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Abstract—Fisher Discriminant Analysis (FDA) has been 

widely used as a dimensionality reduction technique.  Its 

application varies from face recognition to speaker recognition. 

In the past two decades, there have been many variations on the 

formulation of FDA.  Different variations adopt different ways to 

combine the between-class scatter matrix and the within-class 

scatter matrix, which are two basic components in FDA.  In this 

paper, we propose the Generalized Fisher Discriminant Analysis 

(GFDA), which provides a general formulation for FDA.  GFDA 

generalizes the standard FDA as well as many different variants 

of FDA, such as Regularized Linear Discriminant Analysis (R-

LDA), Regularized Kernel Discriminant Analysis (R-KDA), 

Inverse Fisher Discriminant Analysis (IFDA), and Regularized 

Fisher Discriminant Analysis (RFDA).  GFDA can also 

degenerate to Principal Component Analysis (PCA).  Four 

special types of GFDA are then applied as dimensionality 

reduction techniques for speaker recognition, in order to 

investigate the performance of different variants of FDA.  

Basically, GFDA provides a convenient way to compare different 

variants of FDA by simply changing some parameters.  It makes 

it easier to explore the roles that the between-class scatter matrix 

and the within-class scatter matrix play. 

Keywords—Generalized Fisher discriminant analysis; 

dimensionality reduction; speaker recognition 

I. INTRODUCTION

Fisher Discriminant Analysis (FDA) has been widely used 
as a feature dimensionality reduction technique or used for 
classification.  It has been extensively applied to face 
recognition to reduce the dimensionality of the input face 
image, such as the usage of Fisherfaces [1]-[3].  It is also found 
to be applicable to speaker recognition, such as the usage of 
Fishervoices [4]-[7], and the usage as a projection technique to 
suppress unwanted information existing in the speech signal 
[8].  It has also been used together with Sparse Representation 
(SR) to increase the discrimination of the features [9][10], or 
used together with factor analysis to build a Probabilistic 
Linear Discriminant Analysis (PLDA) model for signal 
classification [11][12]. 

FDA aims at mapping the original features to a projected 
feature space, where features within the same class are closer to 
each other while features of different classes are farther from 
each other.  FDA includes two versions, one is the linear 
version called Fisher Linear Discriminant Analysis (LDA), and 

the other is the kernel version called Fisher Kernel 
Discriminant Analysis (KDA).  KDA is the generalization of 
LDA, which can involve an implicit feature mapping before 
projection.  When the mapping is linear, KDA degenerates to 
LDA.  Equipped with a kernel, the performance of KDA is 
comparable to that of other general-purpose classifiers, such as 
Support Vector Machine (SVM) [13][14].  However, a 
potential issue about applying FDA is the Small Sample Size 
(SSS) problem, where the dimensionality of the feature is 
larger than the number of features, such as face recognition 
[15].  This SSS problem may cause the matrix being inverted in 
FDA to be singular.  One solution to SSS is to first utilize 
Principal Component Analysis (PCA) to reduce the 
dimensionality of the original feature, and then utilize FDA for 
further projection [1][3].  However, PCA may discard useful 
discriminative information embedded in the original feature, 
which degrades the effectiveness of the further FDA process 
[16].  Another solution is to add a regularization term so that 
the matrix being inverted is not singular [13][17].  However, 
the difficulty lies in how to choose a proper regularization 
parameter. 

In the literature, different variations on the original 
formulation of FDA have been proposed and evaluated, such as 
Regularized Linear Discriminant Analysis (R-LDA) [16], 
Regularized Kernel Discriminant Analysis (R-KDA) [18], 
Doubly Regularized Linear Discriminant Analysis (D-RLDA) 
and Doubly Regularized Kernel Discriminant Analysis (D-
RKDA) [19], Inverse Linear Discriminant Analysis (ILDA) 
[20], Inverse Kernel Discriminant Analysis (IKDA) [21], and 
Regularized Fisher Discriminant Analysis (RFDA) [22]. 
Basically, FDA comprises a between-class scatter matrix and a 
within-class scatter matrix, and different variations on FDA 
mainly differ in the ways to combine the two scatter matrices. 

In this paper, we propose the Generalized Fisher 
Discriminant Analysis (GFDA), which aims at generalizing 
different variations on FDA to a single formula.  Both the non-
kernel version (called GLDA) and the kernel version (called 
GKDA) of GFDA are given.  We then apply four special types 
of GFDA as dimensionality reduction techniques for speaker 
recognition.  Regarding speaker recognition, Gaussian 
Supervector (GSV) and i-vector are two most widely used 
features [8].  Nevertheless, GSV is more general and 
computationally efficient than i-vector, and thus has wider 
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applications in speech-related recognition tasks, such as speech 
recording device recognition, including microphone 
recognition [22][23] and mobile phone recognition [24][25].  
Therefore, we adopt GSV as the feature for speaker recognition 
in this paper, and then apply the four dimensionality reduction 
techniques to investigate their effectiveness.  Linear Support 
Vector Machine (SVM) is a widely used linear classifier for 
high-dimension signal classification, especially for speech-
related classification tasks [8][22]-[24][26].  Thus, we employ 
linear SVM as the classifier for speaker recognition. 

This paper is organized as follows.  In Section II, the 
formulation of GLDA as well as the relationship between 
GLDA and several variants of LDA is given.  In Section III, 
the formulation of GKDA is given, together with its 
relationship with several variants of KDA.  In Section IV, the 
speech dataset and experimental setting are briefly described.  
In Section V, the experimental results and discussions are 
presented.  In Section VI, a conclusion is drawn. 

II. NON-KERNEL VERSION GFDA 

A. Non-kernel Version GFDA (GLDA) 

Suppose we have N training feature vectors denoted as {x1, 
x2…xN}.  Each feature vector is associated with a class label.  
Assume there are totally K different classes, with the k-th class 
denoted as Ck, containing Nk training feature vectors.  

Obviously, we have  


K

k kNN
1

.  Based on these N training 

feature vectors, the proposed GLDA targets at finding a 
projection matrix W, by optimizing the objective function J(W) 
defined in (1), where α1, β1, γ1, α2, β2, γ2 are pre-defined 
parameters, SB is the between-class scatter matrix defined in 
(2), SW is the within-class scatter matrix defined in (3), I is an 
identity matrix.  In (2) and (3), mk is the mean vector of the 
training vectors in class Ck as given by (4), and m is the mean 
vector of all the training vectors as given by (5) [27]. 
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Based on the results of LDA [27], W is the collection of the 

eigenvectors of    ISSISS WBWB 111
1

222  


, 

meaning that the i-th column wi in W is namely the i-th 

eigenvector of    ISSISS WBWB 111
1

222  


.  

γ1I and γ2I can be used to increase the rank of 

 ISS WB 111    and  ISS WB 222    respectively, 

so as to increase the number of orthogonal eigenvectors.  In 

addition, γ2I can also be used to prevent  ISS WB 222    

to be singular during matrix inversion.  Having W, for a feature 
vector xt, the projected feature yt is then calculated using (6). 

 t
T

t xWy   (6) 

B. Relationship between GLDA and Other Variants of LDA 

When (α1, β1, γ1, α2, β2, γ2)=(1, 0, 0, 0, 1, 0), GLDA 
becomes standard LDA, which aims to maximize the objective 
function defined in (7), whose solution is the collection of the 

eigenvectors of BW SS 1  [1]. 
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When (α1, β1, γ1, α2, β2, γ2)=(1, 0, 0, η, 1−η, 0), GLDA 
becomes Regularized LDA (R-LDA), which aims to maximize 
the objective function defined in (8), where η is a weighting 
parameter.  The solution of R-LDA is the collection of the 

eigenvectors of    BWB SSS
1

1


   [16].  In fact, R-LDA 

becomes standard LDA when η=0. 
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When (α1, β1, γ1, α2, β2, γ2)=(1, 0, ε1, 0, 1, ε2), GLDA 
becomes Doubly Regularized LDA (D-RLDA), which aims to 
maximize the objective function defined in (9), where ε1 and ε2 
are regularization parameters.  The solution of D-RLDA is the 

collection of the eigenvectors of    ISIS BW 1
1

2  


 [19].  

In fact, D-RLDA becomes standard LDA when ε1=0 and ε2=0. 
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When (α1, β1, γ1, α2, β2, γ2)=(0, 1, 0, 1, 0, 0), GLDA 
becomes Inverse LDA (ILDA), which aims to minimize the 
objective function defined in (10), whose solution is the 

collection of the eigenvectors of WB SS 1  [20].  Maximizing (7) 

is equivalent to minimizing (10), meaning that ILDA and LDA 
are theoretically equivalent. 
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When (α1, β1, γ1, α2, β2, γ2)=(1, −λ, 0, 0, 0, 1), GLDA 
becomes Regularized FDA (RFDA), which aims to maximize 
the objective function defined in (11), where λ is a weighting 
parameter.  The solution of RFDA is the collection of the 
eigenvectors of SB−λSW [22]. 
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When (α1, β1, γ1, α2, β2, γ2)=(1, 1, 0, 0, 0, 1), GLDA 
becomes Principal Component Analysis (PCA), which aims to 
maximize the objective function defined in (12), where ST is 
the total scatter matrix [1], which is the summation of SB and 
SW [28].  The solution to (12) is the collection of the 
eigenvectors of SB+SW. 
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III. KERNEL VERSION GFDA 

A. Kernel Version GFDA (GKDA) 

It has been shown in [13] that a projection direction wi can 
be expressed as a linear combination of all the training vectors, 
as given by (13), where vi is an N×1 column vector and (vi)n is 
its n-th element, and X is a matrix consisting of all the training 
vectors {x1, x2…xN} whose n-th column vector is namely xn. 
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 (13) 

By defining a new matrix V whose i-th column vector is vi, 
we can rewrite (13) into a more compact expression as in (14). 

 XVW   (14) 

With the help of (14), we can then express WTmk, WTm, 
WTxn in terms of V, as given by (15) ~ (17), where we define 
three new notations lk, l and qn to be N×1 column vectors 
whose j-th element is given by (18) ~ (20). 
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In (18) ~ (20) above, k(xj, xn) is the kernel function.  The 
kernel function defines the inner product of two vectors, while 
the explicit expression of the vector is unnecessary to be 
known.  This is the so-called “kernel trick”, which enables 
people to define a kernel function involving an implicit feature 
mapping before projection.  For example, if we define the 
kernel function like k(xj, xn)=φ(xj)Tφ(xn), this kernel function 
involves an implicit feature mapping φ: x→φ(x). 

Based on (15) ~ (20), WTSBW and WTSWW can be expressed 
in terms of V, as given by (21) and (22), where in (21) and (22), 
UB and UW are N×N matrices defined in (23) and (24) [22]. 
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Adopting the new expressions in (21) and (22), (1) can be 
rewritten as (25), which is the objective function of GKDA. 
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The solution V of optimizing the objective function defined 
in (25) is then the collection of the eigenvectors of 

   IUUIUU WBWB 111
1

222  


.  After solving 

(25) for vi, for a feature vector xt, the projected feature yt is 
calculated using (26), where P is the number of eigenvectors. 
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B. Relationship between GKDA and Other Variants of KDA 

When (α1, β1, γ1, α2, β2, γ2)=(1, 0, 0, 0, 1, 0), GKDA 
becomes KDA, which aims to maximize the objective function 
defined in (27), whose solution is the collection of the 

eigenvectors of BW UU 1  [13][14]. 
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When (α1, β1, γ1, α2, β2, γ2)=(1, 0, 0, η, 1−η, 0), GKDA 
becomes Regularized KDA (R-KDA), which aims to maximize 
the objective function defined in (28), where η is a weighting 
parameter.  The solution of R-KDA is the collection of the 

eigenvectors of    BWB UUU
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When (α1, β1, γ1, α2, β2, γ2)=(1, 0, ε1, 0, 1, ε2), GKDA 
becomes Doubly Regularized KDA (D-RKDA), which aims to 
maximize the objective function defined in (29), where ε1 and 
ε2 are regularization parameters.  The solution of D-RKDA is 

the collection of the eigenvectors of    IUIU BW 1
1
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[19]. 
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When (α1, β1, γ1, α2, β2, γ2)=(0, 1, 0, 1, 0, 0), GKDA 
becomes Inverse KDA (IKDA), which aims to minimize the 
objective function defined in (30), whose solution is the 

collection of the eigenvectors of WB UU 1  [21]. 
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When (α1, β1, γ1, α2, β2, γ2)=(1, −λ, 0, 0, 0, 1), GKDA 
becomes Kernel RFDA (K-RFDA), which aims to maximize 
the objective function defined in (31), where λ is a weighting 
parameter.  The solution of K-RFDA is the collection of the 
eigenvectors of UB−λUW [22]. 
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When (α1, β1, γ1, α2, β2, γ2)=(1, 1, 0, 0, 0, 1), GKDA 
becomes Kernel PCA (KPCA), which aims to maximize the 
objective function defined in (32), whose solution is the 
collection of the eigenvectors of UB+UW [3]. 
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IV. SPEECH DATASET AND EXPERIMENTAL SETTING   

GSV is utilized as the original feature, which is calculated 
by adapting a 32-mixture Universal Background Model (UBM) 
with a relevance factor of 5 [29][30].  Linear SVM is employed 
as the classifier, which is implemented using LIBSVM [31].  
Four special types of GFDA are then applied on GSV as the 
dimensionality reduction techniques, including two non-kernel 
projection techniques R-LDA, RFDA and two kernel-based 
projection techniques R-KDA, K-RFDA.  R-LDA is a 
generalization of LDA, thus can be a good representative.  
RFDA is quite different from LDA regarding the formulation, 
thus can also be a representative.  So do the kernel-based 
projection techniques.  When applying the kernel-based 
techniques, only the linear kernel is used, meaning that 
k(a,b)=aTb.  In this way, no implicit feature mapping is 
involved before projection, thus the non-kernel and kernel-
based techniques are both linear and hence comparable. 

The speaker recognition dataset is the Ahumada-25 speech 
corpus [32].  There are totally 25 speakers to be recognized.  
Each speaker contributes approximately the same number of 
speeches, recorded using different microphones.  Totally there 
are 1440 speeches used for training, 1440 speeches used for 
testing, and 1019 speeches used for UBM. 

When applying R-LDA and R-KDA, to prevent the matrix 
being inverted to be singular, an extra regularization term εI is 
added, where ε is a regularization parameter and I is an identity 
matrix.  Then the solution to R-LDA and R-KDA becomes the 

collection of the eigenvectors of    BWB SISS
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1
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   

and    BWB UIUU
1

1


   respectively.  Different 

values of η and ε are investigated in the experiments.  While on 
applying RFDA and K-RFDA, it is unnecessary to add an extra 
regularization term, as matrix inversion is not involved.  The 
solution to RFDA and K-RFDA is the collection of the 
eigenvectors of SB−λSW and UB−λUW, where λ is the parameter 
being investigated in the experiments. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we compare the dimensionality reduction 
capabilities of the projection techniques when training data are 
sufficient (i.e. all the 1440 training data are involved in 
calculating the projection matrix) and insufficient (i.e. only 720 
training data are involved in calculating the projection matrix).  
Results are shown in Figs. 1 ~ 4.  In these figures, the x-axis is 
the reduced dimensionality of the projected features.  Since 
each projection direction is an eigenvector, the projection 
directions can be sorted according to the absolute value of the 
corresponding eigenvalues, and the larger the eigenvalue, the 
more significant the projection direction is.  Therefore, by 
choosing only a few significant projection directions, the 
dimensionality can be reduced. 

A. Dimensionality Reduction Ability of R-LDA and RFDA 

Results on applying R-LDA and RFDA are shown in Figs. 
1 and 2.  When the training data are sufficient (Fig. 1), the 
performance of R-LDA and RFDA degrades with the decrease 
of the dimensionality of the projected feature, and the latter 
degrades even faster.  Nevertheless, when the dimensionality is 
high enough (e.g. 20), both R-LDA and RFDA work well.  
When the training data are insufficient (Fig. 2), the 
performance of R-LDA is quite stable under different 
dimensionalities, while that of RFDA is still highly affected by 
the dimensionality.  Even when the dimensionality is high 
enough (e.g. 768), R-LDA still outperforms RFDA a lot.  
Comparing Fig. 1 and Fig. 2, the performance of R-LDA and 
RFDA with insufficient training data is worse than that with 
sufficient training data.  When training data are insufficient, 
there is no enough information to find good projection 
directions.  On applying RFDA, the performance is highly 
dependent on parameter λ.  On applying R-LDA, while η is 
relatively small, ε should be relatively large; while η is 
relatively large, ε should be relatively small.  Although both R-
LDA and RFDA can work well if the dimensionality is high 
enough, R-LDA is less affected by the dimensionality. 

B. Dimensionality Reduction Ability of R-KDA and K-RFDA 

Results on applying R-KDA and K-RFDA with linear 
kernel are shown in Figs. 3 and 4.  When the training data are 
sufficient (Fig. 3), the performance of R-KDA and K-RFDA is 
good when the dimensionality is high enough (e.g. 20), but 
degrades with the decrease of the dimensionality.  When the 
training data are insufficient (Fig. 4), the performance of R-



KDA is quite stable with respect to different dimensionalities, 
while K-RFDA is not.  Comparing Fig. 3 and Fig. 4, the 
performance of R-KDA and K-RFDA is worse when the 
training data are insufficient.  Besides, the performance of R-
KDA is more dependent on ε than η. 

C. Brief Comparison 

In this part, we make a brief comparison between non-
kernel projection techniques (i.e. R-LDA and RFDA) and 
kernel-based projection techniques (i.e. R-KDA and K-RFDA).  
When the training data are sufficient (Figs. 1 and 3), both R-
LDA and R-KDA are insensitive to the dimensionality, while 
K-RFDA is more sensitive to the dimensionality than RFDA.  
The highest accuracies achieved by the non-kernel and kernel-
based projection techniques are almost the same.  When 
training data are insufficient (Figs. 2 and 4), R-KDA is less 
sensitive to ε and η than R-LDA.  In addition, the highest 
accuracies achieved by the kernel-based projection techniques 
can be higher than those achieved by the non-kernel projection 
techniques.  The non-kernel techniques and the kernel-based 
techniques can be complementary to each other.  Suppose the 
original dimensionality of the training data is D and the number 
of training data is N.  Then for the non-kernel projection 
techniques, the objective is to find the eigenvectors of 

   ISSISS WBWB 111
1

222  


, whose dimensionality is 

D×D.  While for the kernel-based projection techniques, the 
objective is then to find the eigenvectors of 

   IUUIUU WBWB 111
1

222  


, whose dimensionality 

is N×N.  So, if D<N, we can apply the non-kernel techniques 
because calculating the eigenvectors of a D×D matrix is more 
efficient than an N×N matrix, otherwise we resort to the kernel-
based techniques. 

VI. CONCLUSION 

In this paper, we propose Generalized Fisher Discriminant 
Analysis (GFDA), which is the generalization of many 

different variants of Fisher Discriminant Analysis (FDA).  We 
describe both the non-kernel version GFDA (i.e. GLDA) and 
the kernel version GFDA (i.e. GKDA).  Then four special 
types of GFDA are compared as dimensionality reduction 
techniques for speaker recognition, including both the non-
kernel projection techniques and the kernel-based projection 
techniques.  Experimental results demonstrate that the 
performances of the non-kernel and kernel-based techniques 
are similar, which provides the flexibility to choose a proper 
projection technique.  For example, if the dimensionality of the 
training data is lower than the number of training data, it is 
more efficient to use the non-kernel projection techniques, 
otherwise we had better resort to the kernel-based projection 
techniques.  The proposed GFDA provides a general 
formulation that summarizes different variants of FDA, making 
comparing different variants more convenient. 
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Fig. 3. Recognition accuracy with respect to dimensionality, using R-KDA and K-RFDA with linear kernel, when training data are sufficient. 
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Fig. 4. Recognition accuracy with respect to dimensionality, using R-KDA and K-RFDA with linear kernel, when training data are insufficient. 

 




