
vehicular ad-hoc networks (VANETs) can theoretically boost
the network throughput by 100%, thus partially addressing
the intermittent node connectivity and short contact time issues
caused by high speed vehicle motions. However, the application
of OFDM modulated PNC in VANETs faces detrimental effects
caused by carrier frequency offsets (CFOs) and time-frequency-
selective channels. CFOs may destroy the orthogonality of OFDM
subcarriers, resulting in inter-carrier interference (ICI). The
CFOs of two transmitters may also be different, and cannot
be removed by CFO tracking and equalization at the receiver
as in conventional single-user communication even if the CFOs
are known. In addition, time-frequency-selective channels due
to delay and Doppler spreads are difficult to estimate and non-
accurate channel estimations will increase the detection bit error
rate (BER). To address the two challenges, this paper proposes
an ICI-aware approach that jointly exploits pilot and data for
channel estimation and data detection. Specifically, our approach
jointly uses the belief propagation (BP) algorithm to mitigate the
CFO/ICI effect for data detection, and the expectation maxi-
mization (EM) algorithm to accurately estimate the channels.
A linear interpolation method and an ICI compensation method
are simulated as benchmarks. Simulation results indicate that our
approach improves the BER performance compared to the two
benchmarks (more than 2 dB SNR gain in most cases), especially
in the high SNR regime.

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETs) are attracting in-
creasing attentions in both academia and industry. VANETs
can enhance traffic safeties and provide diverse services by
enabling information exchange among vehicles. Sophisticated
applications like self-driving also require the support of
VANETs to satisfy the demand of low latency communica-
tions. The IEEE 802.11 family assigns the 5.9 GHz band
(5.85-5.925 GHz) and customizes the 802.11p standard for
Vehicle-to-X (V2X) communications. OFDM continues to be
the preferred modulation scheme in this standard..

Many scenarios in VANETs call for the data between two
end nodes to be forwarded through a relay node (e.g., road
side unit that relays data between vehicles). Such a relay
channel faces many challenges, including intermittent node
connectivity and short contact time between nodes induced
by vehicular mobilities [1], [2]. A strategy to address the

challenges is to improve the throughput so that more data
can be transmitted within a short duration. Thus motivated,
[1] proposed the application of physical-layer network coding
(PNC) [3] in VANETs. However, the study did not consider
that the imperfect channel state information (CSI) will degrade
the detection accuracy. Moreover, we found that the prior
state-of-the-art PNC receivers did not provide a robust channel
estimator against time-frequency-selective vehicular channels.

Fig. 1 shows a two-way relay channel (TWRC) operated
with OFDM modulated PNC. Two semi-automated cars A and

Fig. 1. An TWRC that operates with OFDM modulated PNC.

B try to exchange traffic information within their detection
range. Obstructed by the buildings, the two cars communicate
via a relay R and the data exchange is divided into an uplink
phase and a downlink phase. In the uplink phase, the two
end nodes simultaneously transmit signals XA and XB to
relay R via channels A and B respectively. After receiving
the overlapped signal and decoding the signal, relay R obtains
the exclusive or (XOR) output of the received signals, XR,
and broadcasts XR in the downlink phase. Finally, two end
nodes recover their desired data form received XR and self
information.

Theoretically, PNC can increase throughput by 100% in
TWRC, compared with conventional multi-hop wireless com-
munications. However, OFDM modulated PNC systems are
sensitive to the carrier frequency offset (CFO) between the two
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end nodes. The CFO is originated from imperfect local oscilla-
tors at the two nodes and Doppler shifts due to motions. CFO
leads to inter-carrier interferences (ICI) among OFDM sub-
carriers (ICI degrades the symbol-by-symbol XOR detection).
This negative effect of CFO is inevitable in OFDM modulated
PNC systems since the CFOs from multi transmitters may be
different, and thus cannot be removed by conventional CFO
tracking and equalization [4], [5]. Besides the CFO problem,
channel estimation in PNC is particularly challenging ow-
ing to the superimposed signals and time-frequency-selective
channels [6]. Moreover, when OFDM modulated PNC is
applied in VANETs, the two problems are compounded by
the high mobility of vehicles. For the channel estimation, [6]
customized a joint channel estimation and channel decoding
framework for PNC, but it only considered single-carrier
systems without CFO and the channel was frequency-flat.
For OFDM PNC, [7] adopted time-orthogonal (time non-
overlapping) training symbols and pilots for the two end
nodes. Therefore, the channel estimation problem in PNC
is reduced to that of traditional single-user communication
systems. A common method to mitigate ICI induced by CFO is
interference cancellations. For example, [8]–[10] used iterative
interference cancellations and signal detection/decoding, they
focused on CFO but assumed the channel to be known. So
far, the priori PNC receivers did not provide the solution
against time-frequency-selective vehicular channels, and they
preferred to either ignore or compensate the ICI. In contrast,
we exploit an ICI-aware method to tackle the ICI and design
a robust PNC receiver for time-frequency-selective vehicular
channels.

Compared with previous works, this paper addresses two
critical issues in VANETs: the channel estimation under time-
frequency-selective channels and the signal detection under
ICI. We propose an ICI-aware approach to solve the two
problems jointly. The salient features of the proposed approach
are as follows:

1) We use the expectation maximization (EM) algorithm to
extract channel information contained in both pilots and
data, taking into consideration the ICI induced by CFO.

2) We exploit the belief propagation (BP) algorithm and an
ICI-aware method to mitigate the detrimental effects of
CFO in the signal detection.

3) The proposed approach iterates between 1) and 2) to
improve the channel estimation and signal detection
progressively.

Benefit from the proposed approach, the further works w.r.t
PNC in VANETs are possible. For instance, the channel coding
design can ignore ICI since it can be removed by the proposed
approach, and higher level design (e.g. MAC layer) is feasible
with the support from robust physical-layer receiver.

The remainder of this paper is organized as follows. The
system model is described in Section II. In Section III, the
proposed ICI-aware approach is discussed in detailed. After
that, simulation results are presented in Section IV. Finally,
Section V concludes the paper.

II. SYSTEM MODEL

We assume that the signals in the uplink phase undergo
time-frequency-selective channels characterized by wide-sense
stationary uncorrelated scattering (WSSUS) models [11]. The
time-variant impulse response of the channel between the relay
and node i can be interpreted as

hi(τi, t) =

Pi∑
pi=1

cpi
(t)δ(τi − τpi

) (1)

where i ∈ {A,B}, Pi is the total number of propagation paths.
For the pi-th path with delay τpi

, the complex channel gain
cpi

(t) is modeled as a Rayleigh process and follows the Jakes’
power spectrum [11] with maximum Doppler frequency fdi .

fdi
=

vi
c
fc (2)

where c is the speed of electromagnetic waves, fc is the
carrier frequency, and vi is the relative velocity between
the transmitter and receiver. Besides the Doppler spread, the
imperfection of the local oscillators used to generate the RF
carrier leads to frequency offsets fδi , i ∈ {A,B}.

For OFDM, the number of subcarriers is M and the length
of the cyclic prefix (CP) is G. In this paper, we assume CP can
successfully eliminate inter-symbol interference (ISI). Let the
bandwidth be B and the sampling rate is B = 1/Ts, where Ts

is the sampling interval. Each frame contains L symbols. After
OFDM modulation, the transmitted time-domain baseband
discrete signal from node i at the l-th symbol is represented
as

xi[q+G+(l−1)(M+G)] =
1

M

M/2−1∑
m=−M/2

Xi,l[m]ej2π
m
M q (3)

where q is the time index within the symbol, and Xi,l[m] is
the modulated symbol. The baseband signals from nodes A
and B overlap at the relay R as

y(t) =
∑

i∈{A,B}

(xi(t)⊗ hi(τi, t))e
j2πfδi t + n(t) (4)

where ⊗ denotes the convolution operation, n(t) is the com-
plex white Gaussian noise with zero mean and variances σ2

t .
Here we further consider the product of hi(τi, t) and ej2πfδi t

to be one component hi(τi, t) since the hardware frequency
offset can be regarded as part of the Doppler spread without
loss of generality. After performing the FFT operation, the
signal of the l-th symbol can be expressed as:

Y l = HA,lXA,l +HB,lXB,l +W l (5)

Here we use bold capital letters to denote arrays (e.g., vector
or matrix). Y l and Xi,l are M × 1 vectors containing data
information of M subcarriers, W l is a M×1 vector containing
the noise on each subcarriers, and the noise is zero mean with
variance σ2

f = Mσ2
t . Hi,l is an M ×M matrix, the diagonal

elements Hi,l[m,m] denote complex channel responses for
desired signals on the target subcarriers, while other elements



are coefficients for ICI. The impulse response from subcarrier
k to subcarrier m is given by

Hi,l[m, k] =

Pi∑
pi=1

αt(m, k, l, pi)e
−j2πk∆fτpi

αt(m, k, l, pi) =

M−1∑
q=0

cpi
((q +G)Ts + (l − 1)T )ej2π

k−m
M q

(6)

αt(m, k, l, pi) is the output coefficient of the signal on the k-
th subcarrier to the m-th subcarrier at the l-th symbol. Delay
τpi

also causes a phase rotation e−j2πk∆fτpi , where ∆f =
1/(MTs) is the subcarrier spacing. Previous work [12] regards
ICI as part of the noise, but here we attempt to implement
an ICI-aware method to mitigate the negative effect of CFO.
We use a polynomial basis expansion model (P-BEM) [13]
to approximate the channels for VANETs. With P-BEM, the
complex channel gain cpi

(t) can be expressed as

cpi(qTs) =

Gz∑
g=1

θpi,gq
g−1 + ξ[q] (7)

where θpi,g is a polynomial coefficient to build the target chan-
nels, and ξ[q] is the approximation error. Once all the poly-
nomial coefficients are known, we can calculate the channel
gain cpi

(qTs), and thus, the output coefficient αt(k, z,m, pi)
can be estimated. If the delay spread τpi

is also known, we
can completely reconstruct the impulse response matrix H .
Applying P-BEM in (6), we have

Hi,l[m, k] =

Pi∑
pi=1

Gz∑
g=1

{e−j2πk∆fτpi

M−1∑
q=0

((q +G)Ts

+ (l − 1)T )g−1ej2π
k−m
M q}θpi,g

(8)

Then we can re-write the impulse response to be

Hi,l[m, k] =α(m, k, l, i)θi

α(m, k, l, i) =[αp1,1(m, k), αp1,2(m, k), ..., αp1,Gz (m, k),

αp2,1(m, k), ..., αPi,Gz (m, k)]

αpi,g(m, k) =e−j2πk∆fτpi

M−1∑
q=0

((q +G)Ts + (l − 1)T )g−1ej2π
k−m
M q

θi =[θp1,1, θp1,2, ..., θp1,Gz
, θp2,1, ..., θPi,Gz

]T

(9)

The proposed approach estimates the paths with delay from
zero to Nτi − 1 sampling intervals to approximate the delay
spread. Therefore, θ = [θA,θB ] and H are equivalent, and
they denote the channel information in the remainder of this
paper.

III. PROPOSED ICI-AWARE APPROACH

The proposed approach focuses on addressing two prob-
lems. The first task is to perform channel estimation with pilot
and data tones. The second task is to detect the transmitted data

X = [XA, XB ]
T given channel information H and received

data Y . X is a three dimensional array containing element
Xi,l[m]. Similarly, Y is a two dimensional matrix including
element Y l[m] and H is a four dimensional array containing
element Hi,l[m, k]. Accordingly, the proposed approach can
be divided into two phases:

Channel estimation phase: to obtain the optimal channel
information with the maximum a posteriori (MAP) probability
ĤMAP = argmaxH

∑
X p(H,X|Y ). The EM algorithm is

applied in this phase.
Signal detection phase: given the MAP ĤMAP , to find the

MAP probability p(X|ĤMAP ,Y ). The BP algorithm is used
in this phase.

The proposed approach iterates between the two phases.

A. Signal detection phase

Given the estimated channel information H , signal detec-
tion is implemented in each symbol individually. When CFO
exists, the received signal on one subcarrier suffers ICI from
other subcarriers. In this work, we take the effect of ICI into
account. A Markov network for one received symbol, which
is shown in Fig. 2, is constructed and the sum-product BP
algorithm is applied to conduct the inference to obtain the
marginal probability of the transmitted data. Each received

Fig. 2. The Markov network for signal detection.

signal Y l[m] is connected to the corresponding subcarrier
and two neighboring subcarriers. The reason why only three
subcarriers are connected here is that according to our studies
in [5], the received signal on one subcarrier mainly depends
on the desired signal on the subcarrier and the ICI from two
adjacent subcarriers. Rather than individual signal estimation,
this work considers joint signal detection, and thus retains the
correlation between the data from the two end nodes. The joint
probability density function (pdf) of data from three successive
subcarriers can be calculated as

p(X l[m− 1],X l[m],X l[m+ 1]|Y l[m],H l) ∝

exp {−|Y l[m]−
∑
i

m+1∑
u=m−1

Hi,l[m,u]Xi,l[u]|2/2σ2
f}

(10)

where X l[m] denotes {XA,l[m],XB,l[m]} and H l is
{HA,l,HB,l}. The factor Y l[m] contains the joint pdf
p(X l[m − 1],X l[m],X l[m + 1]|Y l[m],H l). Then the
marginal probability of X l[m] can be obtained with the BP
algorithm. Since the joint pdf of received data is required in the
channel estimation phase, this paper applies the sum-product



message passing algorithm to conduct the inference. Specif-
ically, each Y factor passes self information to neighboring
Y factors. After that, each Y factor calculates the belief as
follows:

Beliefm

=
∏

k∈{m−1,m,m+1}

p(X l[k − 1],X l[k],X l[k + 1]|Y l[k],H l)

(11)

After performing marginalization, the marginal probability is
obtained as the output of the signal detection phase.

In addition, the pdf output of signal detection can be further
improved via channel coding. We have implemented channel
coding on the proposed approach and the results will be shown
in Section IV.

B. Channel estimation phase

Due to the time-frequency-selective channels and the effect
of ICI, it is difficult to track the channel information with pilots
only. The solution is to make use of data tones to enhance the
channel estimation. The EM algorithm is applied to estimate
the channel. There are three steps as follows: 1) Initialization
step: find the initial channel information Hinit; 2) Expectation
step (E-step): given the previous estimation Hold, evaluate the
auxiliary function

Q(H|Hold) =
∑
X

p(X|Y ,Hold) log p(X,Y |H) (12)

3) Maximization step (M-step): re-estimate the channel

Hnew = argmax
H

Q(H|Hold) (13)

Here, we re-write the auxiliary function in E-step:

Q(H|Hold) ∝
∑
X

p(X|Y ,Hold) log p(Y |X,H) (14)

where p(X|Y ,Hold) is the posteriori probability which can
be calculated based on the signal detection phase. And the
auxiliary function is equal to the summation of sub-auxiliary
functions of individual symbols as

Q(H|Hold) =

L∑
l=1

Q(H l|Hold
l ) (15)

It turns out that the global auxiliary function can be divided
into multiple sub-auxiliary functions, and the sub-auxiliary
functions for individual symbols can be calculated based on
theirs corresponding posteriori probability. In the proposed
approach, channel estimation runs in each group consisting
of Gz successive symbols. For each group, the Q function is
equal to the sum of Gz sub-auxiliary functions as follows:

Q(H|Hold) ∝
Gz∑
g=1

∑
Xg

M/2−1∑
m=−M/2

p(Xg|Y ,Hold)

{−|Y g[m]−
∑
i

M/2−1∑
k=−M/2

Hi,g[m, k]Xi,g[k]|2/(2σ2
f )}

(16)

Then, we apply the P-BEM and re-write Hi,g[m, k] accord-
ing to (9).

Q(H|Hold)

∝
Gz∑
g=1

∑
Xg

M/2−1∑
m=−M/2

p(Xg|Y ,Hold){−|Y g[m]− {
M/2−1∑
k=−M/2

[α(m, k, g, A)XA,g[k],α(m, k, g,B)XB,g[k]]}
[θA,θB ]

T |2/(2σ2
f )}

(17)

To maximize the Q function, we make the associated
derivative to be zero as

0 =
dQ(H|Hold)

dθ
=

Gz∑
g=1

M/2−1∑
m=−M/2

(Y g[m]− {
M/2−1∑
k=−M/2

[α(m, k, g, A) ˆXA,g[k],α(m, k, g,B) ˆXB,g[k]]}θT )
(18)

where ˆXi,g[k] is the expected data. Thus, the EM algorithm
can be regarded as the problem of finding the optimal θ to
minimize the error in (18). Here, we utilize a minimum mean
square error (MMSE) estimator to identify.

θnew = (AG +Σn(A
H
G )−1Σ−1

θ )−1Y G (19)

where Y G is a (MGz) × 1 vectors containing the re-
ceived data of a group, AG is a {MGz} × {(PA +
PB)Gz}] matrix, each row in AG contains a vec-
tor

∑M/2−1
k=−M/2[α(m, k, g, A) ˆXA,g[k],α(m, k, g,B) ˆXB,g[k]].

Σn and Σθ are the covariance matrices of noise and θ,
respectively. The diagonal elements in Σn are 2σ2

f and other
elements are zero. Since all paths in the channel model are
uncorrelated, Σθ is a diagonal matrix and the k-th diagonal el-
ement is E(|θ[k]|2). In each iteration of the EM algorithm, we
use the channel estimation result from the previous iteration
to calculate Σθ. Unlike ICI compensation or equalization, the
proposed channel estimation takes ICI into consideration and
evaluate the optimal θ, then the H array can be established
based on θ. Therefore, it is ICI-aware channel estimation.

For the initialization step, we only use the pilots to imple-
ment channel estimation, it is easy to achieve by removing the
data tones in (18). In addition, the covariance matrix Σθ is
regarded as an identity matrix at the beginning.

IV. SIMULATION RESULTS

There are two input variables in the simulations: the maxi-
mum Doppler frequency and the signal-to-noise ratio (SNR).
Under different input conditions, the approach is evaluated
based on bit error rate (BER) of the decoded XOR data at
the relay. We consider a five-path Rayleigh fading channel for
both nodes A and B. The fading spectral shapes of all paths
are Jakes’ power spectrum with the same maximum Doppler
frequency. In terms of the delay spread and the path power,
we apply the parameters of RTV-Urban Canyon and Canyon
Oncoming cases [14]. For node B, we further add 100 ns



delay and -3 dB power for all paths. The channel parameters
are listed in Table I. In terms of the hardware frequency offset,
we set fδA = 1250 Hz and fδB = −1250 Hz according to our
empirical measurement. The simulations are designed based on

TABLE I
TIME-FREQUENCY-SELECTIVE CHANNEL PARAMETERS

Path no. Power (A) Delay (A) Power (B) Delay (B)
1 0 dB 0 ns -3 dB 100 ns
2 -11.5 dB 100 ns -13.0 dB 201 ns
3 -19.0 dB 200 ns -20.8 dB 301 ns
4 -25.6 dB 300 ns -24.1 dB 400 ns
5 -28.1 dB 500 ns -29.3 dB 500 ns

the 802.11p standard. The bandwidth B is configured to be 10
MHz. Both BPSK and QPSK modulations are considered. The
number of subcarriers is 144 including 120 data tones and 24
pilot tones. The 24 pilot tones are uniformly inserted among
all subcarriers, one half of 24 pilots is assignment to node A
and the other half is assigned to node B. The CP length G
is set to be nine. For each frame, we have 126 symbols and
each group contains two symbols. The number of evaluated
paths Nτi is configured to be six for the two end nodes. The
maximum number of iterations in the EM algorithm is five
and the results of each iteration are evaluated. We consider
the same normalized maximum Doppler frequency f/∆f for
both node A and B. In the simulations, we set f/∆f to be 0.05
and 0.1, and under these two Doppler frequencies, the BER
is evaluated for the proposed approach. We also simulate two
benchmarks: the conventional benchmark (Conv) applies the
linear interpolation [15] for channel estimation and regards
ICI as noise in signal detection, the other benchmark (ICI-
com) utilizes P-BEM and operates soft ICI compensation in
both channel estimation and signal detection [16]. The two
benchmarks only use pilot tones to estimate the channels. As
mentioned in Section III, we implement channel coding to
further enhance the pdf generated in the signal detection phase.
Here, the regular repeat accumulate (RA) code with coding
rate 1/3 [6] is used.

First, we consider the BPSK modulation, f/∆f is config-
ured to be 0.1 for A and B. The BER results of the proposed
approach (ICI-aware) are illustrated in Fig. 3. Under different
SNR conditions, the BERs are quite stable after 3 iterations,
the difference between 4 and 5 iterations is small. Therefore, it
verifies that the convergence speed of the proposed approach is
fast. The next step is to evaluate the proposed approach under
different CFO scenarios. In this study, f/∆f is configured to
be 0.05 and 0.1, respectively, and both BPSK and QPSK are
considered. Notice that f/∆f = 0.1 is quite a large number
in vehicular network according to the 802.11p standard [5]
(e.g., relative velocity 200 km/hr would only lead to 0.007
normalized Doppler frequency), and is more than sufficient
to evaluate the robustness of the proposed approach. Fig.
4 and 5 demonstrate the BER results. Since Fig. 3 shows
that the proposed approach can converge after 5 iterations,
Fig. 4 and 5 only show the BER result after 5 iterations for

Fig. 3. BER results after different number of iterations (with channel coding).

both the proposed approach and the second benchmark (ICI-
com). As can be seen, the proposed approach has better BER

Fig. 4. BER results under BPSK modulation (signal detection).

Fig. 5. BER results under QPSK modulation (signal detection).

performances compared with the two benchmarks. In the low
SNR regime, the BER results of three methods are relatively
close. Then as the SNR increases, the proposed approach
shows better BER performances. In most cases, the proposed
approach gives more than 2 dB SNR improvement compared
with the second best method (ICI-com), and this improvement
increases as the SNR increases. The only exception is that the



ICI-com method shows similar performance when BPSK is
applied, f/∆f = 0.05 and SNR is 40 dB. In the high SNR
regime, the BER curves of the three methods saturate and
the proposed approach offers a lower BER bound. Finally,
we consider channel coding and fix the f/∆f to be 0.1.
Under such configuration, both the BER curves of BPSK and
QPSK modulations are illustrated in Fig. 6. For the proposed

Fig. 6. BER results under different Doppler frequencies (with channel
coding).

approach, the BER curve of BPSK begins to drop when
SNR = 0 dB and that of QPSK begins to decrease when
SNR = 8 dB. Overall, the two curves show low BER in the
low SNR regime (e.g., for SNR < 16 dB). Under different
modulations, the proposed approach can provide around 4 dB
SNR improvement compared with the second best method
(ICI-com).

V. CONCLUSION

Applying PNC to VANETs can potentially boost network
throughput to address the intermittent node connectivity and
short contact time problems in VANETs. This paper tackles
two critical phenomena in PNC VANETs: the CFO between
transmitters and receiver, and time-frequency-selective chan-
nels. Specifically, we have proposed an ICI-aware approach
to mitigate the detrimental effects caused by CFO and time-
frequency-selective channels. By exploiting the channel in-
formation contained in data tones, it significantly enhances
both the channel estimation and signal detection processes.
The signal detection part of the approach is implemented
with the BP algorithm and the channel estimation part is
implemented with the EM algorithm. Both algorithms are
ICI-aware. Simulation results indicate that the joint algorithm
can converge within 5 iterations. We compare the proposed
approach with two benchmarks which are the results of prior
schemes [15], [16]. In terms of BER, the approach outperforms
two benchmarks , especially in the high SNR regime. We have
further considered channel coding, and simulation verifies that
the proposed approach provides much lower BER in the low
SNR regime compared with the two benchmarks.
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