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A Content-Adaptive Joint Image Compression and
Encryption Scheme

Peiya Li and Kwok-Tung Lo

Abstract—For joint image compression and encryption
schemes, the encryption power and compression efficiency are
commonly two contradictory things. In this paper, we propose
a new joint image compression and encryption scheme based
on lossy JPEG standard, which aims at encryption power’s
enhancement, on the premise of maintaining JPEG’s compression
efficiency. The proposed scheme is image-content-adaptive, since
the secret encryption key is generated from the plain-image
using BLAKE2 hash algorithm. Three encryption operations are
contained in our scheme, alternating new orthogonal transforms
transformation, DC coefficients encryption, and AC coefficients
encryption. To save the cost for transmitting different encryption
keys each time to decoder for decryption when plain-image
changes, we propose to embed the encryption key into the
entropy encoded bitstream of some AC coefficients, and the
whole embedding procedure is controlled by another secret key
called embedding key. Extensive experiments are conducted to
show that our encryption scheme is JPEG friendly, has good
confusion and diffusion properties. Detailed security analysis
is also given to illustrate the proposed scheme’s persistence to
various cryptanalysis strategies.

Index Terms—Image encryption, orthogonal transforms, data
embedding, security analysis.

I. INTRODUCTION

IN recent years, thanks to the rapid growth of computer
networks and information technology, a huge amount of

multimedia data has been exchanged over various types of
social network platforms, such as Facebook and Instagram. In
major parts of these exchanged data (image, video or audio),
no matter whether they are confidential or private, they need
security mechanisms to offer various degree of protection.
There are three different ways to protect digital data from
eavesdropping and intercepting: cryptography, watermarking
and steganography [1], among which cryptography is one
of the major techniques for protection. Since images play a
crucial role in communication, and raw videos can also be seen
as the construction of a sequence of still images (frames), the
encryption of image data is receiving more and more attention.

Since the 1970s, a large number of cryptographic tech-
niques have been developed, some of which have been widely
adopted as the standardized encryption algorithms, such as
Data Encryption Standard (DES) and Advanced Encryption
Standard (AES) [2]. When using these conventional algorithms
for image encryption, however, the computational cost will
be high because of large size of image data. Moreover, after
DES/AES, the output cipher-image often appears random,
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hence little space can be exploited for compression purpose.
To accelerate the encryption speed and simplify cryptographic
operations, various permutation-only image encryption algo-
rithms had been proposed [3]–[7]. This type of encryption
scheme can be easily implemented and is available in both
spatial and frequency domain, but it still has some inherent
limitations. For example, the permutation-only method cannot
change the frequency distribution of pixels because pixel
values are not modified, thus it is vulnerable to statistical
attack. Additionally, when the size of plain-image is small, the
number of permutation arrangements for pixels/blocks will be
less than the key space, guessing the permutation mapping
using chosen-plaintext attack may break the cryptosystem
[8]–[10]. Since most of the images we see on Internet are
compressed, the focus of image protection research shifts to
integrating image compression procedure with encryption, for
the purpose of decreasing encryption/decryption time in image
processing and communication.

JPEG and JPEG2000, are two image compression standards
created by the Joint Photographic Experts Group committee,
in which JPEG2000 was proposed in 2000, later than JPEG,
with the intention of superseding their original DCT-based
JPEG standard. Secure JPEG2000 (JPSEC), as the security
part of the JPEG2000 standard, it provides a framework for
security solutions for JPEG2000 images. JPSEC is designed to
be an open framework so that new tools can be incorporated
in the future. Nonetheless, as of 2017, there are very few
digital cameras that encode photos in the JPEG 2000 format,
many applications for viewing and editing photos still do
not support it. Therefore, our security mechanism’s design
mainly focuses on the lossy JPEG standard. In Fig. 1, the
baseline encoding procedure of JPEG is given, from which
we can observe that it mainly contains four stages: DCT
transformation, quantization, zigzag scan, and entropy coding.
For JPEG decoding process, stages contained are just the
reverse of the four stages in encoding procedure.

Fig. 1: Block diagram of JPEG encoder.

JPEG, as a common image compression standard applied
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for image storage and transmission, it greatly saves the storage
space and transmission bandwidth. Hence, study on joint JPEG
image compression and encryption has important theoretical
and practical values, and it has attracted many researchers’
attention. Existing joint JPEG image compression and en-
cryption schemes are mainly realized through introducing
encryption techniques into one stage or several stages of
JPEG standard. In [11], Au-Yeung et al. proposed to realize
perceptual video encryption in the transformation stage of
H.264 and MPEG-4 using multiple 8×8 transforms, which can
be also adopted for JPEG image encryption. Three different
encryption algorithms with different transforms had been
proposed, and Algorithm-3 had been proved to have the best
balance between encryption and compression performance.
Their scheme could achieve controllable degree of encryption
without endangering the compression performance of the
underlying video compression standard, but the 8×8 blocks’
independently encryption technique possessed little diffusion
property, which may be vulnerable to differential attack. In
[12], [13], they proposed methods for encryption at JPEG’s
quantization stage, and this stage’s encryption techniques were
often accompanied with other stages’ encryption to offer a
higher protection power. Later, Qian et al. in [14] pointed out
that algorithm in [12] was not secure enough, because when
an adversary used all Huffman codes and set all appended
bits to zero, he/she could reconstruct a contour of the plain-
image. To improve the protection power, [14] proposed to first
randomly select only part of JPEG’s bitstream segments, then
use a stream cipher to encrypt all appended bits of the DC
and AC Huffman codes inside these selected segments, and
finally obtain a smaller sized JPEG cipher-image. Thus, with
limited Huffman codes, adversary cannot recovery the contour
of the plain-image. For encryption realized at JPEG’s entropy
coding stage, Wu et al. [15] achieved JPEG image encryption
by using different Huffman tables for different input symbols.
This scheme could obtain very high visual degradation without
sacrificing the compression performance, but it was not format
compliant to JPEG standard, since the decoder needed to know
the Huffman tables used for encoding in order to decompress
the encrypted bitstream correctly [16]. Additionally, [17] and
[18] had pointed out that [15]’s encryption scheme was vul-
nerable to chosen-plain-text/known-plain-text attacks.

In [19], Zhang et al. pointed out that some joint image
compression and encryption cryptosystems existed security
flaws, like methods in [20], [21]. They said that the secret
keys controlled interval allocation encryption operations were
equivalent to confusion without diffusion, which resulted
in some loopholes for some classic attacks, like chosen-
plaintext/known-plaintext attacks. To overcome this defect,
they argued that the encryption scheme should not only rely
on the confusion-diffusion architecture but also should have
varying encryption parameters related to plaintext.

In our work, we propose a joint image compression and
encryption scheme which has good diffusion property and
fine compression efficiency. The whole cryptosystem is based
on lossy JPEG standard, and is plain-image-content-adaptive,
since the secret key we use for encryption is dependent on the
plain-image. To generate the plain-image sensitive key, we use

BLAKE2 hashing algorithm [22] taking plain-image as input,
and outputs a 256-bit random hash value, denoted as Key1 and
named encryption key, which is used to control the following
encryption operations. BLAKE2 is very sensitive to changes
occurred in the input, hence different input plain-images result
in different Key1 values, and these values must be available to
the decoder for cipher-images’ recovery. In order to save the
cost for transmitting different Key1 to decoder each time, we
embed Key1 into the entropy encoded bitstream of certain AC
coefficients through some embedding rules, and the embedding
positions are determined by another 256-bit secret key Key2,
named embedding key, which is previously known and only
known to the encoder and decoder. The secret Key2 could
remain unchanged for a period of time, decided by encoder
and decoder, even though the plain-images for compression
and encryption change. Our encryption operations include
new orthogonal transforms transformation, DC coefficients
encryption and AC coefficients encryption. Experiment results
have shown that the whole encryption scheme is efficient and
has good compression and security features.

The rest of the paper is organized as follows. Section II ex-
plains the implementation details of our encryption operations,
and the corresponding encryption and decryption algorithms
are also given. Experimental results are presented in Section
III. Section IV analyses the cryptosystem’s security level
against various types of attacks. Section V presents concluding
remarks and our future research directions.

II. IMPLEMENTATION OF ENCRYPTION OPERATIONS

In this section, we introduce the realization details of our
encryption operations, which include new orthogonal trans-
forms transformation, DC encryption by block permutation
and XOR operation, and AC encryption through data em-
bedding. Their design principles are to achieve three objec-
tives: (a) suppression of bitstream size increment, (b) format-
compliant encryption, and (c) confusion and diffusion prop-
erties’ enhancement. Section II-A explains how we generate
different new orthogonal transforms, and compare their coding
efficiency with other transforms. Methods for encrypting DC
coefficients are given in Section II-B, and Section II-C explains
our data embedding/extracting strategy for encrypting AC
coefficients, which is controlled by the predefined embedding
key Key2. The encryption algorithm and decryption algorithm
are presented in Section II-D.

Let a given plain-image be of size H×W , where H and W
represent the height and width of the plain-image in pixels. We
take it as the input of BLAKE2 algorithm, and produce a 256-
bit random value Key1 to control encryption/decryption oper-
ations. Another 256-bit secret parameter Key2 is predefined,
and is only known to the encoder and decoder. For generating
pseudo-random key-streams from Key1 and Key2, we also use
BLAKE2 algorithm taking Key1 and Key2 as the initial seed
key, computation formula is given as following

Kn+1 = H(Kn)(n = 0, 1, 2, ...) (1)

where H(·) is the BLAKE2 hash function, K0 is Key1 or Key2.
We denote these two pseudo-random key-streams as Kenc−1
and Kenc−2.
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A. New orthogonal transforms transformation

In JPEG, 8×8 type-II DCT is used for blocks’ trans-
formation because it can provide an efficient compaction
performance with separability property when high correlation
is existed among inter-pixels [23] - which is a general phe-
nomenon in most natural images. In our work, we modify
JPEG’s transformation stage by allowing more orthogonal
transforms for 8×8 blocks’ transformation, rather than only
DCT. To maintain the excellent compression performance of
JPEG, coding efficiency of our newly generated transforms
should be similar to DCT or just drop slightly.

In [24], a fast computational algorithm for DCT-II was
developed in the form of matrix decomposition, and was
illustrated by a flow-graph structure. In general, an order-N
DCT-II matrix can be represented by the following recursive
form:[

CIIN
]

=
[
PN

] [P tN/2CIIN/2 0

0 RN/2

] [
BN

]
, (2)

[
BN

]
=

√
2

2

[
IN/2 ĪN/2
ĪN/2 −IN/2

]
,

where [PN ] is a N×N permutation matrix which permutes
the transformed vector from a bit reversed order to a natural
order.

[
IN/2

]
is the identity matrix and

[
ĪN/2

]
is the anti-

diagonal identity matrix.
[
RN/2

]
can be decomposed into

(2 log2N − 3) matrices.

Fig. 2: Flow graph of 8-point (1-D) DCT.

In Fig. 2, the 8×8 DCT-II’s flow-graph is shown. When
N = 8, Eqn. (2) becomes[

CII8
]

=
[
P8

] [P t4CII4 0
0 R4

] [
B8

]
, (3)

[
CII4

]
=
[
P4

] [P t2CII2 0
0 R2

] [
B4

]
,

[
P4

]
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
[
P2

]
=

[
1 0
0 1

]
,
[
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]
=

√
2

2

[
1 1
1 −1

]
,

[
R2

]
=

 sin
π

8
cos

π

8

− sin
3π

8
cos

3π

8

 ,
Computation of [R2] is equal to the second butterfly (from top
to bottom) of Stage-4 in Fig. 2.

[
P8

]
=



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


,

[
R4

]
=
[
M1

] [
M2

] [
M3

]
,where

[
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]
=


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16
0 0 cos
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16

0 sin
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0

− sin
7π

16
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16


,

Computation of [M1] is equal to the two butterflies denoted
in the bottom half of Stage-4 in Fig. 2.

[
M2

]
=

√
2

2


1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

 ,
Computation of [M2] is equal to the two butterflies denoted
in the bottom half of Stage-3 in Fig. 2.

[
M3

]
=


1 0 0 0

0 − cos
π

4
cos

π

4
0

0 cos
π

4
cos

π

4
0

0 0 0 1

 ,
Computation of [M3] is equal to the bottom half part of Stage-
2 in Fig. 2.

To generate new orthogonal transforms, we introduce differ-
ent rotation angles into the four butterflies at Stage-4, which
can be represented by modifying Eqn. (3) using the following
formula:[

CII8
]

=
[
P8

] [
T1
] [P t4CII4 0

0 R4

] [
B8

]
, (4)

where [T1] = diag(cosα1, cosα1, cosα2, cosα2, cosα3,
cosα4, cosα4, cosα3), α1 = 0 or π, αi ∈ (0, π

3 , 2π
3 , π) (i =

2, 3, or 4), and the normalized coefficients are ignored here.
The reason for allowing α1 to have only two rotation angles’
choice (0 or π) is because α1 will influence the DC coefficient,
changing it too much may have a great impact on the overall
coding efficiency of the new transform. Using Eqn. (4), we
can totally produce 128 different orthogonal transforms, and
we name the new transform set as TS1.
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To evaluate the coding efficiency of TS1, we compare its
performance with DCT, transforms used in [11]’s Algorithm-
3, and transforms used in [25] through a statistical model.
For the Algorithm-3 in [11], they used different transform sets
for column’s transformation and row’s transformation. For the
row’s transformation, 16 orthogonal transforms were generated
by introducing two rotation angles (0 or π) into Stage-4’s
four butterflies of Fig. 2, and all eight rows used the same
transform matrix for transformation, decided by the secret
key. For the column’s transformation, totally 256 orthogonal
transforms were generated by introducing rotation angles (0
or π) into eight butterflies of Fig. 2 (2 butterflies in the top
half of Stage-2, 2 butterflies in the bottom half of Stage-3,
and 4 butterflies in Stage-4), and each column used different
transform matrices, also determined by the secret key.

The statistical model we use for comparison is the one-
dimensional, zero-mean, unit-variance first-order Markov pro-
cess with adjacent element correlation ρ. For a n-dimensional
input vector X sampled from this model, the (i, j)th element of
the covariance matrix [CX ] is equal to ρ|i−j|. The efficiency
of the transform [T ] is defined on the transform domain
covariance matrix [CY ] of vector Y, where

Y = [T ]X

[CY ] = E[Y · Y t]
= [T ][CX ][T ]t

=

s11 · · · · · · s1n
...

...
sn1 · · · · · · snn


We use the criteria of transform coding gain [26] and trans-

form efficiency [27] for performance comparison. Transform
coding gain (GTC) measures the energy compaction ability
of the transform in transform coding system, while transform
efficiency (η) measures the ability of an unitary transform to
decorrelate the input vector X, computing formulas of these
two criteria are given as follows:

GTC =

1

n

∑n−1
i=0 sii(∏n−1

i=0 sii

)1/n
Efficiency η =

∑n−1
i=0 |sii|∑n−1

i=0

∑n−1
j=0 |sij |

× 100%

The average transform coding gain GTC and average trans-
form efficiency η versus different correlation coefficients ρ
for DCT, transforms in TS1, transforms in [11]’s Algorithm-
3, and transforms in [25] are shown in Table I and Table II
respectively. It is clear that the coding efficiency of our newly
generated transform set is better than that in [11] and [25],
and very close to DCT1.

When using TS1 for transformation in each 8×8 block, we
transform all eight rows using the same transform matrix, and
transform eight columns using different transform matrices, all
used transform matrices are determined by Kenc−1. The reason

1In our experiment, we use 32 digits precision to display numbers, and the
minor differences in GTC and η values of TS1 and DCT can be seen.

TABLE I: Transform coding gain for different order-8 transforms

ρ 0.80 0.85 0.90 0.95
DCT 2.4162 3.0386 4.2424 7.6312
TS1 2.4162 3.0386 4.2424 7.6312
Ref [11] 2.2092 2.7553 3.8160 6.8119
Ref [25] 2.3065 2.8852 4.0064 7.1666

TABLE II: Transform efficiency for different order-8 transforms

ρ 0.80 0.85 0.90 0.95
DCT 0.8497 0.8695 0.8984 0.9399
TS1 0.8497 0.8695 0.8984 0.9399
Ref [11] 0.7748 0.8026 0.8440 0.9056
Ref [25] 0.8105 0.8344 0.8698 0.9219

why one transform is selected for each 8×8 block’s eight rows
is because using different transforms in the first dimension
will generate misalignment in the second dimension, relatively
larger high-frequency coefficients will be produced, and this
causes larger quality drop in the decrypted cipher-image.

B. DC coefficients encryption

To make the encrypted image become more disorder, after
JPEG quantization process, we propose to permute all order-
8 quantized blocks, and the permutation vector is generated
from Fisher-Yates shuffle [28] controlled by Kenc−1.

To shuffle an array S of n elements, Fisher-Yates Shuffle
do

for i← n to 2 do
j ← random integer with 1 ≤ j ≤ i
exchange S[j] and S[i]

end for
When applying this shuffle algorithm in our encryption
scheme, S is the original order of all 8×8 blocks, n is the
number of 8×8 blocks, the random integer in each loop
is obtained from Kenc−1, which can be described as following:

Random Integer Generation

1) Chose an integer r satisfying 2r ≥ n;
2) Obtain r bits from Kenc−1 and convert them to a number

x such that 0 ≤ x < 2r;
3) Compute t = bx

n
c, and output x − tn as the random

integer;

After performing the block permutation operation using S for
all 8×8 quantized blocks, we change DC coefficient in each
8×8 permuted block using Eqn. (5), to further improve the
diffusion and confusion properties.

dci = dci ⊕ dci−1 ⊕ dci−2 ⊕ · · · ⊕ dc1, (5)

where dci is the DC coefficient of the ith 8×8 permuted block,
i = 1, 2, · · · , (H×W )/64. For recovering these confused DC
coefficients, Eqn. (6) can be used:

dcj = dcj ⊕ dcj−1, (6)
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where j starts from (H ×W )/64, and ends with 2. The DC
coefficients confusion operation could increase the cryptosys-
tem’s resistance ability against differential attack, but it may
cause irregular lines/stripes in the encrypted images.

C. AC coefficients encryption

To save the cost for transmitting different encryption key
Key1 when plain-image changes, we embed the 256-bit Key1
into non-zero AC coefficients with run-length being 0. The
reason for choosing this kind of non-zero AC coefficients
is to control the final bitstream size, since more number of
zeros existed before a non-zero AC coefficients mean a longer
Huffman code to represent this coefficient.

In order to ensure the embedded Key1 is unavailable to
attackers, we use Kenc−2 to decide embedding positions for
these 256-bit data. In our data embedding strategy, each
qualified non-zero AC coefficient carries one secret bit. Sup-
pose after variable-length codes (VLC) coding for all AC
coefficients, the number of qualified non-zero AC coefficients
is L (L > 256), we use Kenc−2 controlled Fisher-Yates
shuffle to permute these L coefficients’ positions, then save the
first 256 permuted coefficients’ positions into an array Index
for the control of data embedding. The whole operation is
described in Fig. 3.

Fig. 3: Positions selection for data embedding.

For data embedding strategy, when one nonzero AC coef-
ficient with run being zero appears, we first check whether
this coefficient’s position is in array Index or not. If not,
do not change the Huffman coding result of this coefficient.
If yes, increase the coefficient’s category by 1, then look up
JPEG’s Huffman table to get its corresponding Huffman code,
concatenate the changed Huffman code with the appended bits
of this AC coefficient to generate new entropy encoded bits Q.
Then append one bit data of Key1 to the final position of Q
and produce Q∗. Q∗ is the final compressed and encrypted
bitstream data that will be transmitted to the decoder for
decryption and decompression. One example is given in Fig.
4 to better explain our data embedding strategy.

Fig. 4: Example of data embedding strategy.

For extracting the embedded 256-bit Key1 from Q∗ cor-
rectly, the decoder needs to know Key2 to produce Kenc−2
and to do Fig. 3’s procedures, and obtain the 256 embedding
positions array Index. Given the entropy encoded bits of
one AC coefficient, decoder first checks if its run-length is
0 through searching the Huffman table of AC coefficients.
If the run-length is 0, and position for this qualified AC
coefficient is in array Index, then obtain the appended bits
through the Huffman table denoted category for this non-zero
AC coefficient, and the final bit in appended bits is the one
bit data of Key1. One example of data extracting is presented
in Fig. 5, which is the reverse procedure of Fig. 4.

Fig. 5: Example of data extracting strategy.

D. Encryption and Decryption Algorithms

The realization procedures of our proposed cryptosystem
are presented in Fig. 6, and the encryption and decryption
algorithms can be described as follows:

Encryption Algorithm
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Fig. 6: Encryption and decryption procedures of our scheme.

Step-1: Take plain-image as input of BLAKE2 algorithm to
generate encryption key Key1, and predefine embedding key
Key2;
Step-2: For an input 8×8 image block, do

Step-2.1: Get 63 bits from Key1 produced pseudo-random
key-stream Kenc−1;
Step-2.2: Use the first 7 bits to select one transform from
TS1 for all rows’ transformation in the 1st dimension;
Step-2.3: Use the following 7×8 bits to select one trans-
form from TS1 for each column’s transformation in the
2nd dimension;

Step-3: Repeat Step-2 until all 8×8 blocks are transformed,
quantize all these transformed blocks using JPEG’s
quantization table;
Step-4: Use Fisher-Yates shuffle and Kenc−1 to perform 8×8
blocks’ permutation, and do DC coefficients confusion using
Eqn. (5);
Step-5: Perform JPEG’s entropy encoding procedure for all
processed 8×8 blocks, encrypt AC coefficients with 256-bit
Key1’s embedding, controlled by Kenc−2, and generate the
final encrypted bitstream Q∗.

Decryption Algorithm

Step-1: Perform entropy decoding procedure of JPEG, using
Q∗ and Kenc−2 to decode DC/AC coefficients and extract
Key1;
Step-2: Use Eqn. (6) to recover the encrypted DC coefficients,
and put the permuted 8×8 blocks back to their original
positions, realized by Key1 produced pseudo-random key-
stream Kenc−1 and Fisher-Yates shuffle;
Step-3: De-quantize all 8×8 blocks using JPEG’s order-8
quantization table;
Step-4: For each 8×8 block obtained in Step-3, do

Step-4.1: Get 63 bits from Kenc−1;
Step-4.2: Use the first 7 bits to select one transform
from TS1 for all rows’ inverse-transformation in the 1st

dimension;
Step-4.3: Use the following 7×8 bits to select one trans-
form from TS1 for each column’s inverse-transformation
in the 2nd dimension;

Step-5: Repeat Step-4 until all 8×8 blocks are de-transformed,



7

Fig. 7: Ten test images. (a) Fruits 256×256. (b) Girl 256×256. (c) House 256×256. (d) Baboon 512×512. (e) Raffia 512×512. (f) Goldhill
512×512. (g) Lena 512×512. (h) Peppers 512×512. (i) Sailboat 512×512. (j) Pentagon 1024×1024.

Fig. 8: Ten cipher-images encrypted by the proposed scheme.

then we can obtain the decrypted image.

III. EXPERIMENTAL RESULTS

In this section, the perceptual security of our proposed
scheme and the compression performance on the encrypted
images are evaluated experimentally. Ten images with different
sizes are used in our experiment, shown in Fig. 7. Perceptual
security refers to the perceptual distortion of cipher-image with
respect to the plain-image, and the peak signal-to-noise ratio
(PSNR) criterion is adopted to measure it. We encrypt these
ten images using our proposed schemes with QF being 20,
and their corresponding cipher-images are shown in Fig. 8. It
can be observed that these cipher-images are disorder and no
outline information about their plain-images can be seen.

For the compression performance, it is influenced by the
quality factor (QF), and higher QF value results in less
compression and larger bitstream size. Here, we use two
criteria, the bit per pixel (BPP) value and the PSNR value of
decrypted image, to evaluate the compression performance of

our proposed scheme. The BPP value is obtained from dividing
the bitstream size with image size. The two values for various
images under different QF values (QF = 20, QF = 40, QF =
60, and QF = 80) are presented in Table III through VI, and
they are compared with the results of JPEG. From the four
tables, we can observe that the BPP values of various cipher-
images resulted by our proposed method under different QF
values are a little larger than results of JPEG, which confirms
that our proposed encryption scheme is compression friendly
to JPEG.

To better illustrate our scheme’s performance, we use four
images (‘Fruits’, ‘Baboon’, ‘Raffia’, and ‘Pentagon’) for en-
cryption and decryption, when QF ranges from 10 to 90. Their
BPP-PSNR curves and PSNR-compression ratio curves are
plotted in Fig. 9 and Fig. 10, and they are compared with
JPEG, [11]’s Algorithm-3 and the encryption scheme in [25].
From the BPP-PSNR curves in Fig. 9, we can see that when
the encryption key is not known and only IDCT is used
for different cryptosystems’ decompression and decryption,
four images’ PSNR values of our encryption scheme have



8

TABLE III: Comparison of compression performance
when QF = 20

Image Proposed JPEG
BPP PSNR BPP PSNR

Fruits 0.5018 28.9958 0.4546 28.9957
Girl 0.4213 32.8159 0.3647 32.8161
House 0.4098 32.6707 0.3528 32.6707
Baboon 0.7778 25.2637 0.7440 25.2637
Raffia 0.7873 28.8030 0.7590 28.8030
Goldhill 0.4869 30.8849 0.4381 30.8849
Lena 0.3911 32.9625 0.3517 32.9624
Peppers 0.3923 32.4363 0.3492 32.4362
Sailboat 0.5418 30.0710 0.4931 30.0712
Pentagon 0.4933 29.1710 0.4591 29.1710

TABLE IV: Comparison of compression performance
when QF = 40

Image Proposed JPEG
BPP PSNR BPP PSNR

Fruits 0.8234 30.9837 0.7654 30.9837
Girl 0.6234 35.0051 0.5544 35.0026
House 0.6125 34.9489 0.5445 34.9492
Baboon 1.2290 27.3780 1.1883 27.3779
Raffia 1.1754 31.2211 1.1417 31.2211
Goldhill 0.7658 33.1318 0.7070 33.1340
Lena 0.5841 35.1285 0.5378 35.1285
Peppers 0.5903 34.2135 0.5404 34.2139
Sailboat 0.8228 31.9617 0.7647 31.9621
Pentagon 0.7992 30.8560 0.7700 30.8560

TABLE V: Comparison of compression performance when
QF = 60

Image Proposed JPEG
BPP PSNR BPP PSNR

Fruits 1.1081 32.5396 1.0404 32.5389
Girl 0.8161 36.3435 0.7374 36.3416
House 0.8065 36.3645 0.7383 36.3644
Baboon 1.6215 29.1476 1.5832 29.1476
Raffia 1.5042 32.7025 1.4606 32.7026
Goldhill 1.0166 34.5579 0.9472 34.5580
Lena 0.7638 36.4570 0.7199 36.4570
Peppers 0.8011 35.2865 0.7384 35.2865
Sailboat 1.0858 33.0761 1.0152 33.0762
Pentagon 1.0979 32.0463 1.0607 32.0463

TABLE VI: Comparison of compression performance
when QF = 80

Image Proposed JPEG
BPP PSNR BPP PSNR

Fruits 1.6835 35.5861 1.6057 35.5852
Girl 1.2245 38.5559 1.1329 38.5569
House 1.2109 39.0577 1.1290 39.0568
Baboon 2.4414 32.5956 2.3802 32.5955
Raffia 2.1832 35.4463 2.1329 35.4462
Goldhill 1.5321 36.9879 1.4506 36.9896
Lena 1.1884 38.5349 1.1365 38.5357
Peppers 1.2524 36.7890 1.1813 36.7894
Sailboat 1.6495 34.9564 1.5714 34.9560
Pentagon 1.7358 34.3140 1.6898 34.3139

the largest drop, which means a higher perceptual security.
Additionally, when the key is available to the decoder, the
PSNR values obtained by our scheme are the most close
to JPEG, which indicates the coding efficiency of our new
transform set is better than that in [11] and [25], matching the
results of coding efficiency comparison using the statistical
model in Section II-A. For the compression ratio values listed
in Fig. 10, it can be seen that when PSNR is fixed, our
encryption scheme possesses the highest compression ratio
compared with [11] and [25]. In Table VII, we also compare
the encryption efficiency for different sizes of plain-images un-
der our proposed scheme2, DES, and only JPEG compression
process. The simulation environment is MATLAB R2014a in
64 bit operating system, 3.50 Ghz, 16 GB RAM, Intel Core
i7-4770K. QF is set to be 20.

TABLE VII: Efficiency comparison for different encryption schemes

Image size Encryption time
of our scheme
(s)

Encryption
time of DES
(s)

JPEG
compression
(s)

256×256 0.98 34.34 0.63
512×512 2.64 226.15 1.44
1024×1024 8.33 2604.09 3.61

IV. SECURITY ANALYSIS

In the previous section, we have proved that our proposed
encryption scheme can achieve a good compression ratio
close to JPEG, and it is format compliant to JPEG. In this

2Computation cost of BLAKE2 has been included.

section, we analyse the encryption performance by evaluating
its robustness against various cryptanalysis techniques, such
as ciphertext-only attack, differential attack, etc.

A. Ciphertext-only attack

In typical cryptographic attacking methods, ciphertext-only
attack is the most basic and realistic one in which only
the encrypted data is available to attackers. And one of the
common techniques for ciphertext-only attack is to try all
possible keys in the brute-force manner. To make brute-force
attack infeasible, cryptosystem’s key space should be large
enough. In our encryption scheme, we use 256-bit Key1 to
control all encryption operations, thus obtain a 2256 key space,
which is not feasible for attackers to guess. However, since
we embed the 256-bit Key1 into 256 nonzero AC coefficients
with run-length being zero, attackers may try to guess the
256 embedding positions to recover Key1. In our embedding
strategy, suppose the number of qualified AC coefficients is
L(L > 256), we first use Kenc−2 to permute these coefficients’
positions, then select the first 256 positions for data em-
bedding. Computation complexity for guessing these selected

positions is
(
L
256

)
, which is greater than

(
L− 255

256

)256

. In

our scheme, after JPEG quantization process, on average each
8×8 block should have at least one qualified AC coefficient,
for an plain-image of size 256×256, totally 1024 8×8 blocks,

the minimum value for L would be 1024,
(
L− 255

256

)256

≈

3256 > 2256, which illustrates that breaking our cryptosystem
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Fig. 9: Comparison of BPP-PSNR curves for different encryption schemes

through guessing the 256 embedding positions is still very
hard.

B. Jigsaw puzzle solver attack

In [29], they proposed to regard jigsaw puzzle solvers as one
of attack methods on encryption. They thought the safety of
the block-scrambling based image encryption schemes might
be compromised by jigsaw puzzle solvers. Considering the
8×8 block permutation is contained in our cryptosystem, thus
we analyse the proposed scheme’s performance against jigsaw
puzzle solver attack. Five types of jigsaw puzzles are proposed
in [29], and our scheme can be classified into the Type 1 puzzle
because only block scrambling operation is done on plain-
images. For jigsaw puzzles assembling task, a large amount
of jigsaw pieces will increase the assembling complexity and
computing time, hence here we only use the three 256×256
images (‘Fruits’, ‘Girl’, and ‘House’) for testing, and the
jigsaw piece size is 8×8 pixels. The same three measures
(Direct comparison Dc, Neighbor comparison Nc, and Largest
component Lc) are used for evaluation, which are ranged in
[0, 1], and a larger value means a higher compatibility. In
[29], the assembling results for Type 1 puzzles with piece
size being 8×8 were not given, thus we first use the only
8×8 blocks scrambling encryption method and our proposed
method to encrypt the three images, then apply [29]’s jigsaw
puzzle solver to recover these cipher-images, corresponding

experimental results are shown in Table VIII. Based on the
low values of three measures, we could think that when jigsaw
piece size is 8×8, performance of the jigsaw puzzle solver is
not so good, therefore our proposed scheme can resist this
type of attack.

TABLE VIII: Jigsaw puzzle solver results

Image Scramble only Proposed
Dc Nc Lc Dc Nc Lc

Fruits 0.000 0.464 0.289 0.001 0.000 0.001
Girl 0.001 0.301 0.089 0.000 0.000 0.001
House 0.000 0.168 0.063 0.000 0.000 0.001

C. Replacement attack and sketch attack

Replacement attacks can be divided into two categories:
direct replacement attack and correlation-based replacement
attack, in which attackers try to recover the plain-image by
replacing the encrypted parameter with other ones or those
unencrypted image data. In our encryption scheme, we don’t
rank the information contained in the plain-image, but to
encrypt the whole image together, therefore the correlation-
based attack is infeasible for attacking our scheme. Here
one direct replacement attacking method [15] is analysed by
assigning all DC coefficients to 128 and all AC coefficients
to positive. We use our proposed scheme, [11]’s Algorithm-
3, [25]’s encryption scheme to encrypt ‘Baboon’ image, the
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Fig. 10: Comparison of PSNR-compression ratio curves for different encryption schemes

encrypt images and attacking results are shown in Fig. 11.
From Fig. 11, we can observe that no information of the plain
Baboon image can be distinguished in our scheme, which
means a great resistance ability against this replacement attack,
while for [11] and [25], they both disclose some contour
information of the plain Baboon image.

Sketch attack generally tries to sketch the outline of the
original image/video frame directly from the encrypted im-
age/video. In [30], several conventional sketch attacks for
JPEG images had been introduced, and a new sketch at-
tack based on macroblock bitstream size was proposed for
sketching H.264/AVC video frames. Two methods to resist
this type of attack were reported, one is to do macroblocks
permutation while ensuring format-compliance, another is to
diffuse the visual information of a region into other regions.
The main disadvantage indicated in [30] when taking these two
encryption methods was the reduced compression efficiency.
In our proposed cryptosystem, we take these two methods
(8×8 blocks’ permutation and DC coefficients confusion)
while keeping format compliance, and the final compression
efficiency of JPEG is not compromised too much, therefore we
think our encryption method is robust against sketch attack.

D. Key sensitivity analysis

According to Kerckhoff’s principle, the security of an
encryption scheme should rely on the secrecy of the encryption

and decryption keys instead of the encryption algorithm itself
[31]. A good cryptosystem should be extremely sensitive with
respect to the key used in the algorithm, which should satisfy
two conditions to indicate a high key sensitivity level [32]:
1) Completely different cipher-images should be generated
when slightly different encryption keys are used to encrypt the
same plain-image; 2) The cipher-image should not be correctly
decrypted even if there is merely a minor difference between
the encryption key and decryption key.

If an encryption scheme satisfies the above-mentioned con-
ditions then its key sensitivity is considered high. In our
proposed scheme, we use BLAKE2 hash function to produce
encryption key Key1 and the two pseudo-random key-streams,
since the output of BLAKE2 is very sensitive to changes
occurred in the input parameter, even a minor change made
in encryption key Key1 or embedding key Key2 will lead
to significant variation in the produced pseudo-random key-
streams, and alter all the following encryption operations. To
verify the key sensitivity of our scheme for the first condition,
we change the last bit of Key1 to generate another encryption
key, and Key2 remains the same. The corresponding cipher-
images of ‘Baboon’ encrypted by these two slightly different
encryption keys are shown in Fig. 12, and their difference
image is also presented. The chaotic difference image of these
two cipher-images proves the fulfilment of key sensitivity
analysis’ first condition for our encryption method.

To evaluate the key sensitivity of the second condition,
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Fig. 11: Direct replacement attack results (left is encrypted Baboon
image, right is reconstructed Baboon image)

Fig. 12: Key sensitivity analysis for encryption process

we slightly modify Key2 to generate another decryption key
by changing its last bit, since Key2 is the only key that is
available to decoder. The decryption results of cipher Baboon
image using these two different embedding keys are shown
in Fig. 13. It is clear that even when there is a small
variation in Key2, correct decryption cannot be realized under
our encryption/decryption scheme. Therefore, our proposed
technique also satisfies the second condition of key sensitivity
analysis.

Fig. 13: Key sensitivity analysis for decryption process: left image
decrypted by the original key, right image decrypted by the modified
key

E. Differential attack

Differential attack is a chosen-plaintext attack, in which
attacker makes a minor change in the chosen plain-image
and observes the changes produced in cipher-image. By com-
puting the difference between the chosen plain-images and
the corresponding cipher-images, attacker tries to deduce a
statistical relationship between them [32]. A cryptosystem
is considered as resistance against the differential attack if
one minor change in the plain-image causes large changes
in the cipher-image. Two statistical evaluation parameters,
net pixel change ratio (NPCR) and unified average change
in intensity (UACI) [33], are widely used for checking the
robustness of an image encryption scheme against differential
attack. NPCR denotes the change rate of the number of
pixels in the cipher-image while one pixel in plain-image is
changed. The higher the value of NPCR, the more secure is
the encryption scheme. UACI measures the average intensity
difference between two cipher-images. To get higher security,
the value of UACI should be close to 33%. The calculation
of these two parameters involves a slight modification in one
random pixel value of the plain-image. The plain-image and
the slightly changed plain-image are then encrypted by the
same encryption key. Supposing that the cipher-images before
and after one random pixel changes in plain-image are denoted
as C1 and C2 respectively, then NPCR and UACI can be
calculated using the following formulas:

D(i, j) =

{
0, if C1(i, j) = C2(i, j),

1, if C1(i, j) 6= C2(i, j).
(7)

NPCR : N(C1, C2) =

∑
i,j D(i, j)

H ×W
× 100%, (8)

UACI : U(C1, C2) =

∑
i,j

∣∣C1(i, j)− C2(i, j)
∣∣

255
H ×W

× 100%,

(9)
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TABLE IX: Results of differential attack tests on various images

Image
Ref [11] Ref [25] Proposed

NPCR% UACI% NPCR% UACI% NPCR% UACI%
Fruits 6.8665e-04 4.1887e-06 0 0 97.92 37.99
Girl 0 0 0 0 96.62 39.96
House 0 0 0 0 96.49 36.93
Baboon 0 0 0 0 97.80 39.48
Raffia 2.4033e-04 3.7399e-06 0 0 99.49 23.68
Goldhill 0 0 0 0 97.74 39.68
Lena 0 0 0 0 97.77 39.17
Peppers 1.7548e-04 8.5270e-07 0 0 98.06 39.27
Sailboat 1.6785e-04 7.0310e-07 0 0 97.27 39.99
Pentagon 0 0 0 0 99.43 21.97

NPCR and UACI analyses have been tested on various
images by increasing its first pixel by 1. In Table IX, the NPCR
and UACI values for images encrypted by our algorithm,
Algorithm-3 in [11], and [25] are listed, from which we
can observe that our encryption scheme has a certain degree
of defence capability against differential attack, while for
Algorithm-3 in [11] and [25]’s algorithm, the NPCR and
UACI values are all almost zero, indicating their low diffusion
property.

F. Statistical model-based attack

In statistical model-based attack, attacker studies the pre-
dictability of a particular element or the predictable relation-
ship of some data segments between plain-image and cipher-
image. The obtained relationship is used either to predict the
plain-image without the knowledge of decryption key or to
reduce the key search space to make the brute-force attack
become easier [32]. Generally, histogram and correlation chart
of the plain-image and cipher-image are two common ways
to indicate the relationship. Histogram analysis illustrates the
distribution of pixels in the image by counting the number
of pixels at each gray scale level. The histogram of plain
‘Baboon’ and encrypted image under our scheme are shown
in Fig. 14. It is clear that histogram of encrypted image has
little statistical similarity to that of the plain image, but it does
not show the normal distribution property, which indicates a
more secure level, this is because our encryption scheme is
based on the 8×8 block unit, the correlation among pixels in
the encrypted images cannot be destroyed completely.

For the correlation chart, we initially identify the neigh-
bourhood of diagonal pixels from the plain-image and cipher-
image. Then 1000 pairs of two diagonal adjacent pixels are
randomly selected, and plot the correlation diagram based
on the value of each pixel and its diagonal neighbour. The
corresponding correlation charts of plain ‘Baboon’ and the
corresponding cipher-image are presented in Fig. 15. We can
observe that the linear property, which reflects the correlation
degree between pixels, shown in cipher-image is a little less
than that shown in plain-image, but it cannot be totally
removed, also because we perform encryption in 8×8 blocks
unit just like JPEG.

Fig. 14: Histogram charts of plain ‘Baboon’ image and encrypted
image

Fig. 15: Correlation charts of plain ‘Baboon’ image and encrypted
image
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V. CONCLUSION

In this paper, we propose a new joint image compression
and encryption scheme, in which the encryption key is de-
pendent on the plain-image. The whole scheme has good
diffusion property, and is compression friendly to JPEG. To
produce the image content-sensitive key, we adopt BLAKE2
hash function to produce the 256-bit encryption key. Our
encryption operations include three parts: new orthogonal 8×8
transforms transformation, DC coefficients encryption, and AC
encryption. We generate new transforms by introducing rota-
tion angles into order-8 DCT’s flow-graph structure, and apply
them alternatively for 8×8 blocks’ transformation, controlled
by the encryption key. DC coefficients are encrypted after
quantization by 8×8 blocks’ permutation and XOR operation.
For AC coefficients encryption, we embed the 256-bit encryp-
tion key into the bitstream of some certain AC coefficients,
and the data embedding/extracting operation is controlled by
another secret key, called embedding key. This data embedding
strategy can reduce the cost of sending different 256-bit
encryption keys to the decoder when different plain-images are
compressed and encrypted. Extensive experiments and security
analysis are conducted to show the good compression and
encryption performance of our proposed encryption scheme.

There are few extensions we believe that can be considered
in our following work. First, currently the encryption scheme
cannot achieve perfect correlation removal effect and diffusion
property, because the whole encryption work is realized in
8×8 block unit. Hence, in the next step, we may try to do
transformation in different block sizes and to execute permu-
tation in some smaller units, perhaps 4×4 blocks permutation
or image pixels’ bit-plane level permutation. Additionally, our
encryption scheme is mainly realized in the transformation
stage and entropy coding stage of JPEG, other existing JPEG
encryption methods, such as zig-zag scanning order change
or quantization table change, can be combined with our
current proposed encryption scheme, in order to enlarge the
encryption space by one dimension. Finally, we will try to
extend our current encryption operations for other image/video
compression standards, such as JPSEC standard and MPEG-4.
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