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Abstract—In this paper, we propose Discriminative 

Collaborative Representation (DCR) as an extension to 

Collaborative Representation (CR), by adding an extra 

discriminative term to the original formulation of CR.  In the 

literature, both CR and Sparse Representation (SR) have been 

shown to be good in signal classification.  Compared to SR, CR is 

more computationally efficient, but does not give obvious 

performance improvement.  Therefore, we propose DCR, which 

aims at improving the performance of CR in signal classification. 

Besides, we extend DCR to Kernel DCR (KDCR), which 

generalizes DCR by introducing kernel functions.  Comparisons 

among SR, CR and DCR are made in doing two audio signal 

classification tasks.  Experimental results show that DCR can 

outperform CR and SR in both classification tasks, which 

demonstrates the effectiveness of our proposed DCR and the 

usefulness of the extra discriminative term. 

Keywords—Sparse representation; collaborative representation; 

discriminative collaborative representation; audio signal 

classification 

I. INTRODUCTION

Sparse Representation (SR) has been widely used for image 
and audio signal classification [1].  Regarding image 
classification, it has been applied to handwritten digit 
classification [2], vehicle classification [3], and face 
recognition [4]-[7].  Regarding audio classification, it has been 
applied to music genre classification [8][9], speech recognition 
[10][11], speaker recognition [12][13], and audio recording 
device identification [14]-[18]. 

In the perspective of SR, a signal is approximated by a 
linear combination of the basis vectors in a dictionary, and the 
SR of a signal is namely the collection of the coefficients in the 
linear combination.  In the formulation of SR, an L1-norm 
based regularization term is usually incorporated.  However, 
incorporating L1-norm regularization results in the inexistence 
of an analytic solution for SR.  In order to calculate SR, people 
have to resort to some optimization techniques, such as 
Matching Pursuit (MP) and Basis Pursuit (BP) [2], or 
Homotopy and Augmented Lagrange Multiplier (ALM) [19]. 

Due to the difficulty of L1-norm regularization, in [20], the 
Collaborative Representation (CR) is proposed as an 
alternative to SR, where L2-norm regularization is 
incorporated.  Owing to the incorporation of L2-norm instead 

of L1-norm, an analytic solution exists for CR, which makes 
CR computationally more efficient than SR.  Yet, the 
performances of CR and SR are similar [20]. 

In this paper, we propose Discriminative Collaborative 
Representation (DCR), which introduces an extra 
discriminative term to the original formulation of CR, with an 
aim to improve the performance.  This extra discriminative 
term controls the level of collaboration among different basis 
vectors in the dictionary, and therefore controls the 
discriminative ability of DCR.  We then derive Kernel DCR 
(KDCR), which generalizes DCR by introducing different 
kernels.  The performances of DCR, CR and SR are compared 
in two audio signal classification tasks, and experimental 
results show that the proposed DCR can outperform CR and 
SR.  To process DCR, CR and SR, we propose Residual-based 
Classifier (RC) and then extend it to Kernel RC (KRC), which 
is a generalization of Sparse Representation-based Classifier 
(SRC) in [4] and Collaborative Representation-based Classifier 
(CRC) in [20].  Moreover, we also compare RC with Support 
Vector Machine (SVM), which is a widely used classifier in 
audio signal classification [12][13][21]-[27]. 

In this paper we consider two microphone identification 
tasks, which aim at identifying the recording microphone based 
on the recorded speech signal.  Gaussian Supervector (GSV) is 
used as the feature vector, which is then used to calculate SR, 
CR and DCR.  GSV has been widely used in different audio 
signal classification tasks, such as speaker recognition 
[12][21][26][27] and recording device identification 
[16][18][22]-[24].  An overview of the audio signal 
classification procedure is depicted in Fig. 1. 

This paper is organized as follows.  In Section II, the 
formulation of SR and CR is given.  In Section III, the 
formulation of the proposed DCR and KDCR is given, together 
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Fig. 1. Overview of audio signal classification procedure. 
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with the corresponding RC and KRC.  In Section IV, the audio 
datasets are briefly described.  In Section V, the audio signal 
classification results are presented and discussed.  In Section 
VI, a conclusion is drawn. 

II. SR AND CR 

Suppose we have a dictionary B as given by (1), which is a 
matrix comprising N basis vectors, whose i-th column vector bi 
is namely the i-th basis vector.  For a given feature vector xn, its 
corresponding SR yn is obtained by solving the optimization 
problem defined in (2), where ||y||1 is the L1-norm [4]. 
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When the basis vectors bi and the input feature vector xn are 
noisy, instead of seeking the solution to (2), we can solve (3), 
which is the so-called unconstrained basis pursuit denoising 
(BPDN) problem, where λ is a weighting parameter [19]. 
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Instead of incorporating the L1-norm, for a given feature 
vector xn, its corresponding CR yn is obtained by solving the 
optimization problem defined in (4).  It can be shown that an 
analytical solution exists for CR, which is given by (5) [20]. 
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III. DCR 

A. Discriminative Collaborative Representation 

Suppose we have a dictionary B whose basis vectors are 
associated with different classes, then B can be denoted as a 
combination of C sub-dictionaries as given by (6), where C is 
the total number of sub-dictionaries (classes) and Nc is the 
number of basis vectors associated with class c.  In this paper, 
the basis vectors are the training feature vectors, thus each 
basis vector (i.e. each training vector) is associated with a class. 
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The i-th basis vector bi
(c) in B(c) is the (N1+…+Nc-1+i)-th 

basis vector iNN c
b  11   in B.  Then we have (7), where yn

(c) 

is an Nc×1 vector comprising those elements in yn that is only 
corresponding to the basis vectors in sub-dictionary B(c), and 
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Different from CR which is obtained through solving the 
minimization problem defined in (4), the Discriminative 
Collaborative Representation (DCR) yn is obtained through 
minimizing the objective function Jn defined in (8).  The last 
term Jn

(3) is a discriminative term.  As can be seen from (8), 
Jn

(3) represents the variance of the reconstructed signals based 
on different sub-dictionaries.  The smaller the value of Jn

(3), the 
smaller this variance will be, and the more collaboratively the 
basis vectors from different sub-dictionaries will work. 

)3()2()1(

1

2

2
1

)()()()(
2

2

21

2

2

1

nnn

C

i

C

j

j
n

ji
n

i
nnnn

JJJ

yB
C

yByByxJ



  
 


 (8) 

where 
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Then the solution to (8) is obtained by setting the derivative 
of Jn to zero, as given by (10). 
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The derivative of Jn is obtained by summing up the 
derivatives of Jn

(1), Jn
(2) and Jn

(3).  The derivatives of Jn
(1) and 

Jn
(2) can be easily calculated as given by (11) and (12). 
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Jn
(3) can be expanded as (13), 
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Then in order to calculate the derivative of Jn
(3) with respect 

to yn, we first calculate the partial derivative of Jn
(3) with 

respect to yn
(c) as given by (14). 
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Then the derivative of Jn
(3) with respect to yn can be 

expressed in terms of the partial derivatives, as given by (15), 
where matrix L is defined in (16). 
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where 
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After obtaining the derivatives of Jn
(1), Jn

(2) and Jn
(3), (10) 

can then be expressed as (17).  The solution to (17) is given by 
(18), which is then the formulation of DCR. 
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B. Kernel Discriminative Collaborative Representation 

In (18), BTB is an N×N matrix whose ij-th element is given 
by (19); the c-th block L(c) in L is an Nc×Nc matrix whose ij-th 

element is given by (20); BTxn is an N×1 vector whose i-th 
element is given by (21). 
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Since (19) ~ (21) only involve the inner product of two 
vectors, we can utilize a kernel function k(a,b)=aTb to represent 
the inner product of two vectors a and b.  On the other hand, 
the kernel function can also involve an implicit mapping of the 
original vector.  For example, we can define k(a,b)=φ(a)Tφ(b), 
and then φ will be the mapping function that maps the vector a 
from input feature space to another dimensional space.  By 
utilizing a valid kernel function k(.,.), (19) ~ (21) can be 
reformulated in terms of the kernel function as given by (22) ~ 
(24), where φ(B) and φ(B(c)) are merely two simplified 
notations defined in (25) and (26) respectively. 
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To formulate Kernel Discriminative Collaborative 
Representation (KDCR), we define an N×N matrix KBB as 
given by (27), an N×1 vector KBxn as given by (28), and an N×N 
matrix KCC as given by (29) and (30). 
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where 



Algorithm 1: RC 

1: Given the SR or CR or DCR yn corresponding to the 

input feature vector xn, calculate the residual )(c
nr  

with respect to each class c as follows, 
2
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2: The input feature vector xn is then classified to the 

class that has the minimum residual, i.e. 
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Algorithm 2: KRC 

1: Given the KDCR yn corresponding to the input 

feature vector xn, calculate the residual )(
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TABLE I.  AHUMADA-25 MICROPHONE SPEECH DATASET 

Notation Microphone Model Number of Speech 

Recordings 

Training Testing 

M1 AKG C410B Head Mounted 240 260 

M2 AKH D80S Desktop 240 260 

M3 SONY ECM 66B Lapel 240 260 

M4 TARGET Lapel 240 260 

UBM All the models 599 
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Having defined KBB, KBxn and KCC, (18) can then be 
reformulated as (31), which is the formulation of KDCR.  As a 
matter of fact, DCR is just KDCR with the linear kernel. 
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C. Residual-based Classifier and Its Kernel Version 

Both Sparse Representation-based Classifier (SRC) and 
Collaborative Representation-based Classifier (CRC) are 
residual-based classifiers, which means for each class, SRC or 
CRC calculates a residual, and the input feature vector xn will 
be classified to the class that has the minimum residual.  On 
using DCR, the residual rn

(c) for the c-th class is given by (32). 
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On using KDCR, the residual )(
,
c

nr   is given by (33), where 

KCxn is an Nc×1 vector, whose i-th element is given by (34). 
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For convenience, the classification procedure of Residual-
based Classifier (RC) is described in Algorithm 1, which 
summarizes SRC and CRC; the classification procedure of 
Kernel Residual-based Classifier (KRC) is described in 
Algorithm 2, which generalizes RC by introducing the kernel. 

IV. EXPERIMENTAL SETTINGS AND DATASETS 

In our experiments, Gaussian Supervector (GSV) is used as 
the input feature vector for the calculation of SR, CR, DCR and 
KDCR, which is obtained by adapting a 32-component 
Universal Background Model (UBM) with a relevance factor 
of 20.  More details of GSV can be found in [21]-[23].  On 

using KDCR, we adopt Gaussian kernel defined as 

      hbaba
T

ebak , , where h is the kernel parameter. 

The audio datasets are Ahumada-25 and Gaudi-25, which 
are parts of AHUMADA [28].  We divide each dataset into a 
training set, a testing set, and a UBM set.  The training set is 
used as the dictionary, while the testing set is used to test the 
performance of SR, CR, DCR and KDCR.  The UBM set is 
used to calculate GSV.  In Ahumada-25, we choose 4 different 
microphone models as listed in Table I.  Totally there are 960 
speech recordings used for training and 1040 speech recordings 
used for testing.  Another 599 microphone speech recordings 
are used for UBM.  In Gaudi-25, we choose 5 different 
microphone models as listed in Table II.  Totally there are 1200 
speech recordings used for training and 1280 speech recordings 
used for testing.  Another 744 microphone speech recordings 
are used for UBM. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In the first part of this section, we compare the 
performances of linear SVM, SR, CR and DCR in two 
microphone classification tasks, where SVM is implemented 
by LIBSVM [29].  In the second part of this section, we 
compare the performances of DCR and KDCR, where 
Gaussian kernel is employed on using KDCR.  SR is obtained 
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Fig. 2. Comparison among SVM, SR, CR and DCR on 

Ahumada-25 and Gaudi-25. 
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Fig. 3. Comparison between DCR and KDCR on Ahumada-25. 

TABLE II.  GAUDI-25 MICROPHONE SPEECH DATASET 

Notation Microphone Model Number of Speech 

Recordings 

Training Testing 

M1 AKG C410 Desktop 240 260 

M2 AKG Tripower Desktop 240 260 

M3 AKH D80S Desktop 240 260 

M4 SONY ECM 66B Lapel 240 260 

M5 TARGET CPT3GX Desktop 240 240 

UBM All the models 744 

 

using Basis Pursuit (BP) algorithm [30] implemented by 
SparseLab [31].  The SR calculated using (2) is called SR (BP), 
while the SR calculated using (3) is called SR (BPDN).  On 
using SR, CR and DCR, different parameters are evaluated. 

The classification results of SR, CR, DCR and SVM are 
plotted in Fig. 2.  It can be seen that, SR (BP) performs worse 
than SR (BPDN), as the input feature vector (i.e. GSV) is 
usually noisy and therefore the regularization term in (3) is 
necessary for robustness.  In addition, SR (BPDN) can perform 
better than SVM, and CR can work a little better than SR 
(BPDN).  Moreover, the proposed DCR can outperform SR, 
CR and SVM, when the discriminative parameter λ2 is 
carefully chosen.  This demonstrates the necessity and 
usefulness of adding the discriminative term to the original 
formulation of CR, which makes the representation more 
robust and flexible.  As can be seen from (8), the regularization 
term Jn

(2) controls the level of sparseness of DCR, while the 
discriminative term Jn

(3) controls the level of collaboration of 
the coefficients in DCR.  The larger the value of λ1, the sparser 
the DCR will be; the larger the value of λ2, the more similar the 
reconstructed signals based on different sub-dictionaries will 
be.  In a word, the regularization term controls the relationship 
of the coefficients in DCR, while the discriminative term 
controls the relationship of the coefficients in different sub-
dictionaries.  The two terms interact with each other. 

The classification results of using DCR and KDCR are 
illustrated in Figs. 3 and 4.  The major observation is that, 
Gaussian kernel does not help, as compared to linear kernel.  
This means an extra feature mapping may be useless.  On 
increasing the value of the regularization parameter λ1, the 
performances of KDCR with different values of the 
discriminative parameter λ2 tend to converge.  The larger the 
kernel parameter h, the faster the performances will converge.  
This convergence phenomenon also demonstrates the 
usefulness of the regularization term λ1 in improving the 
robustness of the KDCR. 

VI. CONCLUSION 

In this paper, we propose Discriminative Collaborative 
Representation (DCR), which is the extension and 
improvement of Collaborative Representation (CR).  In the 
literature, Sparse Representation (SR) and CR have shown to 
be good representations for signal classification, especially for 
image classification and audio classification, while CR is more 
computationally efficient than SR.  However, compared to SR, 
CR merely improves the computational efficiency but not 
classification performance.  Facing this situation, we propose 
DCR, which introduces an extra discriminative term to the 
original formulation of CR.  This discriminative term controls 
the discriminative ability of DCR, making it more robust and 
flexible than CR.  Experimental results on two audio signal 
classification tasks demonstrate that the proposed DCR can 
outperform CR as well as SR.  In addition, we also develop the 
kernel version of DCR (KDCR), which is the generalization of 
DCR (as DCR is KDCR with the linear kernel).  However, 
KDCR with Gaussian kernel does not offer improvement over 
DCR, which means that an extra feature mapping before 
classification seems unnecessary for DCR.  Nevertheless, 
KDCR provides a way to include an implicit feature mapping 
before classification, which may be useful in some situation. 
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Fig. 4. Comparison between DCR and KDCR on Gaudi-25. 
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